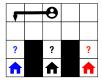
Goal Recognition as Reinforcement Learning

Leonardo Amado¹, Reuth Mirsky, ^{2,3}, Felipe Meneguzzi ⁴ ¹ Pontifícia Universidade Católica do Rio Grande do Sul, Brazil ² Bar Ilan University, Israel ³ The University of Texas at Austin, USA ⁴ University of Aberdeen, Scotland

March 16, 2022

Motivation

- Goal recognition (GR) is the task of inferring the goal of an actor based on a sequence of observations.
 - i.e., the goal that best explains a sequence of observations of its actions
 - Related to plan recognition, i.e. recognizing a top-level action
 - A specific form of the problem of abduction



- Most GR approaches rely on specifications of the environment dynamics
- There are several limitations to this process:
 - Cost of Domain Description.
 - Susceptibility to Noise.
 - Online Costs.

Approach

- We develop a set of RL-based approaches to address these limitations
- We replace manually crafted representations with model-free Reinforcement Learning (RL) techniques.
- The resulting approaches perform efficient and noise-resistant GR without the need to craft a domain model.

3/25

Contributions

- Our contributions are threefold:
 - We revisit the GR problem definition to accommodate RL-based domains;
 - A first instance of the formulation of GR as RL;
 - We evaluate the resulting techniques on domains with partial and noisy observability.

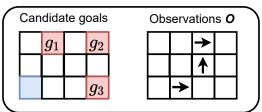
Goal recognition example

Definition (Goal recognition problem)

Given a domain theory $\mathbb{T}_Q(\mathcal{G})$ or $\mathbb{T}_\pi(\mathcal{G})$ and a sequence of observations O, output a goal $g \in \mathcal{G}$ that explains O.

^aRamírez and Geffner, "Plan recognition as planning".

Goal Recognition problem



The role of Reinforcement Learning in Goal Recognition

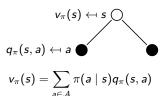
- Traditional goal recognition often assumes a deterministic environment
- Nevertheless, some approaches do allow for stochastic environments (MDPs)
 - Much harder to model stochastic environments by hand
- Reinforcement learning algorithms allow us to build informative functions describing a agent's preferences

	Input	Output
GR	\mathbb{T} , \mathcal{G} , \boldsymbol{O} ,	$g\in \mathcal{G}$
Solve MDP	M = (S, A, p, r)	$\pi(a \mid s)$
Model-free RL	\mathcal{S},\mathcal{A}	Q, Q(s, a)

The role of Reinforcement Learning in Goal Recognition

- Traditional goal recognition often assumes a deterministic environment
- Nevertheless, some approaches do allow for stochastic environments (MDPs)
 - Much harder to model stochastic environments by hand
- Reinforcement learning algorithms allow us to build informative functions describing a agent's preferences

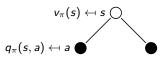
	Input	Output
GR	\mathbb{T} , \mathcal{G} , O ,	${\sf g}\in {\cal G}$
Solve MDP	M = (S, A, p, r)	$\pi(a \mid s)$
Model-free RL	\mathcal{S}, \mathcal{A}	Q, Q(s, a)



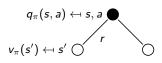
The role of Reinforcement Learning in Goal Recognition

- Traditional goal recognition often assumes a deterministic environment
- Nevertheless, some approaches do allow for stochastic environments (MDPs)
 - Much harder to model stochastic environments by hand
- Reinforcement learning algorithms allow us to build informative functions describing a agent's preferences

	Input	Output
GR	\mathbb{T} , \mathcal{G} , \boldsymbol{O} ,	$g\in \mathcal{G}$
Solve MDP	M = (S, A, p, r)	$\pi(a \mid s)$
Model-free RL	\mathcal{S},\mathcal{A}	Q, Q(s, a)



$$v_{\pi}(s) = \sum_{a \in \mathcal{A}} \pi(a \mid s) q_{\pi}(s, a)$$



$$q_{\pi}(s,a) = \mathcal{R}_{s}^{a} + \gamma \sum_{'s,s'} \mathcal{P}_{ss'}^{a} v_{\pi}(s')$$

Domain Theories

Definition (Utility-based Domain Theory)

A utility-based domain theory $\mathbb{T}_Q(\mathcal{G})$ is a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{Q})$ such that \mathcal{Q} is a set of Q-functions $\{Q_g\}_{g \in \mathcal{G}}$.

