
Programming Autonomous Behaviour  
Abstractions and Techniques

Felipe Rech Meneguzzi!
felipe.meneguzzi@pucrs.br

Pontifícia Universidade Católica do Rio Grande do Sul

Overview

• A crash course in agents
• Agent programming abstractions

• Declarative goals and planning
• Normative Reasoning and Commitments

• An application in robotics

Agent programming
• Programming has progressed through:

• machine code;
• assembly language;
• machine-independent programming languages;
• sub-routines;
• procedures & functions;
• abstract data types;
• objects;

• to agents.

Beliefs

EnvironmentDesires

Intentions

Inform adoption of

Commitment of which leads to

Perceptions

Actio
ns

Overview of BDI Agents
• Philosophical model of human

reasoning

• Based on three mental states:

• Beliefs

• Desires

• Intentions

e: b₁∧...∧bₐ
← h₁;

⋮;
hₐ.

Triggering Event Context Condition

Header

Body

BDI Programming Languages
• Originated from the Procedural

Reasoning System (PRS)

• Similar to Prolog in many
respects

• Beliefs – First order logic atoms

• Plans – Procedures triggered by
perception

BDI Reasoning

Execute

Intentions

Select Relevant

Plans

Perceive

Events

Select Applicable

Plans

Add Plan to

Intentions

Update Beliefs

Plan Example

�

+!goTo(C),hasVehicle(V),
getVehicle(V),
moveTo(C)
⎡

⎣
⎢

⎤

⎦
⎥

�

!goTo(london)

New event

�

hasVehicle(airplane)

Belief Base

�

getVehicle(airplane),
moveTo(london)
⎡

⎣
⎢

⎤

⎦
⎥ (C = london,V = airplane)

Resulting Plan

Goal Types
• Procedural Goals - Efficient, yet inflexible

• Predefined encapsulated behaviours
• Designer must foresee relevant plans

• Declarative Goals - expressive, but not trivial
• Desired world states
• Requires a more complex reasoning mechanism

• How to link desired world states to actions?

Planning in Agents

Automated Planning
• Necessary capability in

autonomous systems
• Deterministic  

(controlled environments)
• Stochastic (real world)

• Applications
• Plan recognition
• Proactive assistance
• Declarative Agent Programming

Planning in BDI agents
• Traditional agent languages rely on static plan libraries
• Introduction of first principles planning in the BDI programming

languages to:
• Expand agent’s capabilities at runtime
• Support declarative goals
• Comply with normative stipulations
• Plan reuse algorithm based on the generation of context

condition for newly created plans

Planning in AgentSpeak(L)

• Introduction of planning in the AgentSpeak(L) language
• Use of planner to support declarative goals
• Plan reuse algorithm based on the generation of context

condition for newly created plans
• Expansion of the agent plan library

Planning Formalisms

• Planning is one of the main areas of AI research
• Research focuses on:

• Relation between planning formalisms/algorithms to agent
reasoning

• Convertibility of deterministic planning formalisms to
stochastic planning formalisms

Planning Formalism Translation
• Research focuses on utilizing more user-friendly formalisms

• Target formalism: Markov Decision Process (MDP)
• Base formalism: Hierarchical Task Networks (HTN)

• HTN-like abstractions are widely used in Agent Programming
Languages (e.g. AgentSpeak)

• MDPs are a powerful mathematical model for probabilistic
planning

Transformation
HTN

s0 t1 t2 t3-a2

t4-a1 t5-a2 t6-a1 t7-a3

m1 m2 m3

t8-a4 t9-a1

Probabilistic Planning
• Two approaches

• Conversion of HTN to MDP
• Planning through Earley Graph construction

• Goal
• Convert a deterministic planning representation (with

additional information) into a stochastic planning problem

Papers on Agent Planning

• MENEGUZZI, Felipe and DE SILVA, Lavindra. Planning in BDI Agents:
A survey of the integration of planning algorithms and agent
reasoning, In The Knowledge Engineering Review (KER), 2013.

• MENEGUZZI, Felipe and LUCK, Michael. Declarative planning in
procedural agent architectures, In Expert Systems with Applications
(ESWA), Vol. 40:16, 2013.

• MENEGUZZI, Felipe. Motivations and Goal-Directed Autonomy, in
AAAI-10 Workshop on Goal-Directed Autonomy, 2010 (invited paper).

Normative Reasoning

Normative Systems
• Norms: mechanism to impose

control on agent societies
• Define standards of acceptable

behaviour
• Rely on explicit representations of:

• Obligations/Prohibitions
• Permissions

• Applications:
• Electronic contracts
• Simulated societies

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Why Norms?

• Autonomous agents in heterogenous societies act to achieve
individual goals	

• Multiple agents acting simultaneously will interfere with each
other (negatively)	

• Strategies will be either:	

• One against everyone else (game theory)	

• One-to-one coordination (expensive)	

• Normative systems

20

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norms

• Represent desirable behaviours for members of a society	

• “Soft-constraints” on behaviour	

• General expectation of behaviour	

• Rewards for compliance + Sanctions for non-compliance	

• Traditionally represented  
through conditional  
rules of the form: 

21

h⌫,↵, ✏i
Expiration Condition

Activation Condition

Norm condition (Deontic Formula)

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Deontic Logic

• Alethic modal logic deals with what is  
(or could be) 	

• Deontic logic deals with what should be	

• Most common deontic modalities:	

• Obligations - Oq - it is obligatory that q	

• Permissions - Pq - it is permitted that q 
Pq ↔ ¬O¬q	

• Prohibitions - Fq - it is not permitted that q 
Fq ↔ O¬q 

22

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Deontic Logic

• This talk is not about deontic logic	

• A lot of work still being done in logic	

• For our purposes we greatly simplify things in terms of:	

• States we want agents to achieve	

• States we do not want agents to achieve

23

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Traffic Light Example

• Norm condition	

• Activation condition	

• Expiration condition 

24

hOstop(A,P),

at(A,P) ^ redlight(P),

¬redlight(P)i

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norms and state-space

• Norm enforcement focuses on two sets of states 	

• States between activation and expiration:  
norm context

• States referred to by the  
norm condition

• Semantics of obligations sometimes differ 

25

State Space

Context

Norm

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norm Activation and Expiration

26

State Space

Context

Norm

Obligation

Activation
Fulfilment

Expiration State Space

Context

Norm

Prohibition

Activation Fulfilment

Expiration

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norm Activation and Expiration

27

State Space

Context

Norm

Obligation

Activation Violation

Expiration State Space

Context

Norm

Prohibition

Activation Violation

Expiration

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Practical Norm Reasoning

• Existing efforts largely focused	

• Logical aspects (deontic logic)	

• Macro-level (virtual organisations)	

• Relatively few techniques for individual agent behaviour	

• Finite time/resources	

• Practical enforcement mechanisms

28

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Practical Norm Reasoning

• How should an agent behave in a norm-driven society?	

