Practical Normative Reasoning: Models and Challenges

Felipe Meneguzzi

School of Computer Science (FACIN) Pontifical Catholic University of Rio Grande do Sul (PUCRS) <u>felipe.meneguzzi@pucrs.br</u>

Outline

- Norms and Deontic logic
- Practical Normative Reasoning
 - Plan selection
 - Decision-theoretical reasoning

2

Why Norms?

- Autonomous agents in heterogenous societies act to achieve individual goals
- Multiple agents acting simultaneously will interfere with each other (negatively)
- Strategies will be either:
 - One against everyone else (game theory)
 - One-to-one coordination (expensive)
 - Normative systems

Norms

- Represent desirable behaviours for members of a society
 - "Soft-constraints" on behaviour
 - General expectation of behaviour
 - **Rewards** for compliance + **Sanctions** for non-compliance
- Traditionally represented through conditional rules of the form:

$$u, lpha, \epsilon
angle$$

└→Activation Condition

Norm condition (Deontic Formula)

- ondition

Deontic Logic

- Alethic modal logic deals with what is (or could be)
- Deontic logic deals with **what should be**
- Most common deontic modalities:
 - Obligations Oq it is obligatory that q
 - Permissions Pq it is permitted that q $Pq \leftrightarrow \neg O \neg q$
 - Prohibitions Fq it is not permitted that q $Fq \leftrightarrow O \neg q$

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

5

Deontic Logic

- This talk **is not** about deontic logic
 - A lot of work still being done in logic
- For our purposes we greatly simplify things in terms of:
 - States we **want** agents to achieve
 - States we **do not want** agents to achieve

Traffic Light Example

 $\langle \mathbf{O}stop(A, P), \rangle$ Norm condition $at(A, P) \wedge redlight(P),$ Activation condition $\neg redlight(P) \rangle$ **Expiration condition**

7

Norms and state-space

- Norm enforcement focuses on two sets of states
 - States between activation and expiration:
 norm context
 - States referred to by the norm condition
- Semantics of obligations sometimes differ

Norm Activation and Expiration

Norm Activation and Expiration

Practical Norm Reasoning

- Existing efforts largely focused
 - Logical aspects (deontic logic)
 - Macro-level (virtual organisations)
- Relatively few techniques for individual **agent behaviour**
 - Finite time/resources
 - Practical enforcement mechanisms

Practical Norm Reasoning

- How should an agent behave in a norm-driven society?
 - Norms as soft constraints
 - Dynamically changing sets of norms
 - Different enforcement mechanisms
 - Limited time/resources
- Depends on the assumptions on the environment

Environment Assumptions

- Deterministic/Stochastic
 - Plan selection
 - Decision theoretic planning
- Observable/Partially Observable
 - Norm inference / learning
- Explicitly multiagent
 - Reasoning about other agents/trust

Norms in the BDI model

- Assumption: deterministic, fully observable environments
- Reasoning within the BDI model
 - Beliefs World model (from perception)
 - Desires Overall objectives (from user)
 - Intentions Committed objectives / plans (selected at runtime)
- Norms constrain intention selection

AgentSpeak(L)

- Most implementations of BDI systems are based on the **Procedural Reasoning System (PRS)**
- Later formalised in the AgentSpeak(L) programming language
- Agents are defined in terms of a **plan library** of **procedural plans** (reactive HTN methods) of the form: triggering_event : context <- body.</pre>

AgentSpeak(L)

- An AgentSpeak plan has the following general structure: triggering event : context <- body.
- where:
 - the triggering event denotes the events that the plan is meant to handle;
 - the context represent the circumstances in which the plan can be used;
 - the body is the course of action to be used to handle the event if the context is believed true at the time a plan is being chosen to handle the event.

AgentSpeak(L) example

+at(Pos) : gold(Pos)
<- pickup(Pos).</pre>

+at(Pos) : gold(PosG)
 <- !goto(PosG).</pre>

```
+!goto(Pos) : at(PosA) & Pos < PosA
  <- move(left);
    !goto(Pos).</pre>
```

+!goto(Pos) : at(PosA) & Pos > PosA
 <- move(right);
 !goto(Pos).</pre>

BDI Normative reasoning

- Key processes:
 - Norm processing
 - Behaviour modification
 - Intention selection

BDI Behaviour Modification

- When new norms are perceived by the agent, it has to:
 - Detect normative conflicts (e.g. $\mathbf{O}p \wedge \mathbf{F}p$)
 - Decide whether to accept (and comply with) them

Norms and Goal Types

- We narrow norm types down to:
 - Obligations agent must do/achieve something
 - Prohibitions agent must not do/achieve something

Norm	Meaning
obligation(p)	add a goal to achieve state p, from Activ Expiration.
obligation(a)	add a new plan with a Activation trigger action a in its body.
prohibition(p)	prevent adoption of plans that bring abo
prohibition(a)	prevent adoption of plans that execute

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

vation to ring event, and out state p. action a.

