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ABSTRACT

Developing autonomous agents to deal with real-world problems
is challenging, especially when developers are not necessarily spe-
cialists in artificial intelligence. This poses two key challenges re-
garding the interface of the programming with the developer, and
the efficiency of the resulting agents. In this paper we tackle both
challenges in an efficient agent architecture that leverages recent
developments in natural language processing, and the intuitive
folk psychology abstraction of the beliefs, desires, intentions (BDI)
architecture. The resulting architecture uses existing reinforcement
learning techniques to bootstrap the agent’s reasoning capabilities
while allowing a developer to instruct the agent more directly us-
ing natural language as its programming interface. We empirically
show the efficiency gains of natural language plans over a pure
machine learning approach in the ScienceWorld environment.
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1 INTRODUCTION

The increasing adoption of Artificial Intelligence (AI) algorithms
in human-facing applications creates two key problems in the de-
velopment of the autonomous agents that interact with humans
in such applications. First, agents must understand commands and
respond to them in a human-understandable way. Second, agent
developers must be able to ensure the responses generated by such
agents are appropriate, regardless of the availability of training
data to drive agent behaviour. Specifically, modern AI applications
communicate to a certain degree with humans in their language in
order to support their daily tasks. Such agents process the natural

Where Prof. Meneguzzi holds a Bridges Professorship.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

language information provided by humans to make their own deci-
sions, which can yield a natural language response or an execution
of sequential steps (e.g., plans). To ensure safety and avoid unin-
tended behaviour from such applications, a scrutable mental model
is essential for an autonomous agent to provide the transparency
of the agent’s behaviour and explain its decisions [26].

Handling natural language is crucial for autonomous agents
to communicate and cooperate with humans. An agent should
reason over the natural language information to understand the
circumstances of human problems and take an action that should be
discernible to humans in order to support them. Processing human
language is a complex task for computers since information encoded
by natural language is unstructured and prone to ambiguity [16].
Recent deep learning approaches for natural language processing,
such as Pre-Trained Language Models (PTLM), achieve very high
accuracy in text classification and generation tasks [27]. However,
approaches that rely exclusively on a single PTLM have limitations
in reasoning tasks such as common-sense planning [33] and logical
consistency [24] over natural language information. In fact, the
PTLM reasoning process is opaque [30] since such approaches
rely entirely on black-box models, and hence, understanding the
agent’s decisions remains a difficult task. An explicit mental model
representation that describes the agent behaviour is essential to
understanding such reasoning limitations and dealing with them.

Traditional approaches to AI often model decision-making by
borrowing terminology from folk psychology, which describes hu-
man mental attitudes to implement rational agents. The Belief-
Desire-Intention (BDI) model [7, 12] introduces a conceptual frame-
work to implement autonomous agents composed of beliefs, de-
sires, and intentions. We argue that incorporating plans designed
by humans is instrumental for the development of more control-
lable autonomous agents, instructing them to avoid unintended
behaviour. Natural language plans allow humans to explicitly in-
corporate prior information which, in contrast to pure machine
learning agent approaches, does not necessarily need to retrain the
agent or adjust training data. Instructing the sequence of steps for
an agent to perform a task does not require a training phase where
the agent needs to explore or exploit states in the environment (e.g.,
𝜖-greedy reinforcement learning algorithms [5]). Instead, the agent
can simply executes predefined plans supplied by a human.

This paper introduces NatBDI, a new class of agent architec-
ture that uses the BDI reasoning cycle with components driven by
natural language processing. We leverage the advantages of mod-
ern machine learning models in natural language (e.g., pretrained
language models) by using them as black-box components within
the BDI model. Our contributions are threefold. First, we describe
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the unstructured data from observations of human activities as
agent’s beliefs written in natural language and generate the natural
language plan library of the agent. Second, we develop an agent
interpreter following the BDI mental model that uses natural lan-
guage information in its reasoning back-end. This back-end uses
natural language inference to find the entailment relations between
the belief base and the context of the plans in the plan library
during plan selection. Finally, we rely on a fallback policy using
black-box reinforcement learning architectures to help our agents
to act autonomously in cases where the plan-selection mechanism
finds no candidate (i.e., applicable) plans. We use simulated textual
environments from ScienceWorld [34] to validate and evaluate the
natural language understanding and decision-making capabilities
of NatBDI. Our results indicate that even adding a small amount
of natural language plans when combined with the modified BDI
reasoning cycle for natural language environments can dramati-
cally increase the reasoning performance of the agent over pure
machine learning agents.