• Norms as soft constraints	

• Dynamically changing sets of norms	

• Different enforcement mechanisms	

• Limited time/resources	

• Depends on the assumptions on the environment

29

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Environment Assumptions

• Deterministic/Stochastic	

• Plan selection	

• Decision theoretic planning	

• Observable/Partially Observable	

• Norm inference / learning	

• Explicitly multiagent	

• Reasoning about other agents/trust

30

Felipe Meneguzzi (PUCRS) - Practical Normative Reasoning - Aberdeen 2013

Norms in the BDI model

• Assumption: deterministic, fully observable environments	

• Reasoning within the BDI model	

• Beliefs - World model (from perception)	

• Desires - Overall objectives (from user)	

• Intentions - Committed objectives / plans  
(selected at runtime)	

• Norms constrain intention selection

31

Beliefs

Desires

Intentions

Sensor
Update

Goal
Selection

Intention
Selection

Action

Norm representation

• Focuses on the operational aspect of norm compliance
• Norms are defined in the form

• Normative Formula
• Activation Condition
• Expiration Condition
• Id

�

ν,Act,Exp,id

Normative formula ()
• Annotated deontic formula is of the form

!

• Where X is the norm type:
• O – for obligations
• F – for prohibitions

• φ is the targeted formula (actions in a plan)
• And Γ is a conjunction of constraints

�

ν

�

Xα:ρϕ !Γ

Previous Normative Systems
• Two extremes of norm processing

• Blanket plan retractions
 (Normative AgentSpeak)
• Every norm checked at every plan step (BOID)

• Decision about compliance too simplistic
• Made before real repercussions are known or
• Non-compliance simply not an option

Architecture Desiderata

• We propose something in-between
• Fine grained
• Efficient

• Effect of norms calculated at norm receipt
• Decision to comply delayed as much as possible

Reasoning about Norms

• Three key processes:
• Update norms (Resolve Conflicts)
• Annotate Plan Library
• Apply normative restrictions to plans

nu-BDI

Resolve Conflicts

Annotate Plans

Execute

Intentions

Select Relevant

Plans

Perceive

Events

Select Applicable

Plans

Select Compliant

Plans

Add Plan to

Intentions

Update Beliefs Update Norms

Updating Norms

• Norms can be in two “states”
• Abstract
• Specific (or Active)

• When received by agent – abstract norms
• When activation condition holds – new specific norms

created

Example Norm Update
• Abstract Norm 

!

!

!

!

!

• New event occurs 

• Specific Norm
!

!

!

!

!

• Specific Norm is
deleted with event

�

FA :RmoveTo(C) !C = X,
tubeStrike(X),
¬tubeStrike(X),
norm1

�

tubeStrike(london)

�

FA :RmoveTo(C) !C = london,
tubeStrike(london),
¬tubeStrike(london),
norm1.1

�

¬tubeStrike(london)

Annotating Plans

!

• Plans in the plan library are annotated as specific norms
are created

• Normative formula is compared to steps in each plan
• Each step is associated with appropriate normative

constraints

Example Plan Annotation
• Plan

!

!

!

!

• Specific Norm 
 
 
 

!

!

• Resulting annotated
plan

�

+!goTo(C),hasVehicle(V),
getVehicle(V),
moveTo(C)
⎡

⎣
⎢

⎤

⎦
⎥

�

FA :RmoveTo(C) !C = london,
tubeStrike(london),
¬tubeStrike(london),
norm1.1

�

+!goTo(C),hasVehicle(V),
getVehicle(V) !T,
moveTo(C) !C ≠ london
⎡

⎣
⎢

⎤

⎦
⎥

Normative Plan Selection

!

• Similar to original plan selection
• Added check for satisfiability of

a normative header
• Constraints from all steps

e: b₁∧...∧bₓ
← h₁;

⋮;
hₓ.

Triggering Event Context Condition

Header

Body

γ₁∧...∧γᵢ

Normative header

Constraints

Example Plan Selection

�

+!goTo(C),hasVehicle(V),
getVehicle(V),
moveTo(C)
⎡

⎣
⎢

⎤

⎦
⎥ !C ≠ london

�

!goTo(london)

New event

�

hasVehicle(airplane)

Belief Base

�

getVehicle(airplane),
moveTo(london)
⎡

⎣
⎢

⎤

⎦
⎥ (C = london,V = airplane)

Resulting Plan

But

�

(C = london∧C ≠ london)→⊥

Papers on Normative Reasoning
• FAGUNDES, Moser; OSSOWSKI, Sascha; and MENEGUZZI, Felipe.

Imperfect norm enforcement in stochastic environments: an
analysis of efficiency and cost tradeoffs, In Proc. 14th IBERAMIA,
2014.

• ALRAWAGFEH, Wagdi and MENEGUZZI, Felipe. Utilizing Permission
Norms in BDI Practical Normative Reasoning, In COIN 2014
@AAMAS, 2014.

• Meneguzzi and Luck. Norm-based behaviour modification in BDI
agents. AAMAS (1) 2009: 177-184.

