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What is it?

o Goal Recognition is the task of recognizing agents’ goal that
explains a sequence of observations of its actions;

o Related to plan recognition, i.e. recognizing a top-level action
o A specific form of the problem of abduction

o Roughly two types of approach:

o Plan-library based (classical plan recognition)
o Domain-theory based (plan recognition as planning, or PRAP)
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Why do we need goal recognition?

o Recognizing plans and goals of others is critical for meaningful
interaction:

o important for humans/agents working in the same environment

o increasingly important as we build more intelligent systems

o Overall area of Plan, Activity and Intent Recognition
sensor data

o Activity recognition: recognizing meaningful activities from low-level
o Plan/Intent/Goal recognition: recognizing intentional higher-level
sequences of activities
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Flavors of Recognition Formalism

Plan Library Domain Theory (PRAP)

(define (domain grid)

(:requirements :strips :typing)

(:types place shape key)

(:predicates (conn 7x ?y — place)
(key—shape 7k — key ?s — shape)
(lock —shape ?x — place ?s — shape)
(at 7r — key ?x — place )
(at—robot 7x — place)

®

(locked ?x — place)
(carrying 7k — key)
(open 7x — place)

(:action unlock

parameters (?curpos ?lockpos — place ?key — key ?shape — shape)

precondition (and (conn ?curpos ?lockpos) (key—shape ?key ?shape)
(lock—shape ?lockpos ?shape) (at—robot ?curpos)
(locked ?lockpos) (carrying ?key))

effect (and (open ?lockpos) (not (locked ?lockpos)))

(:action move
parameters (?curpos ?nextpos — place)
precondition (and (at—robot ?curpos)
effect (and (at—robot ?nextpos) (mot (at—robot ?curpos)))

(conn 7curpos ?nextpos) (open 7r

(:action pickup
parameters (?curpos — place 7key — key)
precondition (and (at—robot ?curpos) (at ?key ?curpos))
effect (and (carrying ?key)

(not (at ?key ?curpos)))
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Automated Planning

Definition (Planning)

A planning instance is represented by a triple [1 = (=,Z, G), in which:

o == (X, A) is the domain definition, and consists of a finite set of

facts X and a finite set of actions A (action costs typically 1);

o ZC X and G C X represent the planning problem, in which Z C X

is the initial state, and G C ¥ is the goal state.

o Actions a € A are tuples a = (pre(a), eff (a), cost(a))
o Facts ¥ can be modeled in a variety of ways:

o As a logic language (restricted FOL):
states are truth assignments

o As a set of variables V with finite domains:
states are variable assignments
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Automated Planning - Less boring

Planning problems have three key ingredients

Domain Description Initial State Goal State

Solution

[ o[ |
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Planning Heuristics

Most modern planners rely on heuristics
VU/ to efficiently search the state-space.
K// Two key challenges in research on novel
heuristics

o Informativeness of the heuristic

o Computational efficiency
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Goal Recognition Problem

Definition (Goal Recognition Problem)

A goal recognition problem is a tuple P = (=,Z,G, O), where:
o == (X, A) is the domain definition (facts and actions) ;
o Z C ¥ is the initial state;

o Gst. VG €G,G C X is a set of candidate goals (with an assumed
hidden goal G); and

O is a sequence (01, ...0p) of observations, where o; € A

©

The solution for a goal recognition problem is the hidden goal G € G
that is most consistent with observation sequence O.

©

o Caveat: we may have other representations for the observations
o This is what | will refer to as PRAP
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Goal Recognition Problem - Less boring

Goal /Plan Recognition problems have three key ingredients

Domain Description
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Goal Recognition Problem - Less boring

Goal/Plan Recognition problems

have four key ingredients

Domain Description Initial State Goal Hypotheses
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Goal Recognition using Planning Domains |

Ramirez and Geffner (2009 and 2010)

o First approaches to goal recognition: Plan Recognition as Planning
(PRAP)

o Probabilistic model aims to compute P(G | O)
o Following Bayes Rule P(G | O) = aP(O | G)P(G)
o Given P(G) as a prior, key bottleneck is computing P(O | G)

o Compute P(O | G) in terms of ! j_.g

a cost difFerence_
c(G,0) - ¢(G,0)

o Costs two planner calls per
goal hypothesis

Y
f
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Goal Recognition using Planning Domains I

Sohrabi et al. (2016)
o Conceptually similar to Ramirez and Geffner: aims to compute
P(G | O) via aP(O | G)P(G)
o Compilation of plan recognition problem into multiple planning
problems (one for each G)

o Compute Top-k or diverse plans
7 to approximate P(O | G) =

ZPO[W P(m | G)

o Compensate noisy observations
by imposing a cost on dropped
Observations

Meneguzzi et al. Melbourne, February, 2020 16 /39




Goal Recognition using Planning Heuristics

Pereira, Oren and Meneguzzi (2017):

o Obviate the need to execute a planner multiple times for
recognizing goals; and

o Novel goal recognition heuristics that use planning landmarks.

o More accurate and orders of magnitude faster than all previous
approaches.