2 BACKGROUND

This section briefly introduces the necessary background on the
topics used in our approach. We start with an overview of how the
BDI model works and define a simple BDI agent interpreter. Then,
we discuss natural language inference and its relevance in defining
entailment relations, a crucial feature used in our approach to allow
BDI agents to operate in natural language environments. Finally, we
describe the ScienceWorld benchmark environment, which we use
as an example throughout the paper as well as in the experiments.

2.1 BDI Model

The BDI model is a framework to develop autonomous rational
agents in terms of components that correspond to mental atti-
tudes [12]. Inspired by Bratman’s philosophical work [6], the BDI
framework introduces a practical reasoning approach that consists
of three basic mental attitudes: beliefs, desires, and intentions. Be-
liefs represent the information about the environment according
to the agent’s perceptions, which describe its current state. During
the agent execution, the agent observes events from the environ-
ment and might include new beliefs or update the existing ones
in a belief base data structure. Desires represent states of affairs
that the agent aims to achieve to satisfy its design goals. Intentions
represent the agent’s commitment to achieve a specific subset of
its desires, acting as a filter for the agent’s reasoning to account
for practical decision-making made by agents with physical limits
to its computing power. As such, it serves not only as a concrete
explanation for how real humans (with limited brain power) make
decisions, but also as an overall blueprint to design computational
agents running with the limitations of a physical computer. The
intention component is a structure that often consists of a set of
instantiated plans adopted by the agent in order to achieve a subset
of its desires. Such plans are a sequence of steps that the agent
executes to achieve a specific desire. Most practical agent archi-
tectures use a plan library that includes either full plans available
to the agent, or planning rules that allow the agent to generate
plans during runtime [29]. The BDI model is arguably the most

Algorithm 1 A simple BDI Agent Interpreter.

1: procedure agentInterpreter(E,B,L,I)
2: while 𝑡𝑟𝑢𝑒 do

3: E ← updateEvents(E)
4: B ← updateBeliefs(E,B)
5: I ← selectPlans(E,B,L,I)
6: E ← executeIntention(I, E)

widely used model to implement rule-based autonomous agents in
the agent-oriented programming paradigm [8].

Implementations of the BDI architecture often encode the agent’s
behaviour as plan-rules to instruct it on achieving particular (im-
plicit) goals given specific context conditions [23]. In this context,
plans represent a sequence of actions the agent should perform
given a set of conditions (i.e., the context of the plan) entailed by
the agent’s belief base, which are usually developed manually by
humans. Such terminology is useful in developing and debugging
autonomous agents in a variety of domains [25] since this architec-
ture describes information about the agent’s beliefs. Algorithm 1
illustrates a simple reasoning cycle for a BDI agent interpreter [12]
that includes four steps. Line 3 collects the events the agent ob-
serves from the environment. The agent uses these events to update
its beliefs in Line 4. Given changes in its belief base, the agent pro-
ceeds to select plans in Line 5 from its plan library based on the
current events, beliefs, and intentions. Plan selection also includes
instantiation of intention structures that help the agent keep track
of its progress. Finally, in Line 6 the agent executes intentions by
selecting one of the instantiated intentions and executing the associ-
ated actions in the environment, which then leads to the generation
of new events, closing the agent-environment loop.

2.2 Natural Language Inference

Automated reasoning and inference are essential topics in AI in gen-
eral, and in autonomous agents in particular [11]. Natural Language
Inference (NLI) is a widely-studied natural language processing
task that is concerned with determining the inferential relation
between a premise p and a hypothesis h [21]. In NLI, both p and h
are sentences written in natural language. The challenge of this task
differs from formal deduction in logic since natural language deals
with informal reasoning [21]. The emphasis of NLI is on aspects of
natural language such as lexical semantic knowledge and dealing
with the variability of linguistic expression. Unlike the crisp rela-
tions between logical sentences in formal logic, NLI can define the
logical relation in multiple ways: entailment, neutral and contra-
diction. Given a pair of premise-hypothesis p and h, the entailment
relation occurs when h can be inferred from p [21]. When h infers
the negation of p, the pair results in a contradiction. Otherwise, if
none of these relations can be inferred, the relation of p and h is
neutral. In this paper, NLI serves as the critical connection between
the traditionally logic-based machinery of the BDI model and the
unstructured and often ambiguous world of natural language data.