• Meneguzzi et al. Nu-BDI: Norm-aware BDI Agents. EUMAS 2012

Goals and Commitments

Motivation
• Commitments have been extensively studied in MAS

• Encode high-level social relations between agents
• Define communication protocols among agents (business

processes)
• Previous formalizations

• Operational semantics for goals and commitments,  
and their interaction

• Propositional planning formalization

Commitment LifecycleCommitment Lifecycle
Expired (E) Null (N) Pending (P)

Conditional (C) Detached (D)

Terminated (T) Satisfied (S) Violated (V)

Active (A)

create
antecedent failure

antecedent

cancel cancel _
consequent failure

consequent
release

suspend
reactivate

NCSU and PCURS 3 / 12 Telang, Meneguzzi, Singh

• Formally 
C(Debtor,  
 Creditor,  
 antecedent,  
 consequent)

• E.g.
C(buyer,seller,goods,paid)

Goal LifecycleGoal Lifecycle
Null (N)

Inactive (I) Active (A)

Suspended (U)

Terminated (T) Failed (F) Satisfied (S)

consider

activate

reconsider reactivate
suspend suspend

drop _ abort fail succeed

NCSU and PCURS 4 / 12 Telang, Meneguzzi, Singh

• Formally 
G(Agent, pg, s, f)

• E.g.  
G(buyer, needsgoods, 
 goods,deadline)

Relating Commitments and Goals
• Practical Rules relating commitments and goals

• Let G = G(buyer,⊤,goods,⊥)  
and C = C (buyer, seller, goods, pay)

• Entice Rule: If G is active and C is null, buyer creates C 
 

• Motivation: Buyer can achieve its goals of goods by creating
the commitment to pay for them to Seller

hGA, CN i
create(C)

Hierarchical Task Network Planning
• Generates a plan by successive refinement of tasks

• Non-primitive Tasks - abstract, high-level tasks  
to be decomposed

• Primitive Tasks - cannot be further  
decomposed (operators) 

• Multiple implementations  
(e.g. JSHOP2, SHOP2) 

• Abstraction of choice for agent programming languages

nonprimitive task

primitive task primitive task

method
instance

operator
instance

operator
instance

precondprecond

precond

effects effectss0 s1 s2

HTN Planning for
Commitments and Goals

• Formalization of commitment protocols in terms of HTN planning 

• Axioms enforcing state transition model  
for goals and commitments

• Planning Operators describing  
transitions (e.g. create, suspend, etc.)

• HTN Methods for practical rules  
(e.g. entice, negotiate, etc.) 

• Allows HTN planner to be used to validate commitment protocols

HTN Planning Domain

axioms methods operators

Agent
Goals

Commitment
Protocols

HTN
Planner

Valid
Enactments

A first-order formalization
• Propositional formalization had several  

limitations
• Limited expressivity

• New First-order formalization:
• Domain independent axioms, methods  

and operators
• Domain dependent  

axioms, costs, methods and operators
• Useful patterns of behavior

HTN Planning Domain

domain
axioms

domain
methods

operators

Agent
Goals

Commitment
Protocols

HTN
Planner

Multiple
Enactments +

Costs

axioms methods

domain
operators

Domain Independent Axioms & Operators
Commitment Axioms Goal Axiomschallenge is to capture different ways in which interaction

instances can (1) flexibly deviate from the initial specifica-
tion; (2) split off into two or more instances that together
accomplish the original interaction; (3) coalesce into larger
interactions. In particular, the above should be accomplished
in a modular manner, meaning that we should not have to
rewrite an interaction specification but should be able to
transform it in a systematic manner to produce the desired
interaction. Yolum and Singh (2002) introduced the idea of
digressions in protocols and Chopra and Singh (2006) intro-
duced the notion of protocol transformers, though both pa-
pers adopted propositional frameworks. Specifically, these
frameworks cannot encode domains containing the follow-
ing patterns of behavior.

Piecemeal progress. The customer may pay the merchant
in installments. The challenge to accommodate here is of
arithmetic: we would like to handle the situation that, for
example, a payment of $6 followed by a payment of $4 is
equivalent to a payment of $10. (Note that domain regula-
tions would determine whether payments may be split).

Concession. The merchant may balk at providing the goods
(or goods above a certain value) in advance of any payment.
Therefore, we might amend the protocol so that the customer
makes a partial deposit first, upon which the merchant deliv-
ers the goods, upon which the customer makes the remaining
payment. Unlike piecemeal progress, this scenario involves
altering the structure of the commitments involved: the mer-
chant is committing to providing the goods only upon re-
ceiving a deposit and the customer is committing to paying
the remaining amount upon receiving the goods. Concession
is loosely inspired by Yolum and Singh’s (2007) approach,
which deals with nesting commitments to reduce the appar-
ent risk to each party in a protocol.

Consolidation. If a customer places two purchase orders in
close succession, the merchant may ship both of the ordered
goods in the same package. Likewise, the customer may pay
for both orders via one check. This is a clear case of flexibil-
ity in enactment that multiagent protocols ought to support.
To realize it requires a richer representation wherein some
actions (e.g., delivery) may be associated with more than
one protocol instance.

Compensation. The customer may return goods to the mer-
chant and the merchant would issue a refund. The refund
should match the goods returned. This should result from
a straightforward application of the first-order representa-
tion. Additionally, the protocol should ordinarily ensure that
for piecemeal payments, only the amount received may be
refunded. Further, the protocol may build in some fraud-
resistant measures, such as that a prior refund disables a sub-
sequent refund or that the total amount refunded in succes-
sive protocol instances does not exceed some threshold.

Proposed Formal Framework
We now develop the logical rules, operators, and methods in
the HTN formalism that operationalize the goal and commit-
ment dynamics introduced above. Existing techniques show

Table 1: Logical rules for commitment dynamics
null(C,Ct,

~

Cv) ¬var(C,Ct,

~

Cv)
conditional(C,Ct,

~

Cv) active(C,Ct,

~

Cv)^¬p(C,Ct,

~

Cv)
detached(C,Ct,

~

Cv) active(C,Ct,

~

Cv) ^ p(C,Ct,

~

Cv)
active(C,Ct,

~

Cv) ¬null(C,Ct,

~

Cv)
^ ¬terminal(C,Ct,

~

Cv) ^ ¬pending(C,Ct,

~

Cv)
^ ¬satisfied(C,Ct,

~

Cv)
terminated(C,Ct,

~

Cv) released(C,Ct,

~

Cv)
_ (¬p(C,Ct,

~

Cv) ^ cancelled(C,Ct,

~

Cv))
v iolated(C,Ct,

~

Cv) p(C,Ct,

~

Cv) ^ cancelled(C,Ct,

~

Cv)
satisfied(C,Ct,

~

Cv) ¬null(C,Ct,

~

Cv)
^ ¬terminal(C,Ct,

~

Cv) ^ q(C,Ct,

~

Cv)
terminal(C,Ct) commitment(C,Ct,De, Cr) ^

(cancelled(C,Ct,

~

Cv) _ released(C,Ct,

~

Cv)
_ expired(C,Ct,

~

Cv))

that it is straightforward to convert operational business pro-
cess models into HTN (Pistore et al. 2005), as well as to
convert business process languages into planning operators
(Hoffmann, Weber, and Kraft 2010). Based on these, we
assume that a large part of the domain-specific knowledge
used in HTN encoding can be generated from the business
processes being validated.