Definition (Policy-based Domain Theory)

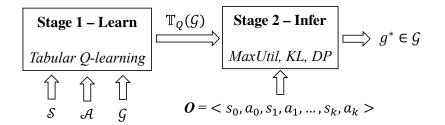
A policy-based domain theory $\mathbb{T}_{\pi}(\mathcal{G})$ is a tuple $(\mathcal{S}, \mathcal{A}, \Pi)$ such that Π is a set of policies $\{\pi_g\}_{g\in\mathcal{G}}$.

Goal Recognition Problem (new)

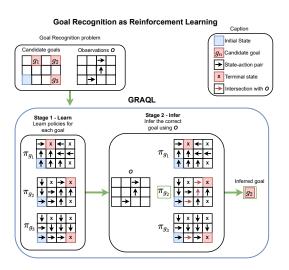
Definition (Goal Recognition Problem)

Given a domain theory $\mathbb{T}_Q(\mathcal{G})$ or $\mathbb{T}_{\pi}(\mathcal{G})$ and a sequence of observations O, output a goal $g \in \mathcal{G}$ that **explains** O.

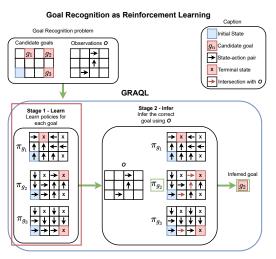
GR as RL framework



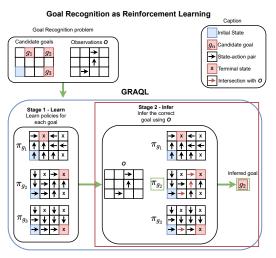
GR as RL example



GR as RL example



GR as RL example



GRAQL - Learning stage

Here we provide a first implementation for this framework, called GRAQL.

- We use a standard tabular Q-learning algorithm
- Our goal is to learn informative domain theory with minimal effort.
- Reward for reaching the goal is 100, and 0 otherwise, and the discount factor is 0.9.
- Exploration is ϵ -greedy with linearly decaying values.

GRAQL - Learning stage

Shaping the initial policy can speed up the learning process: for each goal g, an optimal planner generates a single trajectory to the goal.

- Positive values for state-action pairs that are part of its goal's optimal path p_g .
- Similar to the original formulation of planning-based GR of Ramirez and Geffner.
- We don't use reward shaping for the results of this work.

GRAQL - Inference stage

Three distinct *distance* metrics inspired by three common RL measures:

- MaxUtil,
- KL-divergence,
- Divergence Point.

Using these metrics, goal recognition reduces to the finding the minimal distance between actual observations Ω and the observations expected from the value/policy functions of each goal.

$$g^* \leftarrow \operatorname*{arg\;min} \operatorname{DISTANCE}(Q_g, O)$$

GRAQL - Inference stage - MaxUtil

MaxUtil is an accumulation of the utilities collected from the observed trajectory.

$$MaxUtil(Q_g, O) = \sum_{i \in O} Q_g(s_i, a_i)$$
 (1)

GRAQL - Inference stage - KL-Divergence

KL-Divergence is a measure for the distance between two distributions, so we construct two policies, π_g and π_O for Q_g and O respectively.

$$KL(Q_g, O) = D_{KL}(\pi_g \mid\mid \pi_O) = \sum_{i \in |O|} \pi_g(a_i \mid s_i) \log \frac{\pi_g(a_i \mid s_i)}{\pi_O(a_i \mid s_i)}$$
(2)

GRAQL - Inference stage - Divergence Point

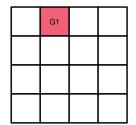
Divergence Point (DP) is a measure of, given a trajectory O and a policy π , what is the minimal point in time in which the action taken by O has zero probability to be chosen by π .

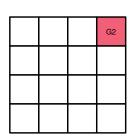
$$DP(Q_g, O) = -\min\{t \mid \pi_g(a_{t-1} \mid s_{t-1}) \le \delta\}$$
(3)

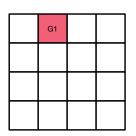
Leonardo Amado¹, Reuth Mirsky, ^{2,3}, Felipe Meneguz Goal Recognition as Reinforcement Learning

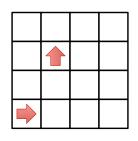
¹Adapted from (Macke, Mirsky, and Stone, "Expected Value of Communication for Planning in Additional Teamwork")