Given the premise sentence “Several airlines polled saw costs
growmore than expected, even after adjusting for inflation” and the
hypothesis “Some companies in the poll reported cost increases” In
the NLI context, this example is a valid entailment inference because



any person that interprets p would likely accept that h implies in
the information of p. Even though it is a valid NLI classification,
h is not a strict logical consequence of p due to the fact that p
informs that airline companies saw the growth of the cost, not
necessarily reporting the growth of the cost. This example reflects
the informal reasoning of the task definition which relates to the
ambiguity found in natural language [21].

2.3 ScienceWorld Text Environment

ScienceWorld is an interactive textual environment that simulates
engines for thermodynamics, electrical circuits, matter and chem-
istry reactions, and biological processes at the level of a standard
elementary school science curriculum [34]. Such challenge aims to
evaluate the agent’s reasoning about transitioning between loca-
tions and object interaction. It also aims to test the agent’s under-
standing about combining distinct objects considering their state
of matter. Current Large Language Models (LLM) can produce re-
sponses in question answering tasks as an information-retrieval
system. However, Wang et al. [34] show that they still have limi-
tations regarding reasoning about scientific knowledge to act or
to plan to solve a task. The ScienceWorld environment evaluates
the agent’s capacity to use declarative scientific knowledge to act
or plan in order to solve tasks that humans can perform with ease
(e.g., melting ice). It includes 30 benchmarks that are split into 10
topics such as the change of state (boiling, melting, freezing), taking
measurements (thermometer, boiling point), classification (find a
non-living thing, find a plant), etc. For example, in changing matter
state, one of the benchmarks is about boiling. In order to boil the
water, the agent should walk around the map to find a metal pot,
search for water, and use a stove. Here, the agent should use prior
knowledge about an object’s state to choose a metallic cup instead
of a wooden one since it will contact fire. Furthermore, the agent
should use the thermometer object to be aware of the boiling point
of water since waiting too long can turn the water into vapour.

3 AGENT ARCHITECTURE OVERVIEW

This section describes theNatBDI architecture for natural language
environments. We focus on the three key components of the BDI
architecture and how we link them to a knowledge representation
using pretrained language models. Section 3.1 describes a novel rea-
soning cycle to select and execute plans written in natural language
using NLI to connect plan descriptions to the knowledge stored in
the belief base. Section 3.2 describes belief formulation from natural
language observations. Key to the operation of NatBDI is the way
in which a designer writes plans in natural language for NatBDI’s
plan library, which we describe in Section 3.3. Finally, we describe
a fallback mechanism in Section 3.5 that allows an agent to select
plans when the plan library fails to provide applicable plans.

3.1 Reasoning Cycle

At each interaction with the environment, the agent perceives
the state as a natural language description of the agent’s current
location. The agent stores such natural language descriptions of the
environment in its belief base, which it then uses to make inferences
over its course of action. Once the agent updates its belief base, it
selects plans from its plan library, which can generate plans in one

of two ways. Either the plan library contains human-designed plans
to react to new perceptions, which we call plan-rules, or the agent
resorts to fallback plans that the agent learns using reinforcement
learning. Plan-rules react to user-defined context conditions that the
agent checks using natural language inference. Figure 1 summarises
the components of the agent reasoning cycle and their interaction.

We leverage the BDI event-driven approach to develop our agent
reasoning cycle organised in the following steps. First, the agent
receives the task description representing the main goal similar to
the goal-addition event. Second, the agent then search in its plan
library a plan that has the received goal as the triggering event and
compares whether the current belief base entails the plan context.
In this phase, the agent retrieves plan options from the plan library
based on its current belief base. Given a plan selected by the agent,
the interpreter analyses the steps contained in the plan body, which
can be another goal-addition event or an action to be executed. In
cases where no candidate plan is available, or the agent did not
achieve the main goal, the reasoning cycle generates a failure in the
decomposition process. Finally, at the end of the loop in Algorithm 1,
if such execution returns a failure to the main reasoning cycle, the
agent then starts to use fallback plans to attempt to deal with the
failure.

3.2 Belief Base

Our approach to represent the natural language belief base fol-
lows the traditional BDI model, which organises the information
perceived into literals in its mental model, except that our agent
receives observations written in natural language instead of sym-
bols. Since the belief base comprises simple sentences in natural
language, it helps humans scrutinise the agent’s mental state and
understand the behaviour of the agent.

