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Motivation
What?

o Goal Recognition is the task of recognizing agents’ goal that explains a sequence of
observations of its actions;

o Related to plan recognition, i.e. recognizing a top-level action
o A specific form of the problem of abduction

—®
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Motivation
Why?

o Most GR approaches rely on specifications of the dynamics of the agent in the
environment when pursuing a goal. This implies a series of assumptions:

o Mathematically precise environment specification
o Actor and observer “share” this specification
o "Well-behaved"” noise and partial observability

o There are several limitations to this process:

o Cost of Domain Description.
o Noise Susceptibility.
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Talk Outline

o A formalisation of Goal Recognition amenable to ML

o Recent approaches to Goal Recognition using Reinforcement Learning Algorithms

o GRAQL
o That which shall remain nameless

o Discussion of future prospects of RL-driven GR
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Background

Automated Planning

Definition (Planning Task)

A planning task 1 = (=, s, G) is a tuple composed of a domain definition =, an initial state
sp, and a goal state specification G. A solution to a planning task is a plan or policy 7 that

reaches a goal state G starting from the initial state sy by following the transitions defined in

the domain definition =.
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Background

Automated Planning

Planning problems have three key ingredients
Domain Description
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Background

Goal Recognition

Definition (Goal Recognition Task)

A goal recognition task N2 = (=, s5,G, Q) is a tuple composed of a domain definition =, an
initial state sp, a set of goal hypotheses G, and a sequence of observations €.
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Background

Goal Recognition

Goal/Plan Recognition problems have four key ingredients
Domain Description
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Background
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Goal Recognition using Planning Domains

Ramirez and Geffner (2009 and 2010)
o First approaches to goal recognition: Plan Recognition as Planning (PRAP)
o Probabilistic model aims to compute P(G | O)
o Following Bayes Rule P(G | O) = aP(O | G)P(G)
o Given P(G) as a prior, key bottleneck is computing P(O | G)

o Compute P(O | G) in terms of a cost ! j_.

difference (G, O) — (G, O)
o Costs two planner calls per goal
hypothesis

'
f
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Goal Recognition Problem (new)

Definition (Goal Recognition Problem)

Given a domain theory To(G) or T(G) and a sequence of observations 2, output a goal
g € G that Q explains.
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GR as RL framework

Stage 1 — Learn

Tabular Q-learning
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GR as RL example 1
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Goal Recognition as Reinforcement Learning

Goal Recognition problem
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GR as RL example 2

Goal Recognition as Reinforcement Learning
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GR as RL example 3
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Goal Recognition as Reinforcement Learning
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GRAQL - Learning stage

GRAQL provides a first implementation for this framework.

o We use off-the-shelf Q-learning algorithms?.

o Our goal is to learn informative domain theory with minimal effort.

o Reward for reaching the goal is 100, and 0 otherwise, and the discount factor is 0.9.
o Exploration is e-greedy with linearly decaying values.

lgithub.com/aimacode/aima-python/blob/master/reinforcement_learning.py
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github.com/aimacode/aima-python/blob/master/reinforcement_learning.py

GRAQL - Inference stage

G = argmin DISTANCE(Qg, 2)
geg

Three distinct distances® inspired by three common RL measures:
@ MaxUtil,
@ KL-divergence,
® Divergence Point.

2Not actually metrics
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MaxUtil is an accumulation of the utilities collected from the observed trajectory.

MaxUtil( Qg, Q) = — > Qg(si, a)

i€|Q|

«Or <Fr «=>» = E A
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GRAQL Inference

KL-Divergence

KL-Divergence is a measure for the divergence between two distributions, so we construct
two policies, T, and mq for Qg and € respectively.

KL(ng Q) = DKL(”g || mq) =
3 mglar | ) log 201 5) @)

i€|Q| FQ(ai ‘ Si)
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GRAQL Inference

Divergence Point

Divergence Point (DP) is a measure adapted from Macke et al®, where given a trajectory Q

and a policy , it is defined as the minimal point in time in which the action taken by Q has
zero probability to be chosen by 7.

