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Motivation and Goals

* Recent approaches to goal and plan recognition
have improved performance under partial and
noisy observability, however, dealing with these
problems remains a challenge.

e Recent work on goal and plan recognition use
machine learning to assist planning-based
approaches in modeling domains.

* We develop a novel approach to solve plan
recognition tasks by combining planning and
machine learning techniques to mitigate
problems of low and faulty observability.

Predictive Plan Recognition (PPR)

* We solve the plan recognition problem by
computing a sequence of intermediary states
achieved by a plan 7.

* We develop an algorithm capable of rebuilding
the sequence of states induced by a plan by
iterating through the sequence of observations

and filling 1in any gaps due to partial observability.
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Figure 1: PPR Overview.

Predictor functions

* We define 3 predictor functions to predict the
most likely next state:

1. A ML approach using LSTMs (PPR?).
2. A purely symbolic function (PPRy,).
3. Finally, a neuro-symbolic approach (PPR;)
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Dealing with noise

* We create a mechanism to skip missing
observations, allowing us to deal with noise.
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Figure 2: Dealing with noise.

Results
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Figure 3: Performance of all approaches for each domain.

Conclusions and Future work

The main contributions of this paper are:

* A novel approach for plan recognition with very
high precision both 1n handcratted and
automatically generated domains.

e OQur approach can recognize plans even when
dealing with noisy observations, achieving high
precision in noisy scenarios.

e Qur framework allows the predictor function to
be replaced, working as a black box.
Furthermore, any predictor function can be
applied, creating many potential applications for
future work.