Commitment Dynamics
A commitment is a tuple hCt,De,Cr, P,Q, ~Cvi, where: Ct
is the commitment type; De is the debtor of the commitment;
Cr is the creditor of the commitment; P is the antecedent;
Q is the consequent, both P and Q are existentially quan-
tified first-order formulas; and, ~Cv is a list [v1, . . . , vn] of
variables identifying specific instances of Ct. The first chal-
lenge in encoding commitments in a first-order setting is
in ensuring that the components of a commitment are con-
nected through their shared variables. In order to accom-
plish that, we model the entire set of variables of a partic-
ular commitment within one predicate. Thus, the number
of variables n for a commitment is equivalent to the sum
of arities of all first-order predicates in P , and Q, so if
P = pa0(~ta0) . . . pak(~tak) and Q = pc0(~tc0) . . . pck(~tck),
then n =

Pi=ck
i=a0 |~ti|. Thus, for each commitment C =

hCt,De,Cr, P,Q, ~Cvi, where P is a formula ' and Q is
a formula { we define the rules below:

p(C,Ct,

~

Cv) commitment(C,Ct,De, Cr) ^ '

q(C,Ct,

~

Cv) commitment(C,Ct,De, Cr) ^ {
Given these two basic formulas from the commitment tu-
ple, we define rules that compute a commitment’s state in
Table 1, which follow from Figure 1. The null state for a
commitment is “instance dependent”, as each commitment
has a number of possible instantiations, depending on the
variables of the antecedent. In order to accomplish this, each
commitment instance has an associated var predicate con-
taining the commitment type and the list of variables asso-
ciated to the instance. An active commitment is conditional
if its antecedent (p) is false, and is detached otherwise. A
commitment is active if it is not null, terminal, pending, or
satisfied. Note that terminal is a shortcut for the states can-

Commitment Operators

Table 2: Planning operators for commitment dynamics.
hoperator !create(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ null(C,Ct,

~

Cv)),
del(),add(var(C,Ct,

~

Cv))i
hoperator !suspend(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(pending(C,Ct,

~

Cv))i
hoperator !reactivate(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ pending(C,Ct,

~

Cv)),
del(pending(C,Ct,

~

Cv)),add()i
hoperator !expire(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^

conditional(C,Ct,

~

Cv) ^ timeout(C,Ct,

~

Cv)),
del(),add(expired(C,Ct,

~

Cv))i
hoperator !cancel(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(cancelled(C,Ct,

~

Cv))i
hoperator !release(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(released(C,Ct,

~

Cv))i

celled, released, or expired. A commitment is terminated if
it is released or it is cancelled when its antecedent is false. A
commitment is violated if it is cancelled when its antecedent
is true. A commitment is satisfied if it is not null and not ter-
minal, and its consequent (q) is true.

Finally, we encode the transitions from Figure 1 as the
planning operators in Table 2. For a commitment, the create
operator adds the var predicate if the commitment is null. If
a commitment is active, executing suspend adds the pend-
ing predicate. If a commitment is pending, executing reacti-
vate deletes the pending predicate. If a commitment is con-
ditional and a timeout has occurred, then executing expire
adds the expired predicate. If a commitment is active, exe-
cuting cancel adds the cancelled predicate. If a commitment
is active, executing release adds the released predicate.

Goal Dynamics
We represent a goal as a tuple hGt,X, Pg, S, F, ~Gvi, where:
Gt is the goal type; X is the agent that has the goal; Pg is
the goal precondition; S is the success condition; F is the
failure condition; and ~Gv is a list of variables identifying
specific instances of Gt. Similarly to commitments, the
number of variables for a commitment will be equivalent
to the sum of arities of all first-order predicates in Pg, S
and F . Likewise, for each goal G = hGt,X, Pg, S, F,Gvi,
where Pg is a formula $, S is a formula & , and F is a
formula # we define the following rules:

pg(G,Gt,

~

Gv) goal(G,Gt,X) ^$

s(G,Gt,

~

Gv) goal(G,Gt,X) ^ &

f (G,Gt,

~

Gv) goal(G,Gt,X) ^ #

Table 3 defines rules that compute a goal’s state following
Figure 2. Finally, Table 4 encodes the goal state transitions
from Figure 2 as planning operators. We omit their details
for brevity.

Table 3: Logical rules for goal dynamics.
null(G,Gt,

~

Gv) ¬var(G,Gt,

~

Gv)
inactiveG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬s(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
^ ¬activeG(G,Gt,

~

Gv)
activeG(G,Gt,

~

Gv) activatedG(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬satisfiedG(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
satisfiedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬terminal(G,Gt,

~

Gv) ^ pg(G,Gt,

~

Gv)
^ s(G,Gt,

~

Gv) ^ ¬f(G,Gt,

~

Gv)
f ailedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv) ^ f(G,Gt,

~

Gv)
terminatedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv))
terminalG(G,Gt,

~

Gv) goal(G,Gt,X)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv)

Formalizing the Patterns
This section applies our approach to capture the patterns
from the Technical Motivation section. Table 5 shows the
goals and commitments of a customer and a merchant. For
example, C1 is the customer’s commitment to the merchant
to paying if the merchant provides the goods. In C1, 123 is
the transaction identifier, and $100 is the payment amount.

Table 6 shows the methods that we employ in formaliz-
ing the patterns. For brevity, we only present a subset of the
methods and operators. The satisfy(C) method encodes the
plans for satisfying a commitment C. If C is of type CT1 and
is detached, then satisfy either invokes the pay method once
representing that the customer pays the entire amount to the
merchant, or invokes the pay method twice representing that
the customer pays the merchant in two installments. If C is
of type CT2 and is detached, then satisfy invokes the goods
method representing that the merchant provides the goods
to the customer. If C is of type CT3 and is detached, then
satisfy invokes refundpaid representing that the merchant
refunds the customer. The satisfy(C1, C2) method invokes
paytogether if commitments C1 and C2 are detached, and
paytogether invokes pay for C1 and C2. The pay method im-
plements the arithmetic to add up the payments for a trans-
action identifier. If the customer has paid an installment,
then the pay method invokes the updatepaid operator, which
deletes the previous paid predicate, and adds a paid predicate
with the new amount. Otherwise, the pay method invokes the
paid operator, which adds a paid predicate.