Planning Landmarks:

o Are necessary conditions for
any valid plan

o Theoretical cost of computation | | I
is the same as planning

AN
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Operator Counting Heuristics

o Based on the idea of Cost Partitioning for Landmarks

o Represents cost of a planning problem in terms of linear constraints:?

o Variables: Count, for each operator o
o Objective: Minimize Z Count, - cost(0), subject to
o

) Z Count, > 1 for all landmarks L

o€l
o Count, > 0 for all operators o

o Numbers of operator occurrences in any plan satisfy constraints
o Minimizing total cost — admissible heuristic

! Adapted from Helmert and Rdger's planning course

Meneguzzi et al. LP-Based Approaches for Goal Recognition as Planning Melbourne, February, 2020
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Operator Counting

Operator-counting Constraints?

o linear constraints whose variables denote number of occurrences of a
given operator

o must be satisfied by every plan

Examples:

o Countey + Countpp > 1 “must use o or o at least once”

o County,; — Countez <0 “cannot use o; more often than o3”
Motivation:

o declarative way to represent knowledge about the solution
o allows reasoning about solutions to derive heuristic estimates

o elegant framework to combine information from multiple heuristics

2Adapted from Helmert and Réger's planning course
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Operator Counting heuristics

OC variables correspond to unordered actions in potential plans.3

Operator occurrences in potential plans
210
>
11z 790
T21 001
> - >
302
131 23]
= 322
30 721
2! 130
110

3Adapted from Helmert and Réger's planning course
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Operator-counting Constraint

Definition: Operator-counting constraints

Let 1 be a planning task with operators O and let s be a state. Let V be
the set of variables Count, for each o € O. A linear inequality over V is
called an operator-counting constraint for s of for every plan 7 for s
setting each Count, to the number of occurrences of o in 7 is a feasible
variable assignment.

Melbourne, February, 2020 22/39
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Operator-counting Constraint

Definition: Operator-counting constraints

Let 1 be a planning task with operators O and let s be a state. Let V be
the set of variables Count, for each o € O. A linear inequality over V is
called an operator-counting constraint for s of for every plan 7 for s
setting each Count, to the number of occurrences of o in 7 is a feasible
variable assignment.

So, what are typical operator-counting constraints?
o Landmarks: L landmark operator has a constraint Z Count, > 1
oclL
o Flow heuristic: one flow constraint per atom a:
[a€s]+ Z Count, = [a €] + Z Count,
o€ 0:aceff(0) o€ 0:acpre(o)
o Post-hoc Optimization:
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Operator Counting Constraints for Goal Recognition

Motivation:

o Operator counting constraints represent knowledge about solutions
o allows reasoning about solutions to derive heuristic estimates
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Operator Counting Constraints for Goal Recognition

Motivation:

o Operator counting constraints represent knowledge about solutions

o allows reasoning about solutions that comply with additional
constraints:
o actual observations
o missing observations
o noisy observations
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Operator Counting Constraints for Goal Recognition

Motivation:

o Operator counting constraints represent knowledge about solutions

o allows reasoning about solutions that comply with additional
constraints:

actual observations

missing observations

noisy observations

goal hypotheses

other constraints

© © © 0 o
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Computing intersection of OC and Observations

Initial idea: compute operator-counts and compare with observations

Example

Consider an observation containing 0 and o3 (from a plan for g1):

e Compute h®(Z) for:
° &

o & B e

° g
@7 @ @7 Returr? goal with maximum
ﬁ ﬁ ﬁ overlap
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Computing intersection of OC and Observations

Initial idea: compute operator-counts and compare with observations

Example

Consider an observation containing 0 and o3 (from a plan for g1):

o

$

d

4 M R

Compute h®(Z) for:
° &
© &
° &3

Return goal with maximum
overlap

Problem: LP has multiple (optimal) solutions
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Hard Constraints for the Observations

Second idea: force OCs that comply with observations

Observation constraints

Let k, be the number of occurrences of observations of the operator a in
the sequence of Observations O for a goal recognition problem P, the hard
constraint for a is:

