Background

In this paper, we develop a framework that combines model-free reinforcement learning and goal recognition to alleviate the need for careful, manual domain design. and the need for costly online executions..

Goal Recognition as Reinforcement Learning

This approach consists of two main stages: * Stage 1 - For each $g \in G$, learn Q_a that represents the

desired behavior to accomplish g * Stage 2 - Infer the goal of the actor by computing Given an observation sequence $O = \langle s_0, a_0, s_1, a_1, ... \rangle$ find: $g^* = \operatorname{argmin} Distance(Q_{,,O})$

Goal Recognition as Q-Learning (GRAQL)

Stage 2 - Infer Stage 1 - Learn $\mathbb{T}_{O}(\mathcal{G})$ $\Rightarrow q^* \in G$ Tabular Q-learning MaxUtil. KL. DP $O = \langle s_0, a_0, s_1, a_1, \dots, s_k, a_k \rangle$ S А G

Learn using off-the-shelf Q-learning algorithms to get the Q-function, Q_{a} , for each $g \in G$.

Infer the goal of the actor by using a distance measure to compare each Q_{a} to the observation sequence. In this paper we discuss 3 measures: MaxUtil, KL-divergence, and Divergence Point (DP).

Empirical Results

We compared our recognizers to R&G [1] on 3 domains: Blocks, Hanoi, SkGrid, F-Score

0.8

0.6

04

0.2

Blocks

MaxUtil KL DP R&G

Hanoi

SkGrid

More results with partial observability and noise are in the paper!

Figure: F-score with full observability and no noise. KL measure outperforms all other approaches.

Goal Recognition as Reinforcement Learning

Leonardo Rosa Amado, Reuth Mirsky, Felipe Meneguzzi

<u>Key takeaway</u>: we're replacing the expert model in goal recognition with reinforcement learning

https://grco.de/bcj1g0

Goal Recognition problem