DP(Qg, ) = —min{t | mg(ar-1 | se-1) < 6} (3)

3William Macke, Reuth Mirsky, and Peter Stone. “Expected Value of Communication for Planning in Ad

Hoc Teamwork”. In: Proceedings of the 35th Conference on Artificial Intelligence (AAAI). Virtual Conference,
Feb. 2021.
Meneguzzi
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Experiments

Domains

We use three domains from the PDDLGym library for their similarity with commonly used GR
evaluation domains:

@ Blocks,
@ Hanoi,

@ SkGrid (which resembles common GR navigation domains with obstacles)
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Experiments

Problems

o For each domain, we generate 10 GR problems with 4 candidate goals. We manually
choose ambiguous goals.

o Each problem has 7 variants, including partial and noise observations. We have 5 variants
with varying degrees of observability (10%, 30%, 50%, 70%, and full observability), and 2
variants that include noise observations with varying degrees of observability (50% and
full observability).

o Our test set includes 210 GR problems, which we compare with R&G
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Accuracy F-Score
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Results
Snapshot of Noisy

Accuracy Precision Recall F-Score
O | Domain | MU | KL | DP | RG | MU | KL | DP | RG | MU | KL DP | RG | MU | KL | DP | RG
Blocks | 0.95 | 0.62 | 0.93 | 0.84 | 0.95| 0.33 | 0.77 | 0.56 | 0.90 | 0.50 | 1.00 | 1.00 | 0.90 | 0.40 | 0.87 | 0.71
"‘07 Hanoi 0.97 | 0.90 | 0.93 | 0.68 | 0.91 | 0.80 | 0.77 | 0.33 | 1.00 | 0.80 | 1.00 | 1.00 | 0.95 | 0.80 | 0.87 | 0.56
SkGrid | 0.75| 0.75 | 0.57 | 0.88 | 0.50 | 0.50 | 0.35 | 0.64 | 0.50 | 0.50 | 0.80 | 0.90 | 0.50 | 0.50 | 0.48 | 0.75
Blocks | 1.00 | 1.00 | 0.95 | 0.96 | 1.00 | 1.00 | 0.83 | 0.83 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.91 | 0.91
3 Hanoi 1.00 | 0.95 | 0.90 | 0.78 | 1.00 | 0.90 | 0.71 | 0.48 | 1.00 | 0.90 | 1.00 | 1.00 | 1.00 | 0.90 | 0.83 | 0.65
SkGrid | 0.85|0.95 | 0.65| 0.90 | 0.70 | 0.90 | 0.40 | 0.69 | 0.70 | 0.90 | 0.80 | 0.90 | 0.70 | 0.90 | 0.53 | 0.78
w0 Blocks | 0.97 | 0.81 | 0.94 | 0.90 | 0.97 | 0.60 | 0.80 | 0.70 | 0.95 | 0.75 | 1.00 | 1.00 | 0.95 | 0.67 | 0.89 | 0.81
3 Hanoi 0.99 | 093091 | 0.73|0.95| 0.85|0.74 | 0.43|1.00 | 0.85|1.00 | 1.00 | 0.98 | 0.85 | 0.85 | 0.61
SkGrid | 0.80 | 0.85 | 0.61 | 0.89 | 0.60 | 0.70 | 0.37 | 0.67 | 0.60 | 0.70 | 0.80 | 0.90 | 0.60 | 0.70 | 0.51 | 0.77
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Value Function Approximation

o So far we have represented value function by a lookup table

o Every state s has an entry V(s)
o Or every state-action pair s,a has an entry Q(s,a)

o Problem with large MDPs:

o There are too many states and/or actions to store in memory
o It is too slow to learn the value of each state individually

o Solution for large MDPs:
o Estimate value function with function approximation

¥(s, w) = v (s)

or §(s,a, w) =~ gx(s,a)

o Generalize from seen states to unseen states
o Update parameter w using MC or TD learning
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Catchy name for agent architecture

