
Practical Normative Reasoning:
Models and Challenges

Felipe Meneguzzi
School of Computer Science (FACIN)

PontiÞcal Catholic University of Rio Grande do Sul (PUCRS)
felipe.meneguzzi@pucrs.br

1

Monday, 25 February 13

mailto:felipe.meneguzzi@pucrs.br
mailto:felipe.meneguzzi@pucrs.br

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Outline

• Norms and Deontic logic

• Practical Normative Reasoning

• Plan selection

• Decision-theoretical reasoning

2

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Why Norms?
• Autonomous agents in heterogenous societies act to achieve

individual goals

• Multiple agents acting simultaneously will interfere with each other
(negatively)

• Strategies will be either:

• One against everyone else (game theory)

• One-to-one coordination (expensive)

• Normative systems

3

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norms

• Represent desirable behaviours for members of a society

• ÒSoft-constraintsÓ on behaviour

• General expectation of behaviour

• Rewards for compliance + Sanctions for non-compliance

• Traditionally represented
through conditional
rules of the form:

4

h⌫,↵, ✏i
Expiration Condition

Activation Condition

Norm condition (Deontic Formula)

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Deontic Logic

• Alethic modal logic deals with what is
(or could be)

• Deontic logic deals with what should be

• Most common deontic modalities:

• Obligations - Oq - it is obligatory that q

• Permissions - Pq - it is permitted that q
Pq ↔ ÂOÂq

• Prohibitions - Fq - it is not permitted that q
Fq ↔ OÂq

5

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Deontic Logic

• This talk is not about deontic logic

• A lot of work still being done in logic

• For our purposes we greatly simplify things in terms of:

• States we want agents to achieve

• States we do not want agents to achieve

6

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

TrafÞc Light Example

• Norm condition

• Activation condition

• Expiration condition

7

hOstop(A,P),

at(A,P) ^ redlight(P),

¬redlight(P)i

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norms and state-space

• Norm enforcement focuses on two sets of states

• States between activation and expiration:
norm context

• States referred to by the
norm condition

• Semantics of obligations sometimes differ

8

State Space

Context

Norm

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norm Activation and Expiration

9

State Space

Context

Norm

Obligation

Activation
Fulfilment

Expiration State Space

Context

Norm

Prohibition

Activation Fulfilment

Expiration

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norm Activation and Expiration

10

State Space

Context

Norm

Obligation

Activation Violation

Expiration State Space

Context

Norm

Prohibition

Activation Violation

Expiration

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Practical Norm Reasoning

• Existing efforts largely focused

• Logical aspects (deontic logic)

• Macro-level (virtual organisations)

• Relatively few techniques for individual agent behaviour

• Finite time/resources

• Practical enforcement mechanisms

11

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Practical Norm Reasoning

• How should an agent behave in a norm-driven society?

• Norms as soft constraints

• Dynamically changing sets of norms

• Different enforcement mechanisms

• Limited time/resources

• Depends on the assumptions on the environment

12

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Environment Assumptions

• Deterministic/Stochastic

• Plan selection

• Decision theoretic planning

• Observable/Partially Observable

• Norm inference / learning

• Explicitly multiagent

• Reasoning about other agents/trust
13

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norms in the BDI model

• Assumption: deterministic, fully observable environments

• Reasoning within the BDI model

• Beliefs - World model (from perception)

• Desires - Overall objectives (from user)

• Intentions - Committed objectives / plans
(selected at runtime)

• Norms constrain intention selection

14

Beliefs

Desires

Intentions

Sensor
Update

Goal
Selection

Intention
Selection

Action

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

AgentSpeak(L)

• Most implementations of BDI systems are based on the
Procedural Reasoning System (PRS)

• Later formalised in the AgentSpeak(L) programming language

• Agents are deÞned in terms of a plan library of
procedural plans (reactive HTN methods) of the form:
triggering_event : context <- body.

15

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

AgentSpeak(L)

• An AgentSpeak plan has the following general structure:
 triggering_event : context <- body.

• where:

• the triggering event denotes the events that the plan is meant to
handle;

• the context represent the circumstances in which the plan can be used;

• the body is the course of action to be used to handle the event if the
context is believed true at the time a plan is being chosen to handle the
event.

16

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

AgentSpeak(L) example
+at (Pos) : gold (Pos)

! <- pickup (Pos) .

+at (Pos) : gold (PosG)
! <- !goto (PosG) .

+!goto (Pos) : at (PosA) & Pos < PosA
! <- move(left);
! !goto (Pos) .

+!goto (Pos) : at (PosA) & Pos > PosA
! <- move(right);
! !goto (Pos) .

17

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

BDI Normative reasoning

• Key processes:

• Norm processing

• Behaviour modiÞcation

• Intention selection

18

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

BDI Behaviour ModiÞcation

• When new norms are perceived by the agent, it has to:

• Detect normative conßicts (e.g.)

• Decide whether to accept (and comply with) them

• Change behaviour to reßect
accepted norms

19

Op ! Fp

Environment /
Society

Accept?

Sanctions

Verify
Consistency

Change
Behaviour

Norms

Accept
Norm

Reject
Norm

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norms and Goal Types
• We narrow norm types down to:

• Obligations Ð agent must do/achieve something

• Prohibitions Ð agent must not do/achieve something

20

Norm Meaning

obligation(p) add a goal to achieve state p, from Activation to
Expiration.

obligation(a) add a new plan with a Activation triggering event, and
action a in its body.

prohibition(p) prevent adoption of plans that bring about state p.

prohibition(a) prevent adoption of plans that execute action a.

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Motivating Example

21

AgentSpeak
+!cleanRoom(Room) : at(Room)

 <- +clean(Room).

+!clean(room1) : true

 <- +at(room1);

 !cleanRoom(room1).

+!clean(classifRoom) : true

 <- +at(classifRoom);

 !cleanRoom(classifRoom).

+cleanClassif : true

 <- !clean(classifRoom).