In our work, the agent maintains its belief base as a list of natural
language sentences describing its observations about the current
environment state. Observations consist of perceptions from the en-
vironment described in natural language. Specifically, our approach
splits the full textual observation into distinct phrases to associate
each sentence to a particular belief to be added in the belief base.
Such sentences describe environment effects perceived from pre-
vious actions, objects seen by the agent in the current location,
and items carried in the agent’s inventory (these are all common
observations in the ScienceWorld text environment). For instance,
the textual observation described in Figure 1 is a paragraph that
informs multiple facts of the current state of the environment. The
agent represents each sentence as a single belief through splitting
the text into a list of sentences. Given that, “You see a freezer” and
“You see a thermomether” represent two distinct beliefs. In contrast
with traditional BDI approaches where the agent checks for belief
additions or deletions in the belief base, our agent simply rewrites
the old belief base state with the new textual information perceived
after performing an action. The belief base integrity relies on how
the textual environment represents the effects of performed actions.
Since ScienceWorld provides full state descriptions, our agent up-
dates its belief base by overwriting old beliefs with ones perceived
to avoid inconsistencies caused by action effects.



Agent Mental StateObservation 

Belief
Base

Plan: take metal pot 
If you see the cupboard
closed and you are in

the kitchen, then: 
- open cupboard 

- take the metal pot 

Plan Selection

Candidate Plans: 
- take metal pot

has candidate plan

No candidate plan

Intentions

Fallback 
Policy

- open cubboard 
- take the metal pot

Action Steps 

Natural Language Inference  
model

Plan
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This room is called the kitchen. In it, you
see: 
 a counter. On the counter is: a bowl
(containing a red apple, a banana, an
orange, a potato), 
 a cupboard. The cupboard door is
closed.  
 a freezer. The freezer door is closed. 
 a thermometer, currently reading a
temperature of 10 degrees celsius 

You also see: 
 A door to the hallway (that is open) 
 A door to the outside (that is closed)

Figure 1: Diagram illustrating the NatBDI architecture to handle and actuate over natural language environments.

3.3 Natural Language Plan Library

Besides interacting with a world described in natural language, our
agent architecture relies on a natural language interface for agent
developers to encode plan-rules using natural language in order to
facilitate the plan development for humans who are non-expert in
an agent programming language (e.g., AgentSpeak [29]). We repre-
sent natural language plans in a controlled natural language [14]
that contains clearly described conditions and beliefs. A controlled
natural language is a subset of a natural language more amenable
to automated processing, which we use to allow programmers to
intersperse unrestricted natural language within the structure of a
plan rule. In contrast with approaches that translate the controlled
natural language plans into a symbolic representation (i.e., Pro-
log clauses) [14], our architecture reasons directly over natural
language plan-rules during plan selection.

While NatBDI uses a controlled natural language in its defini-
tion, we interpret this language as following a similar structure
to AgentSpeak plan-rules. Thus, each plan rule consists of a state-
ment for the intended goal, a statement of the plan context, and
a set of sentences defining the plan body. The goal is a sentence
describing the task that the agent intends to perform. The plan
context consists in a set of natural language sentences linked with
the word “AND” to represent the logical conjunction between such
statements. More formally, plans in our controlled natural language
follow the template in Listing 1:

Listing 1: Template for a plan written in NatBDI controlled

natural language.

IF <goa l s t a t ement >
CONSIDERING <p lan c on t e x t s t a t emen t s >
THEN :
< p l an body>

In order to accept hierarchical plans, the agent interpreter accepts
sentences representing actions or subgoals in the plan body. Here
subgoals work similarly to goal addition events in AgentSpeak. In
the plan body section, we include the keyword “PLAN TO” to dis-
tinguish sentences that encode a goal addition, which is analogous
to a goal addition event, with sentences describing actions. Much
like in AgentSpeak, an agent keeps track of subgoals in a stack data
structure. As the agent adopts new goals, they are stacked, and as it
achieves them, they are unstacked. Such keyword helps the agent

interpreter disambiguate between actions sent to the environment,
and the internal reasoning for recursive subgoals. Actions consist
of an imperative sentence that describes what the agent should
perform in the environment.

For example, the natural language plans described in Listing 2
shows how a human can explicitly instruct the agent to achieve
particular tasks. In the first plan, a human knows that the metal
cup is in the cupboard which is initially closed and instructs the
agent on how to obtain the metal cup using a natural language plan.
The triggering event is the goal “get the metal pot” and it should be
considered as plan candidate if the context of the plan is true, that
is, if the agent is in the kitchen and it is seeing a closed cupboard.
The plan body consists of two actions written in natural language
instructions that will be interpreted by the textual environment.
First the agent should open the cupboard and then it should take
the metal pot. The second plan triggers when the goal is to melt
water. This illustrates part of a plan that requires a subgoal (get the
metal pot).