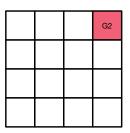
Bar-Ilan Inversity in Additional Teamwork (Macke, Mirsky, and Stone, "Expected Value of Communication for Planning in Additional Teamwork")

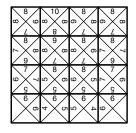


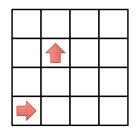


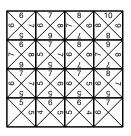


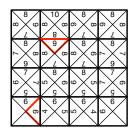




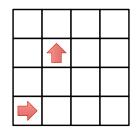


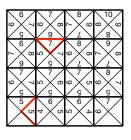






 $MaxUtil(Q_{g1}, \mathbf{O}) = 15$





 $MaxUtil(Q_{g2}, O) = 12$

Experiments

We use three domains from the PDDLGym library for their similarity with commonly used GR evaluation domains:

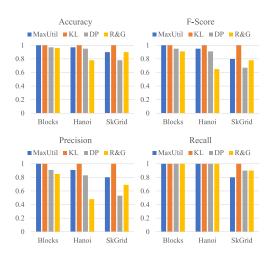
- Blocks,
- ② Hanoi,
- SkGrid (highly resembles common GR navigation domains with obstacles)

Experiments

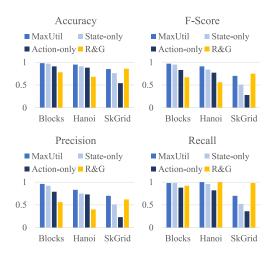
- For each domain, we generate 10 GR problems with 4 candidate goals. We manually choose ambiguous goals.
- Each problem has 7 variants, including partial and noisy observations. We have 5 variants with varying degrees of observability (10%, 30%, 50%, 70%, and full observability), and 2 variants that include noise observations with varying degrees of observability (50% and full observability).
- Our test set includes 210 GR problems, which we compare with R&G².

²Ramírez and Geffner, "Plan recognition as planning".

Results regarding full observability



Results with different types of observations



Snapshot of noisy results.

		Accuracy			Precision				
OBS	Domain	MaxUtil	KL Div	DP	R&G	MaxUtil	KL Div	DP	R&G
50%	Blocks	0.95	0.62	0.93	0.84	0.95	0.33	0.77	0.56
	Hanoi	0.97	0.90	0.93	0.68	0.91	0.80	0.77	0.38
	SkGrid	0.75	0.75	0.57	0.88	0.50	0.50	0.35	0.64
100%	Blocks	1.00	1.00	0.95	0.96	1.00	1.00	0.83	0.83
	Hanoi	1.00	0.95	0.90	0.78	1.00	0.90	0.71	0.48
	SkGrid	0.85	0.95	0.65	0.90	0.70	0.90	0.40	0.69
Avg	Blocks	0.97	0.81	0.94	0.90	0.97	0.60	0.80	0.70
	Hanoi	0.99	0.93	0.91	0.73	0.95	0.85	0.74	0.43
	SkGrid	0.80	0.85	0.61	0.89	0.60	0.70	0.37	0.67

Related Work

- Learning action models from data: Amir and Chang 2008³; Amado et al. 2019⁴; Asai and Muise 2020⁵: Juba. Le. and Stern 2021⁶
- Inverse reinforcement learning (IRL): Zeng et al 2018⁷.
- Other metric-based GR: Masters and Sardina 20178: Mirsky et al. 20199

23 / 25

³Amir and Chang, "Learning partially observable deterministic action models".

⁴Amado et al., "Goal recognition in latent space".

⁵Asai and Muise, "Learning Neural-Symbolic Descriptive Planning Models via Cube-Space Priors: The Vovage Home (to STRIPS)".

⁶Juba, Le, and Stern, "Safe Learning of Lifted Action Models".

⁷Zeng et al., "Inverse Reinforcement Learning Based Human Behavior Modeling for Goal Recognition in Dynamic Local Network Interdiction."

⁸Masters and Sardina, "Cost-based goal recognition for path-planning".

Conclusion

- Our work paves the way for a new class of GR approaches based on model-free reinforcement learning.
- Future work: more robust distance measures; function approximation models e.g., neural networks).
 - Note that all operations in the distance metrics apply to function approximation models
- While our work is theoretically compatible with non-tabular representations of the value functions, we chose to focus our experiments on domains that are translatable to PDDL.
- We plan to extend this work to image-based domains rather than PDDL-based ones.

Thank you! Questions?