Goal recognition using function approximation

g W
. N 1 (g,

o We adapted our algorithm to use function
approximators: 0—‘

o Actor-Critic learning
o Different distance metrics suitable for Critc Network Actor Network
continuous domains

o Comparison of observations using: B o

o Wasserstein distance & &
o Z-Score function i o i

Convolutional +ReLU (3 LSTM  (/ Fully Connected + Tanh 1 Fully Connected
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Actor critic thus has access to the policy

Wasserstein: measures the amount of work needed to be invested to convert one distribution to the other

Z-Score: how likely a sample (an observed action) is under some distribution (the goal-based policy)


Panda-gym

Performance in Panda-Gym

ol

-Score
T
-Score

. 1 . -
i 0.8 . -
i 0'6 . -
N L 04, 4
i 0'2 . -
L \7 O 7\ T T T T T T T \7
0.10.20.30.40.50.60.70.8
Observablllty Noise Ratio

IDRACO (Wasserstein)lBDRACO (Z-Score) BGRAQL (KL)| [WDRACO (Wasserstein) BDRACO (Z-Score) BGRAQL (KL) |

!
P

[m] = = =
Meneguzzi Goal Recognition through Reinforcement Learning Melbourne, May 2024 28 /34



1) Motivation
2) Planning and Goal Recognition

3) Goal Recognition as Reinforcement Learning
o Formal Framework
» GRAQL Implementation
o Experiments and Results
4) Going Deeper

(® Related Work

6) Final Thoughts

40> «Fr «=r» « Q>

it
v



Related Work

Learning action models from data

Amir and Chang 2008%; Amado et al. 2019%; Asai and Muise 2020°; Juba, Le, and
Stern 20217

*Eyal Amir and Allen Chang. “Learning partially observable deterministic action models”. In: Journal of
Artificial Intelligence Research 33 (2008), pp. 349-402.

¥Leonardo Amado et al. “Goal recognition in latent space”. In: 2018 International Joint Conference on
Neural Networks (IJCNN). IEEE. 2018, pp. 1-8.

5Masataro Asai and Christian Muise. “Learning Neural-Symbolic Descriptive Planning Models via
Cube-Space Priors: The Voyage Home (to STRIPS)". In: CoRR abs/2004.12850 (2020). arXiv: 2004.12850.
URL: https://arxiv.org/abs/2004.12850.

"Brendan Juba, Hai S. Le, and Roni Stern. “Safe Learning of Lifted Action Models". In: International
Conference on Principles of Knowledge Representation and Reasoning (KR). 2021.
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Related Work

Goal Recognition

o Inverse reinforcement learning (IRL): Zeng et al 20188.

o Other metric-based GR: Masters and Sardina 2017°; Mirsky et al. 2019'°

8Yunxiu Zeng et al. “Inverse Reinforcement Learning Based Human Behavior Modeling for Goal Recognition
in Dynamic Local Network Interdiction.”. In: AAAI Workshops. 2018, pp. 646—653.

°Peta Masters and Sebastian Sardina. “Cost-based goal recognition for path-planning”. In: Proceedings of
the 16th Conference on Autonomous Agents and MultiAgent Systems. 2017.

°Reuth Mirsky et al. “New goal recognition algorithms using attack graphs”. In: International Symposium on
Cyber Security Cryptography and Machine Learning. Springer. 2019, pp. 260-278.
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What next

Future work

This is part of a larger research agenda, we still make too many assumptions:
o No explicit prior, but we could consider it in various ways
o No null hypothesis (goals are mutually exclusive, and exhaustively enumerated)
o Keyhole settings ignore strategic behaviour in both agents

Future directions for research:

o Incorporating priors (explicitly or otherwise)

o Reconstruct the reward function with IRL
o Learn policies via Imitation Learning or Learning from Observation

o Learning more generic policies/reward functions:

o Goal Conditioned policies
o Reward Machines

o Game theoretical settings
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