Norms
norm(time(4),

 time(20),
 obligation(clean(room1)))

norm(time(6),

 time(22),

 prohibition(at(classifRoom))

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Expected Behaviour

22

¥ time(4)
¥ time(6)

¥ cleanClassif

¥ time(20)

¥ time(22)

¥ Adopt plan to clean room1
¥ Suppress plan to clean

classifRoom
¥ No plan should be adopted

¥ Obligation to clean room1
expires

¥ Plan to clean classifRoom no
longer suppressed

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norm Activation
• Obligations

• Behaviours associated with obligations must be
carried out when they become active

• Activation condition becomes trigger for plans
that achieve obligations

• Prohibitions

• Behaviours associated with prohibitions must
not be carried out when they become active

• Activation conditions becomes trigger for plans
that Þlter intentions and plan library

23

Plan Library

Plan 1 Plan 2

Plan 6Obligation

Prohibition

Plan 3 Plan 4

Plan 5

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norm Expiration

• When a norm expires, its effects in the plan library must be
reversed

• Plans added for obligations can be removed

• Plans suppressed for prohibitions must be restored

24

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Limitations and ReÞnement

• Only coarse control over agent behaviour is possible

• Plans that affect prohibitions are completely removed

• Plans created for obligations are not generic

• Finer grained approach

• Restrict plan instantiation when selecting intentions

25

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

nu-BDI

• Norms constrain desirable states

• In AgentSpeak, plan library deÞnes paths
through the state space

• In nu-BDI norm condition is extended
with a logical constraint

• Where ! is a constraint formula:

26

Beliefs

Desires

Intentions

Sensor
Update

Goal
Selection

Intention
Selection

Action

10

We use existing constraint satisfaction techniques [29] to implement a satisfy predic-
ate that holds if a given conjunction of constraints admits a solution. The solution is
represented Ôas a substitution! . This is to be understood as a combination of values,
one for each variable, that allows the constraints to be simulataneously satisÞed.

DeÞnition 13 (Satisfy Relation) satisfy(" 0 ! á á á! " n , !) holds i! (" 0 á! ! á á á! " n á!)
is true. !

Constraints are associated with Þrst-order predicates, imposing restrictions on their
variables. We represent this association as# " $, as in, for instance, move(b1, X, Y) "
(100 # X # 500! 5 # Y # 45). Now, to deÞne the core aspect of norms, we use atomic
deontic formulae annotated with such constraints.

DeÞnition 14 (Deontic Formula) An annotated deontic formula %is any construct
of the form:

Ð O! # " $ (an obligation); or
Ð F! # " $ (a prohibition)

where & is a term, and # " $ is a Þrst-order atomic formula # with associated constraints
$. !

Term & identiÞes the agent(s) to which the norm is applicable. O! # " (" 1 ! . . . ! " n)
thus represents an obligation on agent & to bring about # , subject to all constraints
" i , 0 # i # n. The " i terms express constraints on variables of# .

Our norms have implicit quantiÞcations over their variables, so as to simplify our
notation. The agents & at which norms are targeted are universally quantiÞed, so
that our norms are equally applicable to all agents. An obligation O! # " $ stands for
$&.%x.O! # ! $ (where x are all variables occurring in # and $); that is, obligations
have existential quantiÞcations, indicating that the agents must achieve # with at least
one value for its variables that satisfy the constraints $. In contrast, a prohibition
F! # " $ stands for $&.$x .F! # ! $; that is, prohibitions have universal quantiÞcations,
indicating that the agents must refrain from achieving # with any of the values for its
variables that satisfy the constraints $. The implicit quantiÞcations deÞne the meaning
of norms in Section 4.3. For simplicity, we do not consider permissions in the deontic
sense.

A third kind of annotated deontic formula is P! # " $, representing a permission,
and which can be deÞned in terms of an obligation (as usual) asP! # " $ = def ÂO! Â# "
$ [24]. However, in this work, for the sake of simplicity, we use only annotated deontic
formulae for obligations and prohibitions.

Our representation here is precise (as constraints provide a Þne-grained way to
specify values of variables) and compact (as constrained predicates amount to possibly
inÞnite sets of ground formulae). For brevity, assume in what follows that we refer to
the same agent &, which allows us to drop the subscripts from the deontic formulae.
Also assume that the formulae { Fp(a), Oq(b)} are currently in e ! ect, and that the
predicates p and q are associated with actions identiÞers. Now suppose an agent can
choose amongst the following three plans wherep, q, r and s are action identiÞers.

(P1) [s(a, b), p(a), q(a), r (a)]
(P2) [q(a), p(b), s(a, b), r (a)]
(P3) [q(b), p(b), s(a, b), r (a)]

10

We use existing constraint satisfaction techniques [29] to implement a satisfy predic-
ate that holds if a given conjunction of constraints admits a solution. The solution is
represented Ôas a substitution! . This is to be understood as a combination of values,
one for each variable, that allows the constraints to be simulataneously satisÞed.

DeÞnition 13 (Satisfy Relation) satisfy(" 0 ! á á á! " n , !) holds i! (" 0 á! ! á á á! " n á!)
is true. !

Constraints are associated with Þrst-order predicates, imposing restrictions on their
variables. We represent this association as# " $, as in, for instance, move(b1, X, Y) "
(100 # X # 500! 5 # Y # 45). Now, to deÞne the core aspect of norms, we use atomic
deontic formulae annotated with such constraints.

DeÞnition 14 (Deontic Formula) An annotated deontic formula %is any construct
of the form:

Ð O! # " $ (an obligation); or
Ð F! # " $ (a prohibition)

where & is a term, and # " $ is a Þrst-order atomic formula # with associated constraints
$. !

Term & identiÞes the agent(s) to which the norm is applicable. O! # " (" 1 ! . . . ! " n)
thus represents an obligation on agent & to bring about # , subject to all constraints
" i , 0 # i # n. The " i terms express constraints on variables of# .

Our norms have implicit quantiÞcations over their variables, so as to simplify our
notation. The agents & at which norms are targeted are universally quantiÞed, so
that our norms are equally applicable to all agents. An obligation O! # " $ stands for
$&.%x.O! # ! $ (where x are all variables occurring in # and $); that is, obligations
have existential quantiÞcations, indicating that the agents must achieve # with at least
one value for its variables that satisfy the constraints $. In contrast, a prohibition
F! # " $ stands for $&.$x .F! # ! $; that is, prohibitions have universal quantiÞcations,
indicating that the agents must refrain from achieving # with any of the values for its
variables that satisfy the constraints $. The implicit quantiÞcations deÞne the meaning
of norms in Section 4.3. For simplicity, we do not consider permissions in the deontic
sense.

A third kind of annotated deontic formula is P! # " $, representing a permission,
and which can be deÞned in terms of an obligation (as usual) asP! # " $ = def ÂO! Â# "
$ [24]. However, in this work, for the sake of simplicity, we use only annotated deontic
formulae for obligations and prohibitions.

Our representation here is precise (as constraints provide a Þne-grained way to
specify values of variables) and compact (as constrained predicates amount to possibly
inÞnite sets of ground formulae). For brevity, assume in what follows that we refer to
the same agent &, which allows us to drop the subscripts from the deontic formulae.
Also assume that the formulae { Fp(a), Oq(b)} are currently in e ! ect, and that the
predicates p and q are associated with actions identiÞers. Now suppose an agent can
choose amongst the following three plans wherep, q, r and s are action identiÞers.

