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INTRODUCTION



Background

Definition (Goal Recognition Task)
A goal recognition task M2 = (£,Z,G,Q) is a tuple composed of a domain
definition =, an initial state Z, a set of goal hypotheses G, and a sequence of

observations €.




Background

Goal/Plan Recognition problems have three key ingredients
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Background

Goal/Plan Recognition problems have four key ingredients
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Background

Goal/Plan Recognition problems have four key ingredients
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Background

Goal/Plan Recognition problems have four key ingredients
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Goal and plan recognition example

Definition (Goal and plan recognition problem)

We formally define a plan (alternatively goal) recognition problem ne
(alternatively M3) as tuple (Z,Z,G, Q), where = is a planning domain, Z is an
initial state, G is a set of goal hypotheses, which includes a correct goal G*

(unknown to the observer), and Q is a sequence of observations'

Planning Task [T Recognition Task II$!
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Recent approaches to goal and plan recognition improve performance under
partial and noisy observability:

However, dealing with these problems remains a challenge.?
Regardless of technique, the quality of the available observations directly
affects performance.
This work develops neuro-symbolic recognition approaches

Can combine learning and planning techniques
Thus compensating for noise and missing observations using prior data
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Contributions

We evaluate our approaches in standard human-designed planning domains
as well as domain models automatically learned from real-world data®
Our approach outperforms the baseline in both types of domains

Empirical experimentation shows that our approaches reliably infer goals and

compute correct plans in the experimental datasets.

Our overall framework is easily adaptable and extendable.




PPR



PPR Overview

We solve plan recognition by computing a sequence of intermediary states
achieved by a plan 7.

Our algorithm tries to rebuild the sequence of states induced by a plan:

1. iterating through the sequence of observations; and
2. filling in any gaps due to partial observability.

To compute the intermediary states, we use predictor functions.




PPR Overview
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Compute Sequence (Missing Observations)
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Compute Sequence

Algorithm 1: COMPUTESEQUENCE(Z, A, Q, G, \)

1S+ (I)

2 if Q| = G then Q«Qelse Q-G
3 predicted < 0

a for 0 in Q do

5 while =3¢ 4(0 =7(S|s|,a)) do

s’ «+ PREDICTNEXTS(A, S, G, 0)

S+ S8 ¢

predicted +=1

if G€ S or predicted > X\ then return S

© o N o

10 S+S-o
11 predicted < 0

12 return S
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Compute Sequence (Noisy Observations)
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Predictor functions

Given a sequence of states S, a predictor function should ideally compute the
probability P(s'| S) of all states in the state space 27 being the next successor
state ', thus selecting the most likely state arg maxy c,= |p(s'| S)|.

We develop and evaluate 3 predictor functions:
1. A machine learning approach using LSTMs to predict s' (PPR?).
2. A purely symbolic function leveraging planning heuristics (PPRy).

3. Finally, we combine both previous predictors functions to create a

neuro-symbolic approach (PPRY)
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Estimates the most likely next state using an LSTM, which receives a
sequence of states as input.

Network output is a set of facts (true or false) comprising an approximately
reconstructed state 3.

Since we have no guarantees that the reconstructed state is valid, we use 5
to discriminate the successor state.

Logically, the successor state must be achievable from the last state S| s of

the prior state sequence S.

13




PPR’ chooses the most likely goal candidate by:

computing the achievable states C from S| s using the planning domain; and

comparing the cosine distance of each achievable state s € C, selecting as s’
the state that is closer to the model’s prediction.

s’ = arg min|cos(bin(c), 3)| (1)
ceC

where bin(c) is a binary representation of a candidate state c.
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PPRy, predicts the most likely next state s’ using exclusively a heuristic
function h.

Again, we compute all achievable successor states C from the last state in
the sequence S.

Given all the achievable states C (candidate states), we apply a
domain-independent heuristic to evaluate which state in C is the most likely
next state.

15



To choose the most likely next state in C, we compute the mean hs of the
heuristic value h from each state s € C to the next observation o, and from
each state to the goal hypothesis G, as follows:

hs(s, 0, G) = (h(s, 0) + h(s, G))/2
Finally, we select the state s’ with the lowest hs value as the most likely

SUCCessor:

s = argmin|hs(c, o, G)|
ceC
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PPRy, combines the two previous predictor functions, using a machine
learning model and a planning heuristic.

This approach aims to combine the reconstruction of PPR? with the heuristic
distance between goal hypotheses and the next observation of PPRy,.
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Compute Sequence

Algorithm 2: PREDICTNEXTS(A, S, G, 0)

1 M < any model for p(f|S) /% e.g. an mNK/
2 ¥ «+ confidence of M

3 $< a state computed using M(S)

4 S S‘ S|

5 C+ {s'|s =~(s,a),for a€ A s.t. s k= pre(a)} /+ Canaidate next states.+/
6 for s € Cdo

7 | if distance(bin(s'),3) > ¥ then

8 L C+C-—¥

9 return arg min |hs(c, o, G)| /* s with max Lg.+/

ceC
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Discriminate the correct goal (plan)

First, we discard goal hypotheses that are not in the last state of their
predicted sequence.

Then, we rank the remaining goals based on their compliance with the set of
observations , i.e. |ScNQ|.

If there is a tie, we select the shortest sequence Sg, following the notion that

agents are at least approximately rational and prefer shorter plans.

Finally, if we still have a tie, we compare the cosine distance of the last state
of each computed sequence with its respective goal hypothesis.
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EXPERIMENTS AND RESULTS




We use 4 domains to evaluate our approach, two standard planning domains
and two image based domains.

1. Blocks,

2. Hanoi,

3. MNIST 8-Puzzle

4. Lights out




We use the 20 planning problems from each domain test dataset to generate
observation traces and create plan recognition problems.

We randomly remove observations from the test plans to obtain levels of
observability of 10%, 30%, 50%, and 70%, as well as full observability
(100%).

We compare the variations of PPR against two seminal plan recognition
approaches, RG2009 and RG2010.




Results under full observability
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Results with different types of observations

Mean precision for observability values
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CONCLUSION AND FUTURE WORK




Conclusion

The main contributions of this paper are:

A novel approach for plan recognition with very high precision both in
handcrafted and automatically generated domains.

Our approach can recognize plans even when dealing with noisy observations,
achieving high precision in noisy scenarios.

The predictor function can be replaced, working as a black-box. Any
predictor function can be applied, such as more complex machine learning
models or more sophisticated symbolic approaches.
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