Motivating Example

AgentSpeak

+!cleanRoom(Room) : at(Room)

<- +clean(Room).

+!clean(room1) : true

<- +at(room1); !cleanRoom(room1).

+!clean(classifRoom) : true <- +at(classifRoom); !cleanRoom(classifRoom).

+cleanClassif : true

```
<- !clean(classifRoom).
```

Norms

norm(time(4), time(20), obligation(clean(room1)))

norm(time(6), time(22), prohibition(at(classifRoom))

Expected Behaviour

- time(4)
- time(6)
- cleanClassif
- time(20)
- time(22)

- Adopt plan to clean room I
- Suppress plan to clean classifRoom
- No plan should be adopted
- Obligation to clean room I expires
- Plan to clean classifRoom no longer suppressed

Norm Activation

- Obligations
 - Behaviours associated with obligations must be carried out when they become active
 - Activation condition becomes trigger for plans that achieve obligations
- Prohibitions
 - Behaviours associated with prohibitions must not be carried out when they become active
 - Activation conditions becomes trigger for plans that filter intentions and plan library

Plan Librar
Plan 1
Plan 3
Plan 5

Norm Expiration

- When a norm expires, its effects in the plan library must be reversed
- Plans added for obligations can be removed
- Plans suppressed for prohibitions must be restored

Limitations and Refinement

- Only coarse control over agent behaviour is possible
 - Plans that affect prohibitions are completely removed
 - Plans created for obligations are not generic
- Finer grained approach
 - Restrict plan instantiation when selecting intentions

nu-BDI

- Norms constrain desirable states
- In AgentSpeak, plan library defines paths through the state space
- In nu-BDI norm condition is extended with a logical constraint O_αφ ∘ Γ (an obligation) F_αφ ∘ Γ (a prohibition)
- Where Γ is a constraint formula:

 $\mathsf{O}_{\alpha}\varphi\circ(\gamma_1\wedge\ldots\wedge\gamma_n)$

Annotating Plans

- General idea
 - Check applicable norms along possible execution paths
 - Consolidate restrictions detected in a path
 - Annotate plan with consolidated restrictions

Annotating Plans

- General idea
 - Check applicable norms along possible execution paths
 - Consolidate restrictions detected in a path
 - Annotate plan with consolidated restrictions

Annotating Plans

- General idea
 - Check applicable norms along possible execution paths
 - Consolidate restrictions detected in a path
 - Annotate plan with consolidated restrictions

Example Plan and Norms

Consider the following plan

 $\left\langle +level(X, medium), \left(\begin{array}{c} high_risk(X) \land person(P) \land \\ at(P, X) \land \neg high_risk(Y) \land \\ \neg high_risk(Z) \land \neg (Y = Z) \end{array} \right), \left[\begin{array}{c} isolate(X), \\ evacuate(P, X, Y), \\ reroute(X, Z) \end{array} \right] \right\rangle$

• And the following **abstract norms**

 $\langle \mathsf{F}_A evacuate(P, X, Y), \neg safe(Y), safe(Y), 1 \rangle$ $\langle \mathsf{O}_A reroute(X, Z) \circ \{X + 1 \le Z \le X + 3\}, \neg safe(X),$

• If the belief base entails both \neg safe(3) and \neg safe the following specific norms

> $\langle \mathsf{F}_A evacuate(X,3), \neg safe(3), safe(3), 1, ctr \rangle$ $\langle \mathsf{F}_A evacuate(X, 6), \neg safe(6), safe(6), 1, ctr \rangle$ $\langle \mathsf{O}_A reroute(3, Z) \circ \{4 \leq Z \leq 6\}, \neg safe(3), safe(3), 2, ctr \rangle$ $\langle \mathsf{O}_A reroute(6, Z) \circ \{7 \leq Z \leq 9\}, \neg safe(6), safe(6), 2, ctr \rangle$