(P1) [s(a, b), p(a), q(a), r (a)]
(P2) [q(a), p(b), s(a, b), r (a)]
(P3) [q(b), p(b), s(a, b), r (a)]

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Annotating Plans

• General idea

• Check applicable norms along possible
execution paths

• Consolidate restrictions detected in a path

• Annotate plan with consolidated restrictions

27

p1

p2

p3

p4

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Annotating Plans

• General idea

• Check applicable norms along possible
execution paths

• Consolidate restrictions detected in a path

• Annotate plan with consolidated restrictions

28

p1

p2

p3

p4

n1

n2

n3

n4

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Annotating Plans

• General idea

• Check applicable norms along possible
execution paths

• Consolidate restrictions detected in a path

• Annotate plan with consolidated restrictions

29

p1

p2

p3

p4

n1 & n2 & n3 & n4

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Example Plan and Norms

• Consider the following plan

• And the following abstract norms

• If the belief base entails both Âsafe(3) and Âsafe(6), we have
the following speciÞc norms

30

7

Actions are identiÞed by atomic formulae, and in order to deal with declarative
world-states we must specify what an action entails, so that we are able to use ac-
tion execution as the target of normative stipulations in Section 4. Thus, we specify
an actionÕs e! ects in DeÞnition 10, and provide an algorithmic deÞnition of the sub-
jective meaning of an action with regard to an agent belief base in Algorithm 13 (in
Appendix A). The action model we consider in this paper assumes that actions are
always successful. We make this assumption based on the fact that existing BDI ar-
chitectures do not have a probabilistic model of action failure with deÞned unexpected
action e! ects. Consequently, our agents consider the expectation of norm violation or
fulÞlment only based on the intended e! ects of the actions.

DeÞnition 10 (Action) An action a is presented as a tuple ! ! , " + , " ! " where the
following hold.

Ð ! is the action aÕs identiÞer, represented as an atomic formulapn (#0, . . . , #k), where
each term #i # { #0, . . . , #k } is either a constant or a variable;

Ð "+ are the positive e! ects of a, constituted by a set of literals representing the
beliefs to be added to the belief base; and

Ð " ! are the negative e! ects of a, constituted by a set of literals representing the
beliefs to be removed from the belief base.

All variables referred to in "+ and " ! must be contained in the set of variables
of the action identiÞer. For convenience, we refer to an action a = ! ! , " + , " ! " by its
identiÞer ! ; to its positive e ! ects by "+ (!); and to its negative e! ects by " ! (!). For
simplicity, we assume that "+ (!) $ " ! (!) = ! , for all actions ! so that the order of the
application of its e ! ects is irrelevant. Finally, we refer to the set of all possible actions
as Actions . !

Within an agentÕs plans, action invocations and belief modiÞcations are both rep-
resented in terms of predicate symbols.4 However, within the body of a plan, belief
predicates only appear associated with the symbols for addition and deletion (cf. DeÞn-
ition 9), denoting updates to the belief base. Conversely, predicates referring to actions
(i.e. their identiÞer, cf. DeÞnition 10) appear on their own within the body of a plan,
denoting that an action is to be executed. Thus, a step p within a plan denotes the exe-
cution of an action identiÞed by predicate p, whereas a step +p represents the addition
of the belief p to the agentÕs belief base. We illustrate a complete plan in Example 1,
noting that for simplicity, this plan contains only action identiÞers. We assume all
variables in a plan to be universally quantiÞed. To make this assumption explicit, we
represent these variables by capital letters from the end of the English alphabet.

Example 1 The plan of our scenario is represented as follows:
!

+ level(X, medium),

"

#
high risk (X) %person(P)%
at (P , X) %Âhigh risk (Y)%
Âhigh risk (Z) %Â(Y = Z)

$

% ,

&

'
isolate(X),

evacuate(P, X, Y),
reroute (X, Z)

(

)

*

That is, the plan is invoked by the addition of the belief level(X, medium) to the
belief base, stating that the level of emergency of area X is medium. The context of
the activation contains conditions on the plan itself and also the pre-conditions of the
actions: that is, that X is a high risk area; that a person P is at X ; and that Y and Z
are distinct non-high risk areas. In this context, the plan is to:

4 Beliefs being literals can also contain negation.

12

It should be noted that constraints over the activation (and expiration) of norms
are relatively commonplace. In order to capture a norm of the form Òif X < 5 then an
obligation exists to ensure that Y > 7Ó, we must be able to represent constraints in the
activation (and expiration) condition of the norm, cf [40]. For simplicity, we assume
that such a constraint can be captured as part of the conditionÕs Þrst order formulae,
and leave an explicit treatment of this issue to future work.

Example 2 The norms of our scenario are represented as the following abstract norms:

1. !FA evacuate(P, X, Y), Âsafe(Y), safe(Y), 1"
2. !OA reroute (X, Z) # { X + 1 $ Z $ X + 3 } , Âsafe(X), safe(X), 2"

The Þrst norm states that whenever an area Y is unsafe the norm that stipulates
that all agents are forbidden to evacuate people from an area X to an area Y becomes
active. This norm expires when the area Y becomes safe again. The second norm states
that all agents are obliged to reroute tra ! c through Z to avoid an unsafe areaX , but
the rerouting must be within nearby zones. The norm becomes active when area X is
deemed not safe, and the norm is deactivated when areaX becomes safe again.

These norms can give rise to the following speciÞc norms if both Âsafe(3) and
Âsafe(6) can be derived from the belief base:

3. !FA evacuate(X, 3), Âsafe(3), safe(3), 1, ctr "
4. !FA evacuate(X, 6), Âsafe(6), safe(6), 1, ctr "
5. !OA reroute (3, Z) # { 4 $ Z $ 6} , Âsafe(3), safe(3), 2, ctr "
6. !OA reroute (6, Z) # { 7 $ Z $ 9} , Âsafe(6), safe(6), 2, ctr "

That is, abstract norm 1 gives rise to a speciÞc norm by instantiating Y to 3 and to
another by instantiating Y to 6; and abstract norm 2 gives rise to a speciÞc norm by
instantiating X to 3 and to another by instantiating X to 6.

!

Although formally the set of beliefs Bel only contains literals (cf. DeÞnition. 7), for the
sake of simplicity, we also include in it all abstract and speciÞc norms (as tuples). By
doing so, we can have norms forming preconditions for other norms, leading (with the
existence of an explicit violation predicate cf. [46]) to the ability to represent contrary
to duty obligations and other such interactions between norms, and between norms and
beliefs. We will use ! A (Bel) and ! S (Bel) to denote the set of abstract and speciÞc
norms included in a belief baseBel , respectively.