Note that our rules and operators from Tables 2–4 are
completely general, whereas the methods and operators
from Table 6 are specific to the patterns we present.

Piecemeal progress. Figure 3 shows an HTN decomposi-
tion tree for piecemeal progress. The customer creates C1 to
achieve its goal G1 (for clarity of presentation, we omit the
goal operations consider and activate in the HTN decom-
position trees). The merchant detaches C1 by sending the
goods. This presumes that merchant has a goal to get paid.
To satisfy C1, the customer needs to pay $100, which the

Goal OperatorsTable 2: Planning operators for commitment dynamics.
hoperator !create(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ null(C,Ct,

~

Cv)),
del(),add(var(C,Ct,

~

Cv))i
hoperator !suspend(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(pending(C,Ct,

~

Cv))i
hoperator !reactivate(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ pending(C,Ct,

~

Cv)),
del(pending(C,Ct,

~

Cv)),add()i
hoperator !expire(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^

conditional(C,Ct,

~

Cv) ^ timeout(C,Ct,

~

Cv)),
del(),add(expired(C,Ct,

~

Cv))i
hoperator !cancel(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(cancelled(C,Ct,

~

Cv))i
hoperator !release(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(released(C,Ct,

~

Cv))i

celled, released, or expired. A commitment is terminated if
it is released or it is cancelled when its antecedent is false. A
commitment is violated if it is cancelled when its antecedent
is true. A commitment is satisfied if it is not null and not ter-
minal, and its consequent (q) is true.

Finally, we encode the transitions from Figure 1 as the
planning operators in Table 2. For a commitment, the create
operator adds the var predicate if the commitment is null. If
a commitment is active, executing suspend adds the pend-
ing predicate. If a commitment is pending, executing reacti-
vate deletes the pending predicate. If a commitment is con-
ditional and a timeout has occurred, then executing expire
adds the expired predicate. If a commitment is active, exe-
cuting cancel adds the cancelled predicate. If a commitment
is active, executing release adds the released predicate.

Goal Dynamics
We represent a goal as a tuple hGt,X, Pg, S, F, ~Gvi, where:
Gt is the goal type; X is the agent that has the goal; Pg is
the goal precondition; S is the success condition; F is the
failure condition; and ~Gv is a list of variables identifying
specific instances of Gt. Similarly to commitments, the
number of variables for a commitment will be equivalent
to the sum of arities of all first-order predicates in Pg, S
and F . Likewise, for each goal G = hGt,X, Pg, S, F,Gvi,
where Pg is a formula $, S is a formula & , and F is a
formula # we define the following rules:

pg(G,Gt,

~

Gv) goal(G,Gt,X) ^$

s(G,Gt,

~

Gv) goal(G,Gt,X) ^ &

f (G,Gt,

~

Gv) goal(G,Gt,X) ^ #

Table 3 defines rules that compute a goal’s state following
Figure 2. Finally, Table 4 encodes the goal state transitions
from Figure 2 as planning operators. We omit their details
for brevity.

Table 3: Logical rules for goal dynamics.
null(G,Gt,

~

Gv) ¬var(G,Gt,

~

Gv)
inactiveG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬s(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
^ ¬activeG(G,Gt,

~

Gv)
activeG(G,Gt,

~

Gv) activatedG(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬satisfiedG(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
satisfiedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬terminal(G,Gt,

~

Gv) ^ pg(G,Gt,

~

Gv)
^ s(G,Gt,

~

Gv) ^ ¬f(G,Gt,

~

Gv)
f ailedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv) ^ f(G,Gt,

~

Gv)
terminatedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv))
terminalG(G,Gt,

~

Gv) goal(G,Gt,X)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv)

Formalizing the Patterns
This section applies our approach to capture the patterns
from the Technical Motivation section. Table 5 shows the
goals and commitments of a customer and a merchant. For
example, C1 is the customer’s commitment to the merchant
to paying if the merchant provides the goods. In C1, 123 is
the transaction identifier, and $100 is the payment amount.

Table 6 shows the methods that we employ in formaliz-
ing the patterns. For brevity, we only present a subset of the
methods and operators. The satisfy(C) method encodes the
plans for satisfying a commitment C. If C is of type CT1 and
is detached, then satisfy either invokes the pay method once
representing that the customer pays the entire amount to the
merchant, or invokes the pay method twice representing that
the customer pays the merchant in two installments. If C is
of type CT2 and is detached, then satisfy invokes the goods
method representing that the merchant provides the goods
to the customer. If C is of type CT3 and is detached, then
satisfy invokes refundpaid representing that the merchant
refunds the customer. The satisfy(C1, C2) method invokes
paytogether if commitments C1 and C2 are detached, and
paytogether invokes pay for C1 and C2. The pay method im-
plements the arithmetic to add up the payments for a trans-
action identifier. If the customer has paid an installment,
then the pay method invokes the updatepaid operator, which
deletes the previous paid predicate, and adds a paid predicate
with the new amount. Otherwise, the pay method invokes the
paid operator, which adds a paid predicate.

Note that our rules and operators from Tables 2–4 are
completely general, whereas the methods and operators
from Table 6 are specific to the patterns we present.

