Robust Neuro-Symbolic Goal and Plan Recognition

Leonardo Amado, Ramon Fraga Pereira, and Felipe Meneguzzi

PUCRS (Brazil) - University of Manchester (England, UK)
Sapienza University of Rome (Italy) - University of Aberdeen (Scotland, UK)
Sleonardo.amado@edu.pucrs.br ⊠ramon.fragapereira@manchester.ac.uk
Selipe.meneguzzi@abdn.ac.uk

Motivation and Goals

- Recent approaches to goal and plan recognition have improved performance under partial and noisy observability, however, dealing with these problems remains a challenge.
- Recent work on goal and plan recognition use machine learning to assist planning-based approaches in modeling domains.
- We develop a novel approach to solve plan

Dealing with noise

• We create a mechanism to skip missing observations, allowing us to deal with noise.

recognition tasks by combining planning and machine learning techniques to mitigate problems of low and faulty observability.

Predictive Plan Recognition (PPR)

- We solve the plan recognition problem by computing a sequence of intermediary states achieved by a plan π .
- We develop an algorithm capable of rebuilding the sequence of states induced by a plan by iterating through the sequence of observations and filling in any gaps due to partial observability.

Figure 3: Performance of all approaches for each domain.

Conclusions and Future work

The main contributions of this paper are:

• A novel approach for plan recognition with very

Figure 1: PPR Overview.

Predictor functions

- We define 3 predictor functions to predict the most likely next state:
- 1. A ML approach using LSTMs (PPR^{σ}).
- 2. A purely symbolic function (PPR_h).
- 3. Finally, a *neuro-symbolic approach* (PPR_h^{σ})

high precision both in handcrafted and automatically generated domains.

- Our approach can recognize plans even when dealing with noisy observations, achieving high precision in noisy scenarios.
- Our framework allows the predictor function to be replaced, working as a black box.
 Furthermore, any predictor function can be applied, creating many potential applications for future work.