As agents interact with their environment and with other agents, their perception
of reality as recorded in their belief bases changes. Agents use their beliefs to update
their normative positions, adding speciÞc norms for the abstract ones whose activation
condition holds, and removing speciÞc norms whose expiration condition holds in a
similar fashion to the addition and removal of beliefs. We provide a norm updating
mechanism for BDI agents in Section 5.1, with a detailed algorithm.

We now turn to the problem of updating the set of speciÞc norms of a given belief
baseBel , which is done in a straightforward but e ! cient manner, since we aim this to
be used in a practical programming environment. Although mechanisms exploring non-
monotonic or modal aspects could make the norm update procedure more sophisticated,
the complexity of these even for simple logic fragments is very high [37,45].

12

It should be noted that constraints over the activation (and expiration) of norms
are relatively commonplace. In order to capture a norm of the form Òif X < 5 then an
obligation exists to ensure that Y > 7Ó, we must be able to represent constraints in the
activation (and expiration) condition of the norm, cf [40]. For simplicity, we assume
that such a constraint can be captured as part of the conditionÕs Þrst order formulae,
and leave an explicit treatment of this issue to future work.

Example 2 The norms of our scenario are represented as the following abstract norms:

1. !FA evacuate(P, X, Y), Âsafe(Y), safe(Y), 1"
2. !OA reroute (X, Z) # { X + 1 $ Z $ X + 3 } , Âsafe(X), safe(X), 2"

The Þrst norm states that whenever an area Y is unsafe the norm that stipulates
that all agents are forbidden to evacuate people from an area X to an area Y becomes
active. This norm expires when the area Y becomes safe again. The second norm states
that all agents are obliged to reroute tra ! c through Z to avoid an unsafe areaX , but
the rerouting must be within nearby zones. The norm becomes active when area X is
deemed not safe, and the norm is deactivated when areaX becomes safe again.

These norms can give rise to the following speciÞc norms if both Âsafe(3) and
Âsafe(6) can be derived from the belief base:

3. !FA evacuate(X, 3), Âsafe(3), safe(3), 1, ctr "
4. !FA evacuate(X, 6), Âsafe(6), safe(6), 1, ctr "
5. !OA reroute (3, Z) # { 4 $ Z $ 6} , Âsafe(3), safe(3), 2, ctr "
6. !OA reroute (6, Z) # { 7 $ Z $ 9} , Âsafe(6), safe(6), 2, ctr "

That is, abstract norm 1 gives rise to a speciÞc norm by instantiating Y to 3 and to
another by instantiating Y to 6; and abstract norm 2 gives rise to a speciÞc norm by
instantiating X to 3 and to another by instantiating X to 6.

!

Although formally the set of beliefs Bel only contains literals (cf. DeÞnition. 7), for the
sake of simplicity, we also include in it all abstract and speciÞc norms (as tuples). By
doing so, we can have norms forming preconditions for other norms, leading (with the
existence of an explicit violation predicate cf. [46]) to the ability to represent contrary
to duty obligations and other such interactions between norms, and between norms and
beliefs. We will use ! A (Bel) and ! S (Bel) to denote the set of abstract and speciÞc
norms included in a belief baseBel , respectively.

As agents interact with their environment and with other agents, their perception
of reality as recorded in their belief bases changes. Agents use their beliefs to update
their normative positions, adding speciÞc norms for the abstract ones whose activation
condition holds, and removing speciÞc norms whose expiration condition holds in a
similar fashion to the addition and removal of beliefs. We provide a norm updating
mechanism for BDI agents in Section 5.1, with a detailed algorithm.

We now turn to the problem of updating the set of speciÞc norms of a given belief
baseBel , which is done in a straightforward but e ! cient manner, since we aim this to
be used in a practical programming environment. Although mechanisms exploring non-
monotonic or modal aspects could make the norm update procedure more sophisticated,
the complexity of these even for simple logic fragments is very high [37,45].

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Extended Context Condition

• Given the norms

• And the plan steps

• We get an annotated plan

31

25

To achieve this, we propose Algorithm 3, which scans a plan, annotating each step
within the scope of a norm with constraints stemming from that norm. Each step of
the plan is checked against the predicates speciÞed in the speciÞc norms of! S .If a
step is within the scope of a norm (Line 10), then the algorithm gradually assembles
the constraints of the norms " i , and annotates the plan step with them. If the norm is
an obligation, the constraints are added as they appear in the norm (Line 14), reÞned
to the substitutions #, #! . If the norm is a prohibition, the constraints are then negated
(Line 12). More formally, we have the following:

neg(($1, . . . , $n)) = (neg($1), . . . , neg($n))

The application of the neg operator to an individual constraint is deÞned as follows.

neg(%> %!) ! (%" %!) neg(%< %!) ! (%# %!)
neg(%# %!) ! (%< %!) neg(%" %!) ! (%> %!)
neg(%= %!) ! (%$= %!) neg(%$= %!) ! (%= %!)

If the step is not in the scope of any norm, then no constraints are added.
Algorithm 3 always terminates as all its loops are over Þnite constructs and all tests

carried out terminate. Its complexity is |Plib | % |s| % |! S |; that is, it is the product
of the number of plans, the number of steps of each plan (for simplicity we use the
number of steps s of the largest plan), and the number of norms. The algorithm is
correct in that it provides a version of the input plan library Plib in which every step
of each individual plan has been annotated with constraints stemming from norms; if
these constraints are satisÞable, the plan can be executed without violating any active
norm. Section 5.4 describes how these plan annotations a! ect the reasoning cycle.

Once plan steps have been annotated, it is possible for an agent to check before
executing each step if its execution violates a norm. However, it is ine" cient to adopt a
plan and execute it partially before discovering that the plan was not, in fact, desirable
from the perspective of norm compliance. Fortunately, since the speciÞc values of the
variables within a plan are bound when a plan is instantiated, it is possible to determine
at plan instantiation if any normative restriction applied to individual plan steps would
be violated if the plan is adopted. In order to do this, we must make all annotations
available for checking when the plan is instantiated so, at the end of each iteration
over the steps of a plan, we collect the annotations into a global plan annotation " !

(Line 20 of Algorithm 3), which we use later when selecting norm compliant plans.