Piecemeal progress. Figure 3 shows an HTN decomposi-
tion tree for piecemeal progress. The customer creates C1 to
achieve its goal G1 (for clarity of presentation, we omit the
goal operations consider and activate in the HTN decom-
position trees). The merchant detaches C1 by sending the
goods. This presumes that merchant has a goal to get paid.
To satisfy C1, the customer needs to pay $100, which the

Table 4: Planning operators for goal dynamics.
hoperator !consider(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ null(G,Gt,

~

Gv) ^ pg(G,Gt,

~

Gv)),
del(),add(var(G,Gt,

~

Gv))i
hoperator !activate(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ inactiveG(G,Gt,

~

Gv)),
del(),add(activatedG(G,Gt,

~

Gv))i
hoperator !suspend(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ ¬terminalG(G,Gt,

~

Gv) ^
¬null(G,Gt,

~

Gv)),
del(activatedG(G,Gt,

~

Gv)),add(suspendedG(G,Gt,

~

Gv))i
hoperator !reconsider(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ suspendedG(G,Gt,

~

Gv) ^
¬terminalG(G,Gt,

~

Gv) ^ ¬null(G,Gt,

~

Gv)),
del(),add(suspendedG(G,Gt,

~

Gv))i
hoperator !reactivate(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ suspendedG(G,Gt,

~

Gv) ^
¬terminalG(G,Gt,

~

Gv) ^ ¬null(G,Gt,

~

Gv)),
del(activatedG(G,Gt,

~

Gv)),add(suspendedG(G,Gt,

~

Gv))i
hoperator !drop(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ ¬terminalG(G,Gt,

~

Gv) ^
¬null(G,Gt,

~

Gv)),
del(),add(dropped(G,Gt,

~

Gv))i
hoperator !abort(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ ¬terminalG(G,Gt,

~

Gv) ^
¬null(G,Gt,

~

Gv)),
del(),add(aborted(G,Gt,

~

Gv))i

Table 5: Goals and commitments for the patterns.
Id Type Goal or commitment
G1 GT1 G(CUST,needsGoods(123),goods(123),deadline(123))
G2 GT1 G(CUST,needsGoods(456),goods(456),deadline(456))
C1 CT1 C(CUST, MER, goods(123), paid($100, 123))
C2 CT2 C(MER, CUST, pay($20, 123), goods(123))
C3 CT1 C(CUST, MER, goods(123), pay($80, 123))
C4 CT1 C(CUST, MER, goods(456), pay($200, 456))
C5 CT3 C(MER, CUST, return(123), refundpaid(123))

customer may pay either as a lump sum, or in two install-
ments. Figure. 3 shows a plan in which the customer pays
two installments of $50 each.

Concession. This pattern involves two commitments: the
merchant commits (C2) to providing the goods upon receiv-
ing a deposit of $20, and the customer commits (C3) to the
merchant to pay the remaining amount of $80 upon receiv-
ing the goods. Figure 4 shows an HTN decomposition tree
for concession. The customer and the merchant create C2

and C3, respectively. Then the customer detaches C2 by pay-
ing $20. The merchant satisfies C2 by providing the goods,
which also detaches C3. Next, the customer pays $80 to sat-
isfy C3. The detach method has a structure similar to the
satisfy method.

Consolidation. In this pattern, the customer has a second
goal G2 for goods(456) and C4 is the commitment from
the customer to the merchant to paying $200 if the merchant
provides the goods. Figure 5 illustrates the HTN decompo-

Table 6: Methods and operators for the patterns.
hmethod(satisfy(C)),

pre(commitment(C,CT1, cust,mer) ^ var(C,CT1,

(cAmount, tID)) ^ detached(C,CT1, (cAmount, tID)),
tn(pay(cust,mer, cAmount, tID)),
pre(commitment(C,CT1, cust,mer) ^ var(C,CT1,

(cAmount, tID)) ^ detached(C,CT1, (cAmount, tID))),
tn(pay(cust,mer, cAmount/2, tID) ^ pay(cust,mer,

cAmount/2 + cAmount%2, tID))
pre(commitment(C,CT2,mer, cust) ^ var(C,CT2,

(cAmount, tID)) ^ detached(C,CT2, (cAmount, tID))),
tn(goods(mer, cust, tID))
pre(commitment(C,CT3,mer, cust) ^ var(C,CT3,

(tID)) ^ detached(C,CT2, (tID))),
tn(refundpaid(mer, cust, tID))i

hmethod(satisfy(C1, C2)),
pre(commitment(C1, CT1, cust,mer) ^ var(C1, CT1,

(c1Amount, t1ID)) ^ detached(C2, CT1, (c1Amount,

t1ID)) ^ commitment(C2, CT1, cust,mer) ^ var(C2,

CT1, (c2Amount, t2ID)) ^ detached(C2, CT1,

(c2Amount, t2ID)))
tn(paytogether(cust,mer, amount, t1ID, t2ID))i

hmethod(paytogether(cust,mer, amount, t1ID, t2ID)),
pre(commitment(C1, CT1, cust,mer)
^var(C1, CT1, (c1Amount, t1ID))
^detached(C2, CT1, (c1Amount, t1ID))
^commitment(C2, CT1, cust,mer)
^var(C2, CT1, (c2Amount, t2ID))
^detached(C2, CT1, (c2Amount, t2ID))
^(amount = c1Amount+ c2Amount))
tn(pay(cust,mer, c1Amount, t1ID)
^pay(cust,mer, (amount� c1Amount), t2ID))

hmethod(pay(cust,mer, amount, tID)),
pre(commitment(C,Ct, cust,mer) ^ var(C,Ct,

(cAmount, tID)) ^ paid(cust,mer, oldAmt, tID)),
tn(!updatepaid(cust,mer, (oldAmt+ amount), tID))
pre(commitment(C,Ct, cust,mer)
^var(C,Ct, (cAmount, tID)),
tn(!paid(cust,mer, amount, tID))i

hoperator !paid(cust,mer, amount, tID),
pre(agent(cust) ^ agent(mer)),
del(),add(paid(cust,mer, amount, tID))i

hoperator !updatepaid(cust,mer, amount, tID),
pre(agent(cust) ^ agent(mer)
^ paid(cust,mer, oldAmount, tID)),
del(paid(cust,mer, oldAmount, tID)),

add(paid(cust,mer, amount, tID))i

sition tree for consolidation, which shows that to achieve
its goals G1 and G2, the customer creates commitments
C1 and C4. The merchant detaches C1 and C4 by shipping
the goods (goods(123) and goods(456)) together using the
shiptogether method. The customer satisfies C1 and C4 by
making a consolidated payment of $300 to the merchant.
Table 6 shows the details of the paytogether method, which
splits the $300 into $100 and $200, and applies them to the
transactions 123 and 456.