Count, > k,

We call the objective value of the resulting LP hyc
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Hard Constraints for the Observations

Second idea: force OCs that comply with observations

Observation constraints

Let k, be the number of occurrences of observations of the operator a in
the sequence of Observations O for a goal recognition problem P, the hard
constraint for a is:

Count, > k,

We call the objective value of the resulting LP hyc

hie Heuristic cost of reaching a goal G subject to the observations O
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Hard Constraints for the Observations

Example: Observations o, and o3 (towards g)

Compute h®(Z) for:
o HEL(T) =3
o HE(T) =4
o HEA(T) = 4
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Hard Constraints for the Observations

Example: Observations o, and o3 (towards g)

Compute h®(Z) for:
o HEL(T) =3
o HE(T) =4
o HEA(T) = 4

Solution: {G|G € G A h&, < ming hS.} = {g1}
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Accounting for Uncertainty

Key Challenge: Observations are unreliable in Goal Recognition

£

o Fast approaches (e.g. Pereira, Oren, and Meneguzzi) have a threshold
to handle ties due to missing observations
o OC heuristics: lower bound on number of observations
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3
5 hEi(I) =7

> 4|
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Accounting for Uncertainty

Key Challenge: Observations are unreliable in Goal Recognition

£

o Fast approaches (e.g. Pereira, Oren, and Meneguzzi) have a threshold

to handle ties due to missing observations
o OC heuristics: lower bound on number of observations

Lower bound on observations

o hie(Z) =3
o | o HE(T) =5 H(T) =7
& o |0|>3
A fr i _
o U1+ minehic lol g 33

Solution: {G|G € G A hS. < ming hS, x U} = {g1}
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Properties of the heuristics

Proposition 1: hy. dominates h

Let h be the basic operator-counting heuristic, hyc be the over-constrained
heuristic hyc that accounts for all observations o € O, and s a state of I1.
Then hyc(s) > h(s).

Proposition 2

The set of goals returned by hy with 100% of the observations always
contains the actual goal.
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Enforcement Delta

Problem: Noisy observations throw off over-constrained heuristic

Observations 0, 03, 07 (noisy) towards g;

o7

> @@ o

2
f

Meneguzzi et al.
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Enforcement Delta

Problem: Noisy observations throw off over-constrained heuristic

Observations 0, 03, 07 (noisy) towards g;

(S ]y

, 2

A

4

AN

fr

Meneguzzi et al.
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Enforcement Delta

Problem: Noisy observations throw off over-constrained heuristic

Observations 0, 03, 07 (noisy) towards g;

=] o heL(T
o
YR
ABAR M

7 h2(2) =7 hii(Z) =10
o h&(Z) = h82(Z) = h&3(Z) =2
0 05L(Z) =5 684(Z) =5 65.(Z) = 8
o U=1.

(6]
g
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Enforcement Delta

Problem: Noisy observations throw off over-constrained heuristic

Observations 0, 03, 07 (noisy) towards g;

Ol o hie(T) =7 hia(Z) = 7 his(Z) = 10
‘ o h&(T) = h&(I) = h&(T) =2
o2 [ o1 B oo 5

o 08L(T) = 5 68(T) = 5 65:(T) = 8
AN NN

o U=1.
Solution: Compute OCs twice, and return min 6%, = hS, — h®

(6]
g

{G|IG e G A 5HC < m'nGénc * U} = {g1, 82,83}
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Empirical Experiments (Accuracy)

Non-noisy

OHe dHcu R&G POM OHe dHcu R&G POM
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Empirical Experiments (Spread)

Non-noisy

T T 10

Spread
4

Spread
4

2 2

0
OHe SHcu R&G POM OHe SHcu R&G POM
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Goal Recognition using Operator-Counting Constraints

Meneguzzi, Pereira and Pereira (2020):
o Use operator counting information to recognize goals; and

o Operator counts and LP constraints cope explicitly with noisy
observations.

Key advantages:

o More accurate than all
previous approaches; and

o Extensible framework for Is1 Is1 1s1
further goal recognition work.

Meneguzzi et al. (ATt Ay i e @l Ry e e T Melbourne, February, 2020 33/39
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Future Directions

o Introduce flexibility for noise in the constraints
o Reason about all goals in one LP

o Implement approaches Efficiently
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Internationalization Plug

If this talk was interesting and you want to know more, talk to me:

PUCRS Print

http://www.pucrs.br/print/

Areas of work (with me) and advantages:
o Automated Planning and Goal Recognition
o Machine Learning (within reason)

o Excellent Food
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Thank you!
Questions?

W1 | ESCOLA
ic | POLITECNICA
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