Example 5 The plan annotation algorithm, when applied to the plan of Example 1,
and using the speciÞc norms shown previously, yields the following annotated plan:

! + level(X, medium), (high risk (X)) ,"

#
isolate(X) & ' ,

evacuate(X, Y) &{ Y $= 3 , Y $= 6 } ,
reroute (X, Z) &{ 3 " Z " 5}

$

%,

&
'

(

Y $= 3 ,
Y $= 6 ,
3 " Z " 5

)
*

+

,

We notice, on the evacuate step of the plan, the negated constraints of the speciÞc
norms arising from norm 1, shown with the substitutions applied (as in Line 12 of
Algorithm 8). We also notice the reroute step annotated with the constraints of the
speciÞc version of the obligation (also with the substitutions applied, and the mathem-
atical expressions of the constraints simpliÞed to improve visualisation). The annotated
plan factors in the constraints of the active norms, thus enabling BDI agents to become
norm-aware.

!

25

To achieve this, we propose Algorithm 3, which scans a plan, annotating each step
within the scope of a norm with constraints stemming from that norm. Each step of
the plan is checked against the predicates speciÞed in the speciÞc norms of! S .If a
step is within the scope of a norm (Line 10), then the algorithm gradually assembles
the constraints of the norms " i , and annotates the plan step with them. If the norm is
an obligation, the constraints are added as they appear in the norm (Line 14), reÞned
to the substitutions #, #! . If the norm is a prohibition, the constraints are then negated
(Line 12). More formally, we have the following:

neg(($1, . . . , $n)) = (neg($1), . . . , neg($n))

The application of the neg operator to an individual constraint is deÞned as follows.

neg(%> %!) ! (%" %!) neg(%< %!) ! (%# %!)
neg(%# %!) ! (%< %!) neg(%" %!) ! (%> %!)
neg(%= %!) ! (%$= %!) neg(%$= %!) ! (%= %!)

If the step is not in the scope of any norm, then no constraints are added.
Algorithm 3 always terminates as all its loops are over Þnite constructs and all tests

carried out terminate. Its complexity is |Plib | % |s| % |! S |; that is, it is the product
of the number of plans, the number of steps of each plan (for simplicity we use the
number of steps s of the largest plan), and the number of norms. The algorithm is
correct in that it provides a version of the input plan library Plib in which every step
of each individual plan has been annotated with constraints stemming from norms; if
these constraints are satisÞable, the plan can be executed without violating any active
norm. Section 5.4 describes how these plan annotations a! ect the reasoning cycle.

Once plan steps have been annotated, it is possible for an agent to check before
executing each step if its execution violates a norm. However, it is ine" cient to adopt a
plan and execute it partially before discovering that the plan was not, in fact, desirable
from the perspective of norm compliance. Fortunately, since the speciÞc values of the
variables within a plan are bound when a plan is instantiated, it is possible to determine
at plan instantiation if any normative restriction applied to individual plan steps would
be violated if the plan is adopted. In order to do this, we must make all annotations
available for checking when the plan is instantiated so, at the end of each iteration
over the steps of a plan, we collect the annotations into a global plan annotation " !

(Line 20 of Algorithm 3), which we use later when selecting norm compliant plans.

Example 5 The plan annotation algorithm, when applied to the plan of Example 1,
and using the speciÞc norms shown previously, yields the following annotated plan:

! + level(X, medium), (high risk (X)) ,"

#
isolate(X) & ' ,

evacuate(X, Y) &{ Y $= 3 , Y $= 6 } ,
reroute (X, Z) &{ 3 " Z " 5}

$

%,

&
'

(

Y $= 3 ,
Y $= 6 ,
3 " Z " 5

)
*

+

,

We notice, on the evacuate step of the plan, the negated constraints of the speciÞc
norms arising from norm 1, shown with the substitutions applied (as in Line 12 of
Algorithm 8). We also notice the reroute step annotated with the constraints of the
speciÞc version of the obligation (also with the substitutions applied, and the mathem-
atical expressions of the constraints simpliÞed to improve visualisation). The annotated
plan factors in the constraints of the active norms, thus enabling BDI agents to become
norm-aware.

!

7

Actions are identiÞed by atomic formulae, and in order to deal with declarative
world-states we must specify what an action entails, so that we are able to use ac-
tion execution as the target of normative stipulations in Section 4. Thus, we specify
an actionÕs e! ects in DeÞnition 10, and provide an algorithmic deÞnition of the sub-
jective meaning of an action with regard to an agent belief base in Algorithm 13 (in
Appendix A). The action model we consider in this paper assumes that actions are
always successful. We make this assumption based on the fact that existing BDI ar-
chitectures do not have a probabilistic model of action failure with deÞned unexpected
action e! ects. Consequently, our agents consider the expectation of norm violation or
fulÞlment only based on the intended e! ects of the actions.

DeÞnition 10 (Action) An action a is presented as a tuple ! ! , " + , " ! " where the
following hold.

Ð ! is the action aÕs identiÞer, represented as an atomic formulapn (#0, . . . , #k), where
each term #i # { #0, . . . , #k } is either a constant or a variable;

Ð "+ are the positive e! ects of a, constituted by a set of literals representing the
beliefs to be added to the belief base; and

Ð " ! are the negative e! ects of a, constituted by a set of literals representing the
beliefs to be removed from the belief base.

All variables referred to in "+ and " ! must be contained in the set of variables
of the action identiÞer. For convenience, we refer to an action a = ! ! , " + , " ! " by its
identiÞer ! ; to its positive e ! ects by "+ (!); and to its negative e! ects by " ! (!). For
simplicity, we assume that "+ (!) $ " ! (!) = ! , for all actions ! so that the order of the
application of its e ! ects is irrelevant. Finally, we refer to the set of all possible actions
as Actions . !

Within an agentÕs plans, action invocations and belief modiÞcations are both rep-
resented in terms of predicate symbols.4 However, within the body of a plan, belief
predicates only appear associated with the symbols for addition and deletion (cf. DeÞn-
ition 9), denoting updates to the belief base. Conversely, predicates referring to actions
(i.e. their identiÞer, cf. DeÞnition 10) appear on their own within the body of a plan,
denoting that an action is to be executed. Thus, a step p within a plan denotes the exe-
cution of an action identiÞed by predicate p, whereas a step +p represents the addition
of the belief p to the agentÕs belief base. We illustrate a complete plan in Example 1,
noting that for simplicity, this plan contains only action identiÞers. We assume all
variables in a plan to be universally quantiÞed. To make this assumption explicit, we
represent these variables by capital letters from the end of the English alphabet.

Example 1 The plan of our scenario is represented as follows:
!

