Goal Recognition as Reinforcement Learning J

Leonardo Amado!, Reuth Mirsky, 23, Felipe Meneguzzi 4
! Pontificia Universidade Catélica do Rio Grande do Sul, Brazil
2 Bar llan University, Israel
% The University of Texas at Austin, USA
* University of Aberdeen, Scotland

March 16, 2022

9 TEXAS Bar-Ilan NA. @

University

PUC ABERDEEN

Leonardo Amadol, Reuth Mirsky, 2’3, Felipe Meneguz Goal Recognition as Reinforcement Learning "March 16, 2022 : 1/25



Motivation

o Goal recognition (GR) is the task of inferring the goal of an actor based on a
sequence of observations.
i.e., the goal that best explains a sequence of observations of its actions
o Related to plan recognition, i.e. recognizing a top-level action
o A specific form of the problem of abduction

0
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o Most GR approaches rely on specifications of the environment dynamics
o There are several limitations to this process:

o Cost of Domain Description.
o Susceptibility to Noise.
o Online Costs.
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Approach

o We develop a set of RL-based approaches to address these limitations

o We replace manually crafted representations with model-free Reinforcement Learning
(RL) techniques.

o The resulting approaches perform efficient and noise-resistant GR without the need
to craft a domain model.
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Contributions

o Our contributions are threefold:

@ We revisit the GR problem definition to accommodate RL-based domains;
@ A first instance of the formulation of GR as RL;

@ We evaluate the resulting techniques on domains with partial and noisy observability.
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Goal recognition example

Definition (Goal recognition problem)

Given a domain theory To(G) or Tx(G) and a sequence of observations O, output a goal

g € G that explains O.°

?Ramirez and Geffner, “Plan recognition as planning”.

Goal Recognition problem

Candidate goals Observations O

g1 g2

-

A

g3 >

Leonardo Amadol, Reuth Mirsky, 2'3, Felipe Meneguz Goal Recognition as Reinforcement Learning

TEXAS

Bar-llan NA !é

University

"March 16, 2022

PUC RBERDEEN

" 5/25



The role of Reinforcement Learning in Goal Recognition

o Traditional goal recognition often assumes a deterministic environment
o Nevertheless, some approaches do allow for stochastic environments (MDPs)
o Much harder to model stochastic environments by hand

o Reinforcement learning algorithms allow us to build informative functions describing

a agent's preferences
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Domain Theories

Definition (Utility-based Domain Theory)

A utility-based domain theory To(G) is a tuple (S,.A, Q) such that Q is a set of
Q-functions { Qg }gcg.

Definition (Policy-based Domain Theory)

A policy-based domain theory T (G) is a tuple (S, .4, M) such that I is a set of policies
{me}eeq.
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Goal Recognition Problem (new)

Definition (Goal Recognition Problem)

Given a domain theory To(G) or Tx(G) and a sequence of observations O, output a goal
g € G that explains O.
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GR as RL framework

Stage 1 — Learn

Tabular Q-learning

T t1
S A G
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Stage 2 — Infer

MaxUtil, KL, DP

i}

—> 9" €g§

0=<5p,0a9,51, A1, -, Sk, A >

TEXAS

Goal Recognition as Reinforcement Learning

Bar-llan NA éjl

University

PUCKS  ABERDEEN

"March 16, 2022 " 9/25



GR as RL example

Goal Recognition as Reinforcement Learning
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GR as RL example

Goal Recognition as Reinforcement Learning
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GR as RL example

Goal Recognition as Reinforcement Learning
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GRAQL - Learning stage

Here we provide a first implementation for this framework, called GRAQL.
o We use a standard tabular Q-learning algorithm
o Our goal is to learn informative domain theory with minimal effort.
o Reward for reaching the goal is 100, and O otherwise, and the discount factor is 0.9.

o Exploration is e-greedy with linearly decaying values.
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GRAQL - Learning stage

Shaping the initial policy can speed up the learning process: for each goal g, an optimal
planner generates a single trajectory to the goal.

o Positive values for state-action pairs that are part of its goal’s optimal path p,.
o Similar to the original formulation of planning-based GR of Ramirez and Geffner.

o We don't use reward shaping for the results of this work.
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GRAQL - Inference stage

Three distinct distance metrics inspired by three common RL measures:
@ MaxUtil,
@ KL-divergence,
@ Divergence Point.