Compensation. In this pattern, the merchant commits (C5)
to the customer to refunding the amount paid by the cus-
tomer if the customer returns the goods. Figure 6 illustrates

Domain Dependent Definitions

Table 2: Planning operators for commitment dynamics.
hoperator !create(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ null(C,Ct,

~

Cv)),
del(),add(var(C,Ct,

~

Cv))i
hoperator !suspend(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(pending(C,Ct,

~

Cv))i
hoperator !reactivate(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ pending(C,Ct,

~

Cv)),
del(pending(C,Ct,

~

Cv)),add()i
hoperator !expire(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^

conditional(C,Ct,

~

Cv) ^ timeout(C,Ct,

~

Cv)),
del(),add(expired(C,Ct,

~

Cv))i
hoperator !cancel(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(cancelled(C,Ct,

~

Cv))i
hoperator !release(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(released(C,Ct,

~

Cv))i

celled, released, or expired. A commitment is terminated if
it is released or it is cancelled when its antecedent is false. A
commitment is violated if it is cancelled when its antecedent
is true. A commitment is satisfied if it is not null and not ter-
minal, and its consequent (q) is true.

Finally, we encode the transitions from Figure 1 as the
planning operators in Table 2. For a commitment, the create
operator adds the var predicate if the commitment is null. If
a commitment is active, executing suspend adds the pend-
ing predicate. If a commitment is pending, executing reacti-
vate deletes the pending predicate. If a commitment is con-
ditional and a timeout has occurred, then executing expire
adds the expired predicate. If a commitment is active, exe-
cuting cancel adds the cancelled predicate. If a commitment
is active, executing release adds the released predicate.

Goal Dynamics
We represent a goal as a tuple hGt,X, Pg, S, F, ~Gvi, where:
Gt is the goal type; X is the agent that has the goal; Pg is
the goal precondition; S is the success condition; F is the
failure condition; and ~Gv is a list of variables identifying
specific instances of Gt. Similarly to commitments, the
number of variables for a commitment will be equivalent
to the sum of arities of all first-order predicates in Pg, S
and F . Likewise, for each goal G = hGt,X, Pg, S, F,Gvi,
where Pg is a formula $, S is a formula & , and F is a
formula # we define the following rules:

pg(G,Gt,

~

Gv) goal(G,Gt,X) ^$

s(G,Gt,

~

Gv) goal(G,Gt,X) ^ &

f (G,Gt,

~

Gv) goal(G,Gt,X) ^ #

Table 3 defines rules that compute a goal’s state following
Figure 2. Finally, Table 4 encodes the goal state transitions
from Figure 2 as planning operators. We omit their details
for brevity.

Table 3: Logical rules for goal dynamics.
null(G,Gt,

~

Gv) ¬var(G,Gt,

~

Gv)
inactiveG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬s(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
^ ¬activeG(G,Gt,

~

Gv)
activeG(G,Gt,

~

Gv) activatedG(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬satisfiedG(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
satisfiedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬terminal(G,Gt,

~

Gv) ^ pg(G,Gt,

~

Gv)
^ s(G,Gt,

~

Gv) ^ ¬f(G,Gt,

~

Gv)
f ailedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv) ^ f(G,Gt,

~

Gv)
terminatedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv))
terminalG(G,Gt,

~

Gv) goal(G,Gt,X)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv)

Formalizing the Patterns
This section applies our approach to capture the patterns
from the Technical Motivation section. Table 5 shows the
goals and commitments of a customer and a merchant. For
example, C1 is the customer’s commitment to the merchant
to paying if the merchant provides the goods. In C1, 123 is
the transaction identifier, and $100 is the payment amount.

Table 6 shows the methods that we employ in formaliz-
ing the patterns. For brevity, we only present a subset of the
methods and operators. The satisfy(C) method encodes the
plans for satisfying a commitment C. If C is of type CT1 and
is detached, then satisfy either invokes the pay method once
representing that the customer pays the entire amount to the
merchant, or invokes the pay method twice representing that
the customer pays the merchant in two installments. If C is
of type CT2 and is detached, then satisfy invokes the goods
method representing that the merchant provides the goods
to the customer. If C is of type CT3 and is detached, then
satisfy invokes refundpaid representing that the merchant
refunds the customer. The satisfy(C1, C2) method invokes
paytogether if commitments C1 and C2 are detached, and
paytogether invokes pay for C1 and C2. The pay method im-
plements the arithmetic to add up the payments for a trans-
action identifier. If the customer has paid an installment,
then the pay method invokes the updatepaid operator, which
deletes the previous paid predicate, and adds a paid predicate
with the new amount. Otherwise, the pay method invokes the
paid operator, which adds a paid predicate.

Note that our rules and operators from Tables 2–4 are
completely general, whereas the methods and operators
from Table 6 are specific to the patterns we present.

Piecemeal progress. Figure 3 shows an HTN decomposi-
tion tree for piecemeal progress. The customer creates C1 to
achieve its goal G1 (for clarity of presentation, we omit the
goal operations consider and activate in the HTN decom-
position trees). The merchant detaches C1 by sending the
goods. This presumes that merchant has a goal to get paid.
To satisfy C1, the customer needs to pay $100, which the

challenge is to capture different ways in which interaction
instances can (1) flexibly deviate from the initial specifica-
tion; (2) split off into two or more instances that together
accomplish the original interaction; (3) coalesce into larger
interactions. In particular, the above should be accomplished
in a modular manner, meaning that we should not have to
rewrite an interaction specification but should be able to
transform it in a systematic manner to produce the desired
interaction. Yolum and Singh (2002) introduced the idea of
digressions in protocols and Chopra and Singh (2006) intro-
duced the notion of protocol transformers, though both pa-
pers adopted propositional frameworks. Specifically, these
frameworks cannot encode domains containing the follow-
ing patterns of behavior.

Piecemeal progress. The customer may pay the merchant
in installments. The challenge to accommodate here is of
arithmetic: we would like to handle the situation that, for
example, a payment of $6 followed by a payment of $4 is
equivalent to a payment of $10. (Note that domain regula-
tions would determine whether payments may be split).

Concession. The merchant may balk at providing the goods
(or goods above a certain value) in advance of any payment.
Therefore, we might amend the protocol so that the customer
makes a partial deposit first, upon which the merchant deliv-
ers the goods, upon which the customer makes the remaining
payment. Unlike piecemeal progress, this scenario involves
altering the structure of the commitments involved: the mer-
chant is committing to providing the goods only upon re-
ceiving a deposit and the customer is committing to paying
the remaining amount upon receiving the goods. Concession
is loosely inspired by Yolum and Singh’s (2007) approach,
which deals with nesting commitments to reduce the appar-
ent risk to each party in a protocol.