+ level(X, medium),

"

#
high risk (X) %person(P)%
at (P , X) %Âhigh risk (Y)%
Âhigh risk (Z) %Â(Y = Z)

$

% ,

&

'
isolate(X),

evacuate(P, X, Y),
reroute (X, Z)

(

)

*

That is, the plan is invoked by the addition of the belief level(X, medium) to the
belief base, stating that the level of emergency of area X is medium. The context of
the activation contains conditions on the plan itself and also the pre-conditions of the
actions: that is, that X is a high risk area; that a person P is at X ; and that Y and Z
are distinct non-high risk areas. In this context, the plan is to:

4 Beliefs being literals can also contain negation.

12

It should be noted that constraints over the activation (and expiration) of norms
are relatively commonplace. In order to capture a norm of the form Òif X < 5 then an
obligation exists to ensure that Y > 7Ó, we must be able to represent constraints in the
activation (and expiration) condition of the norm, cf [40]. For simplicity, we assume
that such a constraint can be captured as part of the conditionÕs Þrst order formulae,
and leave an explicit treatment of this issue to future work.

Example 2 The norms of our scenario are represented as the following abstract norms:

1. !FA evacuate(P, X, Y), Âsafe(Y), safe(Y), 1"
2. !OA reroute (X, Z) # { X + 1 $ Z $ X + 3 } , Âsafe(X), safe(X), 2"

The Þrst norm states that whenever an area Y is unsafe the norm that stipulates
that all agents are forbidden to evacuate people from an area X to an area Y becomes
active. This norm expires when the area Y becomes safe again. The second norm states
that all agents are obliged to reroute tra ! c through Z to avoid an unsafe areaX , but
the rerouting must be within nearby zones. The norm becomes active when area X is
deemed not safe, and the norm is deactivated when areaX becomes safe again.

These norms can give rise to the following speciÞc norms if both Âsafe(3) and
Âsafe(6) can be derived from the belief base:

3. !FA evacuate(X, 3), Âsafe(3), safe(3), 1, ctr "
4. !FA evacuate(X, 6), Âsafe(6), safe(6), 1, ctr "
5. !OA reroute (3, Z) # { 4 $ Z $ 6} , Âsafe(3), safe(3), 2, ctr "
6. !OA reroute (6, Z) # { 7 $ Z $ 9} , Âsafe(6), safe(6), 2, ctr "

That is, abstract norm 1 gives rise to a speciÞc norm by instantiating Y to 3 and to
another by instantiating Y to 6; and abstract norm 2 gives rise to a speciÞc norm by
instantiating X to 3 and to another by instantiating X to 6.

!

Although formally the set of beliefs Bel only contains literals (cf. DeÞnition. 7), for the
sake of simplicity, we also include in it all abstract and speciÞc norms (as tuples). By
doing so, we can have norms forming preconditions for other norms, leading (with the
existence of an explicit violation predicate cf. [46]) to the ability to represent contrary
to duty obligations and other such interactions between norms, and between norms and
beliefs. We will use ! A (Bel) and ! S (Bel) to denote the set of abstract and speciÞc
norms included in a belief baseBel , respectively.

As agents interact with their environment and with other agents, their perception
of reality as recorded in their belief bases changes. Agents use their beliefs to update
their normative positions, adding speciÞc norms for the abstract ones whose activation
condition holds, and removing speciÞc norms whose expiration condition holds in a
similar fashion to the addition and removal of beliefs. We provide a norm updating
mechanism for BDI agents in Section 5.1, with a detailed algorithm.

We now turn to the problem of updating the set of speciÞc norms of a given belief
baseBel , which is done in a straightforward but e ! cient manner, since we aim this to
be used in a practical programming environment. Although mechanisms exploring non-
monotonic or modal aspects could make the norm update procedure more sophisticated,
the complexity of these even for simple logic fragments is very high [37,45].

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Choosing between plans

• The extended (normative) context condition can now be
checked at plan instantiation time

• If satisÞable, plan can be norm-compliant

• If not, then no plan instance can be compliant

• Agent needs to choose least violating plan

• Relaxing constraints (constraints ! norms)

32

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Challenges

• Determining the limitations of annotation mechanism

• What can we guarantee?

• How far can we look?

• Guarantees of norm properties w.r.t. a plan library

• What norms can be followed by a plan library?

• Algebra of norms on plans

33

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Challenges

34

S1

S2

S3 S4

S5

S6

S7

S8

S9

S10

S1

S2

S3 S4

S5

S6

S7

S8

S9

S10

n1

n2

n3

n4

n2

n3

n5

n6 n7

n8

S1

S2

S3 S4

S5

S6

S7

S8

S9

s10

n1 & n2 & ((n3 & n4) | (n2 ..))

n3 &n4 n2 & n3 & n5 & ((n6 & n8) | n7)

n6 & n8 n7

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Alternative Approaches

• Planning with preferences

• Constraint Satisfaction planning

35

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

MDPs

• Assumption: Stochastic, Fully-Observable Environments

• Markov Decision Process (MDP)

• Sets of states and actions

• A markovian transition model

• A reward function

• A solution to a MDP must specify what the agent should do
for any state. Such a solution is called a policy

36

S1 S2

S3

a2

a1

a2

a1

a2

a1

50%

50%

R(s) sometimesR(s, a)

!S, A, T, R"

T(s!, a, s) = P(s! | a, s)

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Optimal Policy
• A policy maps each state in the state-space to an action

• If this mapping selects the action that leads to the long-term
maximum reward , then the policy is optimal

• This selection is done by calculating the value of a state

• And subsequently choosing the action that leads to the highest
value

37

V (s) !

!

max
a

!
"

s!

P(s!|s, a) " V (s!)

#

+ R(s)

! (s) = arg max a

!

s!

P(s!|s, a) ! V (s!)

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Normative MDP

• MDP extended with Norms

• Norms include not only a penalty,
but also a enforced transition

• Detection model denotes the
probability of a sanction being
applied when norm is violated

38

!S, A, T, R, N, D "
Detection Model

Norms
Reward Function

Transition Function
Actions

States

! ! , " , #, $"

Deontic Modality
Norm Context

Norm Target
Sanction ! ! , " "

Forced Transition
Penalty

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

NMDP Policies

• Current state of the art consists of compiling an NMDP into
a traditional MDP

• Removing actions that can transition to violating states
Fully compliant behaviour

• Merging sanctioning mechanism
into transitions and rewards
SelÞsh behaviour (asocial)

39

MDP ! S,A ,C,T ',R'"

Compute a policy
for the MDP

Execute the policy

Identify
which states

violate
which norms

Represent
the

respective
sanctions

Normative reasoning

! (s)

S��
q

NMDP

1 S��
qn...

Self-interested agent model

! S,A ,C,T,R,N,D "

!

s

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Limitations and Challenges

• Current state of the art generates agents that are either
totally cautious or oblivious to violations

• Challenges in deÞning policy concepts and algorithms to
strike a middle ground

• Many possible approaches

40

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Regret Minimisation

• Potential approach, choose actions that minimise regret over
sanctions

• Keep track of sanctioned rewards separately from
environment rewards

• And generate a policy that minimises regret between these
two rewards

41

Minimising regret in non-deterministic normative reasoning

Paper #1657

1 Introduction

Main points:

• Most normative work using classical logic

• Recently some work on normative agents using stochas-
tic models [Oh et al., 2011; Fagundes et al., 2012]

• These models make a number of assumptions about:

– how norms are represented;
– how they affect the utility of an agent; and
– how norm violations are monitored.