Using these metrics, goal recognition reduces to the finding the minimal distance between
actual observations Q and the observations expected from the value/policy functions of
each goal.

g « argmin DISTANCE(Qg, O)
g€y
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GRAQL - Inference stage - MaxUtil

MaxUtil is an accumulation of the utilities collected from the observed trajectory.

MaxUtil(Qg, 0) = > Qq(si, a) (1)

iclo|
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GRAQL - Inference stage - KL-Divergence

KL-Divergence is a measure for the distance between two distributions, so we construct
two policies, m; and mo for Q; and O respectively.

KL(Qg, O) = Dxw(g || m0) =
S mg(ar | 57)log ~el15) o)

% oo [)
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GRAQL - Inference stage - Divergence Point

Divergence Point (DP) is a measure® of, given a trajectory O and a policy 7, what is
the minimal point in time in which the action taken by O has zero probability to be
chosen by .

DP(Qg,0) = —min{t | mg(ac—1 | 5t—1) < 0} (3)

Bar- Ilan
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MaxUtil Example
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MaxUtil Example
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MaxUtil Example
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MaxUtil Example
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Experiments

We use three domains from the PDDLGym library for their similarity with commonly used
GR evaluation domains:

@ Blocks,
@ Hanoi,

@ SkGrid (highly resembles common GR navigation domains with obstacles)
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Experiments

o For each domain, we generate 10 GR problems with 4 candidate goals. We manually
choose ambiguous goals.

o Each problem has 7 variants, including partial and noisy observations. We have 5
variants with varying degrees of observability (10%, 30%, 50%, 70%, and full
observability), and 2 variants that include noise observations with varying degrees of
observability (50% and full observability).

o Our test set includes 210 GR problems, which we compare with R&G2.

. & &
s i NY 3

PUC

2Ramirez and Geffner, “Plan recognition as planning”.

Leonardo Amadol, Reuth Mirsky, 2’3. Felipe Meneguz Goal Recognition as Reinforcement Learning "March 16, 2022 : 19/25



Bar-llan N 4 5
Universit o
N unu-mmx V Aoy
«O> «Fr < « = a

Accuracy
m MaxUtil KL =DP =R&G

F-Score
mMaxUtil mKL mDP ®R&G
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
Blocks Hanoi SkGrid Blocks Hanoi SkGrid
Precision Recall
= MaxUtil @KL ®DP =R&G mMaxUtil mKL mDP ®R&G
1 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 I 0.2
0 0
Blocks Hanoi SkGrid Blocks Hanoi SkGrid

[ § (€




Results with different types of observations

Accuracy F-Score
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Snapshot of noisy results.
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Accuracy Precision

OBS Domain MaxUtil KL Div DP R&G MaxUtil KL Div DP R&G
Blocks 0.95 0.62 0.93 0.84 0.95 0.33 0.77 0.56

50% Hanoi 0.97 0.90 0.93 0.68 0.91 0.80 0.77 0.38
SkGrid 0.75 0.75 0.57 0.88 0.50 0.50 0.35 0.64

Blocks 1.00 1.00 0.95 0.96 1.00 1.00 0.83 0.83

100% Hanoi 1.00 0.95 0.90 0.78 1.00 0.90 0.71 0.48
SkGrid 0.85 0.95 0.65 0.90 0.70 0.90 0.40 0.69

Blocks 0.97 0.81 0.94 0.90 0.97 0.60 0.80 0.70

Avg Hanoi 0.99 0.93 0.91 0.73 0.95 0.85 0.74 0.43
SkGrid 0.80 0.85 0.61 0.89 0.60 0.70 0.37 0.67
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Related Work

o Learning action models from data: Amir and Chang 2008%; Amado et al. 2019*;
Asai and Muise 2020°; Juba, Le, and Stern 2021°

o Inverse reinforcement learning (IRL): Zeng et al 2018".
o Other metric-based GR: Masters and Sardina 2017%; Mirsky et al. 2019°

3 Amir and Chang, “Learning partially observable deterministic action models”.
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Conclusion

o Our work paves the way for a new class of GR approaches based on model-free
reinforcement learning.

o Future work: more robust distance measures; function approximation models e.g.,
neural networks).
Note that all operations in the distance metrics apply to function approximation
models

o While our work is theoretically compatible with non-tabular representations of the
value functions, we chose to focus our experiments on domains that are translatable
to PDDL.

o We plan to extend this work to image-based domains rather than PDDL-based ones.
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Thank you!
Questions?
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