Consolidation. If a customer places two purchase orders in
close succession, the merchant may ship both of the ordered
goods in the same package. Likewise, the customer may pay
for both orders via one check. This is a clear case of flexibil-
ity in enactment that multiagent protocols ought to support.
To realize it requires a richer representation wherein some
actions (e.g., delivery) may be associated with more than
one protocol instance.

Compensation. The customer may return goods to the mer-
chant and the merchant would issue a refund. The refund
should match the goods returned. This should result from
a straightforward application of the first-order representa-
tion. Additionally, the protocol should ordinarily ensure that
for piecemeal payments, only the amount received may be
refunded. Further, the protocol may build in some fraud-
resistant measures, such as that a prior refund disables a sub-
sequent refund or that the total amount refunded in succes-
sive protocol instances does not exceed some threshold.

Proposed Formal Framework
We now develop the logical rules, operators, and methods in
the HTN formalism that operationalize the goal and commit-
ment dynamics introduced above. Existing techniques show

Table 1: Logical rules for commitment dynamics
null(C,Ct,

~

Cv) ¬var(C,Ct,

~

Cv)
conditional(C,Ct,

~

Cv) active(C,Ct,

~

Cv)^¬p(C,Ct,

~

Cv)
detached(C,Ct,

~

Cv) active(C,Ct,

~

Cv) ^ p(C,Ct,

~

Cv)
active(C,Ct,

~

Cv) ¬null(C,Ct,

~

Cv)
^ ¬terminal(C,Ct,

~

Cv) ^ ¬pending(C,Ct,

~

Cv)
^ ¬satisfied(C,Ct,

~

Cv)
terminated(C,Ct,

~

Cv) released(C,Ct,

~

Cv)
_ (¬p(C,Ct,

~

Cv) ^ cancelled(C,Ct,

~

Cv))
v iolated(C,Ct,

~

Cv) p(C,Ct,

~

Cv) ^ cancelled(C,Ct,

~

Cv)
satisfied(C,Ct,

~

Cv) ¬null(C,Ct,

~

Cv)
^ ¬terminal(C,Ct,

~

Cv) ^ q(C,Ct,

~

Cv)
terminal(C,Ct) commitment(C,Ct,De, Cr) ^

(cancelled(C,Ct,

~

Cv) _ released(C,Ct,

~

Cv)
_ expired(C,Ct,

~

Cv))

that it is straightforward to convert operational business pro-
cess models into HTN (Pistore et al. 2005), as well as to
convert business process languages into planning operators
(Hoffmann, Weber, and Kraft 2010). Based on these, we
assume that a large part of the domain-specific knowledge
used in HTN encoding can be generated from the business
processes being validated.

Commitment Dynamics
A commitment is a tuple hCt,De,Cr, P,Q, ~Cvi, where: Ct
is the commitment type; De is the debtor of the commitment;
Cr is the creditor of the commitment; P is the antecedent;
Q is the consequent, both P and Q are existentially quan-
tified first-order formulas; and, ~Cv is a list [v1, . . . , vn] of
variables identifying specific instances of Ct. The first chal-
lenge in encoding commitments in a first-order setting is
in ensuring that the components of a commitment are con-
nected through their shared variables. In order to accom-
plish that, we model the entire set of variables of a partic-
ular commitment within one predicate. Thus, the number
of variables n for a commitment is equivalent to the sum
of arities of all first-order predicates in P , and Q, so if
P = pa0(~ta0) . . . pak(~tak) and Q = pc0(~tc0) . . . pck(~tck),
then n =

Pi=ck
i=a0 |~ti|. Thus, for each commitment C =

hCt,De,Cr, P,Q, ~Cvi, where P is a formula ' and Q is
a formula { we define the rules below:

p(C,Ct,

~

Cv) commitment(C,Ct,De, Cr) ^ '

q(C,Ct,

~

Cv) commitment(C,Ct,De, Cr) ^ {
Given these two basic formulas from the commitment tu-
ple, we define rules that compute a commitment’s state in
Table 1, which follow from Figure 1. The null state for a
commitment is “instance dependent”, as each commitment
has a number of possible instantiations, depending on the
variables of the antecedent. In order to accomplish this, each
commitment instance has an associated var predicate con-
taining the commitment type and the list of variables asso-
ciated to the instance. An active commitment is conditional
if its antecedent (p) is false, and is detached otherwise. A
commitment is active if it is not null, terminal, pending, or
satisfied. Note that terminal is a shortcut for the states can-

• Axioms plus Domain-dependent operators
• Commitment Axioms 
 

• Goal Axioms 
 

• Axioms Generated automatically using a compilation tool
• Plus any domain-specific operators (e.g. purchase, ship, etc)

achieveGoal(G1)

create(C2) satisfy(C2)detach(C2)

!paid(20, 123)

pay(20, 123) !goods(123)

create(C3) satisfy(C3)

!paid(80, 123)

pay(80, 123)

Patterns of Behavior
• Concession Pattern 

2 commitments
• C2 - merchant commits to delivering  

the goods upon a $20 payment from  
the customer

• C3 - customer commits to pay $80 upon receiving the goods
• By creating commitments C2 and C3, the customer has one

possible way of achieving its goal

Papers on Goals and Commitments

• MENEGUZZI, Felipe; TELANG, Pankaj and SINGH, Munindar P. A
First-Order Formalization of Commitments and Goals, In
Proceedings of the 27th AAAI Conference on Artificial Intelligence
(AAAI), Bellevue, WA, USA, 2013.

• TELANG, Pankaj; MENEGUZZI, Felipe and SINGH, Munindar P.
Hierarchical Planning about Goals and Commitments, In
Proceedings of the 12th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), Saint Paul, MN, USA, 2013.

An Application in Robotics

Jason

Cartago

ROS

Robot Hardware

Belief
Base

Plan
Library

ArtifactsArtifactsArtifacts
ROS

Artifacts

ROS Java ROS Topics

Sensors Actuators

JaCaROS
• Introduction of robotics abstractions

to the AgentSpeak(L) language

• Implementation in JaCa  
(Jason+Cartago)

• Low-level robotic control using
ROS

• Uses artifact abstraction for
robotic devices

• Implemented in simulation (Gazebo)
and in physical robot (Turtlebot)

Robot Videos

Questions?