• These previous works also had a limited set of “optimal”
policies derived for the agent (either full compliance, or
complete self-interest)

• In this work we make the following assumptions:

– The normative reward/punishment depends on the
individual agent;

– The detection model is unknown by the agent;

• In order to reach a compromise between norm compli-
ance and self-interest, we develop the notion of a regret
minimisation policy (Add citation to some paper on

regret)

2 Background and Motivation

3 Normative MDPs

4 Policies in NMDPs

MDP ⌃ = hS,A, T,Ri where:

S States

A Actions

T Transition function

R Reward function

The solution concept for an MDP is the optimal policy us-
ing the Bellman equations, whereby an agent calculates the
value of a state based on its reward and transition functions

V (s) = R(s) + max
a

�
!

s02S

T (s, a, s0)V (s0)

and generating a policy based on the action that yields the
maximum reward for each state

⇡⇤(s) = arg max
a

!

s02S

T (s, a, s0)V (s0)

Norm ⌫ = hX,R,�, , P i where:
X deontic modalities
R roles to which the norm applies
� activation condition (induces a set of states S� such that

S� = {s 2 S�|s 2 S ^ s |= �})
 normative condition (induces a set of states S such that

S = {s 2 S |s 2 S� ^ s |= })
P The penalty/reward for the norm
Each norm induces a normative reward function as follows:

r(⌫, s) =

"
#####$

#####%

0 if s 6|= ⌫.

⌫.P if ⌫.X = O and s |= (⌫.� ^ ⌫.)
⌫.P if ⌫.X = P and s |= (⌫.� ^ ¬⌫.)
�⌫.P if ⌫.X = O and s |= (⌫.� ^ ¬⌫.)
�⌫.P if ⌫.X = P and s |= (⌫.� ^ ⌫.)

Given state has a corresponding normative reward with re-
gards to a set of norms N

RN (s) =
!

⌫2N

r(⌫, s)

We can then calculate the value of a state taking into ac-
count the normative rewards of an agent as follows:

VN (s) = R(s) + RN (s) + max
a

�
!

s02S

T (s, a, s0)VN (s0)

and calculate a slightly modified norm aware policy for a
completely self-interested agent as follows:

⇡⇤
N (s) = arg max

a

!

s02S

T (s, a, s0)VN (s0)

And a regret minimisation policy as follows:

⇡⇤
� = arg min

a

&
!

s02S

T (s, a, s0)VN (s0) �
!

s02S

T (s, a, s0)V (s0)

'

Review this
equation.

Minimising regret in non-deterministic normative reasoning

Paper #1657

1 Introduction

Main points:

• Most normative work using classical logic

• Recently some work on normative agents using stochas-
tic models [Oh et al., 2011; Fagundes et al., 2012]

• These models make a number of assumptions about:

– how norms are represented;
– how they affect the utility of an agent; and
– how norm violations are monitored.

• These previous works also had a limited set of “optimal”
policies derived for the agent (either full compliance, or
complete self-interest)

• In this work we make the following assumptions:

– The normative reward/punishment depends on the
individual agent;

– The detection model is unknown by the agent;

• In order to reach a compromise between norm compli-
ance and self-interest, we develop the notion of a regret
minimisation policy (Add citation to some paper on

regret)

2 Background and Motivation

3 Normative MDPs

4 Policies in NMDPs

MDP ⌃ = hS,A, T,Ri where:

S States

A Actions

T Transition function

R Reward function

The solution concept for an MDP is the optimal policy us-
ing the Bellman equations, whereby an agent calculates the
value of a state based on its reward and transition functions

V (s) = R(s) + max

a
�
X

s02S

T (s, a, s0)V (s0)

and generating a policy based on the action that yields the
maximum reward for each state

⇡⇤
(s) = argmax

a

X

s02S

T (s, a, s0)V (s0)

Norm ⌫ = hX,R,�, , P i where:
X deontic modalities
R roles to which the norm applies
� activation condition (induces a set of states S� such that

S� = {s 2 S�|s 2 S ^ s |= �})
 normative condition (induces a set of states S such that

S = {s 2 S |s 2 S� ^ s |= })
P The penalty/reward for the norm
Each norm induces a normative reward function as follows:

r(⌫, s) =

8
>>>>><

>>>>>:

0 if s 6|= ⌫.

⌫.P if ⌫.X = O and s |= (⌫.� ^ ⌫.)
⌫.P if ⌫.X = P and s |= (⌫.� ^ ¬⌫.)
�⌫.P if ⌫.X = O and s |= (⌫.� ^ ¬⌫.)
�⌫.P if ⌫.X = P and s |= (⌫.� ^ ⌫.)

Given state has a corresponding normative reward with re-
gards to a set of norms N

RN (s) =
X

⌫2N

r(⌫, s)

We can then calculate the value of a state taking into ac-
count the normative rewards of an agent as follows:

VN (s) = R(s) +RN (s) + max

a
�
X

s02S

T (s, a, s0)VN (s0)

and calculate a slightly modified norm aware policy for a
completely self-interested agent as follows:

⇡⇤
N (s) = argmax

a

X

s02S

T (s, a, s0)VN (s0)

And a regret minimisation policy as follows:

⇡⇤
� = argmin

a

X

s02S

T (s, a, s0)VN (s0)�
X

s02S

T (s, a, s0)V (s0)

!

Review this
equation.

Minimising regret in non-deterministic normative reasoning

Paper #1657

1 Introduction

Main points:

• Most normative work using classical logic

• Recently some work on normative agents using stochas-
tic models [Oh et al., 2011; Fagundes et al., 2012]

• These models make a number of assumptions about:

– how norms are represented;
– how they affect the utility of an agent; and
– how norm violations are monitored.