$$safe(X), 2\rangle$$
e(6), we have

Extended Context Condition

Given the norms

 $\langle \mathsf{F}_A evacuate(X,3), \neg safe(3), safe(3), 1, ctr \rangle$ $\langle \mathsf{F}_A evacuate(X, 6), \neg safe(6), safe(6), 1, ctr \rangle$ $\langle \mathsf{O}_A reroute(3, Z) \circ \{4 \leq Z \leq 6\}, \neg safe(3), safe(3), 2, ctr \rangle$ $\langle \mathsf{O}_A reroute(6, Z) \circ \{7 \leq Z \leq 9\}, \neg safe(6), safe(6), 2, ctr \rangle$ • And the plan steps $\begin{bmatrix} isolate(X), \\ evacuate(P, X, Y), \\ reroute(X, Z) \end{bmatrix} \rightarrow \begin{bmatrix} isolate(X) \circ \top, \\ evacuate(X, Y) \circ \{Y \neq 3, Y \neq 6\}, \\ reroute(X, Z) \circ \{3 \le Z \le 5\} \end{bmatrix}$ We get an annotated plan $\left\langle \left[\begin{array}{c} +level(X, medium), (high_risk(X)), \\ isolate(X) \circ \top, \\ evacuate(X, Y) \circ \{Y \neq 3, Y \neq 6\}, \\ reroute(X, Z) \circ \{3 < Z < 5\} \end{array} \right|, \left\{ \begin{array}{c} Y \neq 3, \\ Y \neq 6, \\ 3 < Z < 5 \end{array} \right\} \right\rangle$

Choosing between plans

- The extended (normative) context condition can now be checked at plan instantiation time
 - If satisfiable, plan **can be** norm-compliant
 - If not, then **no plan** instance can be compliant
- Agent needs to choose least violating plan
 - Relaxing constraints (constraints \rightarrow norms)

Challenges

- Determining the limitations of annotation mechanism
 - What can we guarantee?
 - How far can we look?
- Guarantees of norm properties w.r.t. a plan library
 - What norms can be followed by a plan library?
- Algebra of norms on plans

33

Challenges

Alternative Approaches

- Planning with preferences
- Constraint Satisfaction planning

MDPs

- Assumption: Stochastic, Fully-Observable Environments
- Markov Decision Process (MDP) $\langle S, A, T, R \rangle$
 - Sets of states and actions
 - A markovian transition model $T(s', a, s) = P(s' \mid a, s)$
 - A reward function R(s) sometimes R(s, a)
- A solution to a MDP must specify what the agent should do for any state. Such a solution is called a **policy**

Optimal Policy

- A policy maps each state in the state-space to an action
- If this mapping selects the action that leads to the long-term **maximum reward**, then the policy is **optimal**
- This selection is done by calculating the **value** of a state $V(s) \leftarrow \left[\max_{a} \gamma \sum_{s'} P(s'|s, a) * V(s')\right] + R(s)$
- And subsequently choosing the action that leads to the highest value $\pi(s) = \arg\max_{a} \sum_{i} P(s'|s, a) * V(s')$

Normative MDP

NMDP Policies

- Current state of the art consists of compiling an NMDP into a traditional MDP
 - Removing actions that can transition to violating states Fully compliant behaviour
 - Merging sanctioning mechanism into transitions and rewards Selfish behaviour (asocial)

Limitations and Challenges

- Current state of the art generates agents that are either totally cautious or oblivious to violations
- Challenges in defining policy concepts and algorithms to strike a middle ground
- Many possible approaches

Regret Minimisation

- Potential approach, choose actions that minimise regret over sanctions
 - Keep track of sanctioned rewards separately from environment rewards

$$V(s) = R(s) + \max_{a} \gamma \sum_{s' \in S} T(s, a, s') V(s') \qquad V_N(s) = R(s) + R_N(s)$$

• And generate a policy that minimises regret between these two rewards

$$\pi_{\delta}^* = \arg\min_{a} \left(\sum_{s' \in S} T(s, a, s') V_N(s') - \right)$$

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

 $+\max_{a} \gamma \sum_{s' \in S} T(s, a, s') V_N(s')$

 $-\sum_{s'\in S} T(s,a,s')V(s')$

Sanctioning Minimisation

- Alternatively, choose actions that minimise sanctions when these are inevitable
 - Keep track of sanction values separately $V_{|N|} = R_N(s) + \gamma \sum T(s, \pi_N^*(s), s') V_{|N|}(s')$ $s' \in S$
 - And only maximise reward when sanctions are not present

$$\pi_{|N|}^{*} = \begin{cases} \arg\max_{a} \sum_{s' \in S} T(s, a, s') V_{N}(s') & \text{if } V_{|N|}(s') \\ \arg\min_{a} \sum_{s' \in S} T(s, a, s') V_{|N|} & \text{if } V_{|N|}(s') \end{cases}$$

-) > 0
- $) \leq 0$

Further Reading

- Meneguzzi et al. Norm-based behaviour modification in BDI agents.AAMAS (1) 2009: 177-184.
- Meneguzzi et al. Nu-BDI: Norm-aware BDI Agents. EUMAS 2012
- Fagundes, Ossowski and Meneguzzi Norm enforcement in stochastic environments populated with self-interested agents. Under Review.