• These previous works also had a limited set of “optimal”
policies derived for the agent (either full compliance, or
complete self-interest)

• In this work we make the following assumptions:

– The normative reward/punishment depends on the
individual agent;

– The detection model is unknown by the agent;

• In order to reach a compromise between norm compli-
ance and self-interest, we develop the notion of a regret
minimisation policy (Add citation to some paper on

regret)

2 Background and Motivation

3 Normative MDPs

4 Policies in NMDPs

MDP ⌃ = hS,A, T,Ri where:

S States

A Actions

T Transition function

R Reward function

The solution concept for an MDP is the optimal policy us-
ing the Bellman equations, whereby an agent calculates the
value of a state based on its reward and transition functions

V (s) = R(s) + max

a
�
X

s02S

T (s, a, s0)V (s0)

and generating a policy based on the action that yields the
maximum reward for each state

⇡⇤
(s) = argmax

a

X

s02S

T (s, a, s0)V (s0)

Norm ⌫ = hX,R,�, , P i where:
X deontic modalities
R roles to which the norm applies
� activation condition (induces a set of states S� such that

S� = {s 2 S�|s 2 S ^ s |= �})
 normative condition (induces a set of states S such that

S = {s 2 S |s 2 S� ^ s |= })
P The penalty/reward for the norm
Each norm induces a normative reward function as follows:

r(⌫, s) =

8
>>>>><

>>>>>:

0 if s 6|= ⌫.

⌫.P if ⌫.X = O and s |= (⌫.� ^ ⌫.)
⌫.P if ⌫.X = P and s |= (⌫.� ^ ¬⌫.)
�⌫.P if ⌫.X = O and s |= (⌫.� ^ ¬⌫.)
�⌫.P if ⌫.X = P and s |= (⌫.� ^ ⌫.)

Given state has a corresponding normative reward with re-
gards to a set of norms N

RN (s) =
X

⌫2N

r(⌫, s)

We can then calculate the value of a state taking into ac-
count the normative rewards of an agent as follows:

VN (s) = R(s) +RN (s) + max

a
�
X

s02S

T (s, a, s0)VN (s0)

and calculate a slightly modified norm aware policy for a
completely self-interested agent as follows:

⇡⇤
N (s) = argmax

a

X

s02S

T (s, a, s0)VN (s0)

And a regret minimisation policy as follows:

⇡⇤
� = argmin

a

X

s02S

T (s, a, s0)VN (s0)�
X

s02S

T (s, a, s0)V (s0)

!

Review this
equation.

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Sanctioning Minimisation

• Alternatively, choose actions that minimise sanctions when
these are inevitable

• Keep track of sanction values separately

• And only maximise reward when sanctions are not present

42

We could also think about a function to keep track of nor-
mative rewards separately:

V|N | = RN (s) + !
!

s! ! S

T (s, " "
N (s), s#)V|N | (s

#)

and a policy

" "
|N | =

"
##$

##%

arg max
a

!

s! ! S

T (s, a, s#)VN (s#) if V|N | (s#) > 0

arg min
a

!

s! ! S

T (s, a, s#)V|N | if V|N | (s#) ! 0

Or something along those lines
This is the gist of the idea, if we have time, we can take a

look at a fuller consideration of your framework (with detec-
tion probabilities and whatnot).

5 Evaluation
In order to evaluate the paper, we could have an example
of how people decide to bring a car to a full stop in a road
crossing with a stop sign. The norm is that everyone must
bring his/her vehicle to a full stop at any stop sign, regardless
of crossing traffic. However, in crossings with a clear view,
most people will bring the car to a full stop only when there is
crossing traffic, regardless of the potential penalties for being
caught not doing so.

Domain characteristics:
¥ In certain states, the punishment for violating the norm

is greater because of the physical world (the danger of
crashing)

¥ Whereas in certain states, the reward for violating the
norm is greater (faster travel) than the potential punish-
ment on normative space

References
[Fagundes et al., 2012] Moser Silva Fagundes, Sascha Os-

sowski, Michael Luck, and Simon Miles. Using normative
markov decision processes for evaluating electronic con-
tracts. AI Communications, 25(1):1–17, 2012.

[Oh et al., 2011] Jean Oh, Felipe Meneguzzi, Katia P.
Sycara, and Timothy J. Norman. An agent architecture
for prognostic reasoning assistance. In Toby Walsh, edi-
tor, IJCAI, pages 2513–2518. IJCAI/AAAI, 2011.

We could also think about a function to keep track of nor-
mative rewards separately:

V|N | = RN (s) + !
!

s! ! S

T(s, " "
N (s), s#)V|N | (s

#)

and a policy

" "
|N | =

"
##$

##%

arg max
a

!

s! ! S

T(s, a, s#)VN (s#) if V|N | (s#) > 0

arg min
a

!

s! ! S

T(s, a, s#)V|N | if V|N | (s#) ! 0

Or something along those lines
This is the gist of the idea, if we have time, we can take a

look at a fuller consideration of your framework (with detec-
tion probabilities and whatnot).

5 Evaluation
In order to evaluate the paper, we could have an example
of how people decide to bring a car to a full stop in a road
crossing with a stop sign. The norm is that everyone must
bring his/her vehicle to a full stop at any stop sign, regardless
of crossing trafÞc. However, in crossings with a clear view,
most people will bring the car to a full stop only when there is
crossing trafÞc, regardless of the potential penalties for being
caught not doing so.

Domain characteristics:

¥ In certain states, the punishment for violating the norm
is greater because of the physical world (the danger of
crashing)

¥ Whereas in certain states, the reward for violating the
norm is greater (faster travel) than the potential punish-
ment on normative space

References
[Fagundeset al., 2012] Moser Silva Fagundes, Sascha Os-

sowski, Michael Luck, and Simon Miles. Using normative
markov decision processes for evaluating electronic con-
tracts.AI Communications, 25(1):1Ð17, 2012.

[Ohet al., 2011] Jean Oh, Felipe Meneguzzi, Katia P.
Sycara, and Timothy J. Norman. An agent architecture
for prognostic reasoning assistance. In Toby Walsh, edi-
tor, IJCAI, pages 2513Ð2518. IJCAI/AAAI, 2011.

Monday, 25 February 13

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Further Reading

• Meneguzzi et al. - Norm-based behaviour modiÞcation in BDI
agents. AAMAS (1) 2009: 177-184.

• Meneguzzi et al. - Nu-BDI: Norm-aware BDI Agents. EUMAS
2012

• Fagundes, Ossowski and Meneguzzi - Norm enforcement in
stochastic environments populated with self-interested
agents. Under Review.

43

Monday, 25 February 13