Listing 2: Plans in natural language to pick the metal pot and

melt water in ScienceWorld.

IF your t a s k i s to ge t the meta l pot
CONSIDERING you a re in the k i t c h en

AND you see the cupboard c l o s e d
THEN :
open the cupboard ,
t ake the meta l pot

IF your t a s k i s to mel t water
THEN :
PLAN TO ge t the meta l pot
p i ck up thermometer
. . .

3.4 Entailment with Natural Language Beliefs

Most implementations of the BDI architecture select plans based on
a context condition that, when entailed by the agent’s belief base,
trigger plan adoption. This creates a filter for options to be executed
by the agent afterwards [23]. Concretely, if the belief base logically
entails the conditions described in a plan, then the agent commits
to executing its steps within an intention structure. Since the agent



deals with natural language information, computing entailment
within natural language becomes a key challenge. We leverage an
NLI model grounded bymachine learning to emulate the entailment
operation over natural language information.

In the BDI model, the plan-selection mechanism assumes that the
entailment inference consists of a Boolean value indicating whether
a plan is candidate/applicable or not. Recent approaches develop
natural language inference models as a three-way classification
method generating the following three logical relations: entailment,
contradiction, and neutral [36]. Since our main objective is to infer
whether the beliefs entail a specific plan context, we unify the
contradiction and neutral classes as a non-entailment relation. Thus,
we use the natural language inference model as a binary classifier
(i.e., returning a Boolean signal) under a closed-world assumption.

In practice, to infer whether the belief base entails a plan context,
we need to compare if each sentence in the plan context has at least
one belief that entails it. Specifically, the agent needs to compare
every belief in belief base with all plan contexts to decide if such
plan should be selected. Since beliefs and the plan context consist
of multiple sentences, NatBDI processes the entailment inference
between these two structures by creating the Cartesian product
between both sentence sets. Formally, given two set of sentences
representing the belief base B and C respectively, we create a
matrix represented as C × B in Equation 1. For each belief 𝑏 ∈ B
and plan context 𝑐 ∈ C pair contained in the C ×B, we employ the
natural language inference represented as𝑛𝑙𝑖 function in Equation 2
resulting in a Boolean matrix 𝐸𝑖, 𝑗 . Matrix 𝐸𝑖, 𝑗 contains all inference
results for each 𝑖-th plan context and 𝑗-th belief.

𝑀𝑖, 𝑗 = C × B = {(𝑐𝑖 , 𝑏 𝑗 ) | 𝑐 ∈ C ∧ 𝑏 ∈ B} (1)

𝐸𝑖, 𝑗 = {𝑛𝑙𝑖 (𝑐𝑖 , 𝑏 𝑗 ) | (𝑐𝑖 , 𝑏 𝑗 ) ∈ 𝑀𝑖, 𝑗 } (2)

To check whether a plan is a candidate to be selected by the agent,
we apply the disjunction given the Boolean values in 𝐸𝑖, 𝑗 for each
𝑖-th context with all 𝑗-th beliefs. Given each Boolean generated by
the disjunction, we apply the conjunction for each 𝑐 resulting in a
single Boolean value. Thus, we define entailment of a plan context
from the belief base in NatBDI as in Equation 3.

B |= C �
∧
𝑐𝑖 ∈C

𝑐𝑖

∨
𝑏 𝑗 ∈B

𝑏 𝑗 (3)

For example, consider a state with a belief base that contains the
following sentences: “this room is called the kitchen” and “you see a
cupboard, the cupboard door is closed”. An inference between such
belief base and the plan with context composed of the sentences
“you are in the kitchen” and “you see a closed cupboard” works
as follows. First, we compute the values of matrix 𝐸𝑖, 𝑗 with 𝑖-th
row representing context sentences and 𝑗-th column representing
belief sentences as follows:

[
𝑇 𝐹

𝐹 𝑇

]
. Belief “this room is called the

kitchen” entails context “you are in the kitchen” while “you see a
cupboard, the cupboard door is closed” entails “you see a closed
cupboard”. The first disjunction operation between all beliefs with
each context results in the following matrix:

[
𝑇

𝑇

]
and, consequently,

the conjunction operation results in the scalar Boolean
[
𝑇
]
, which

is the final result of the entailment inference, and therefore we can
conclude that the information in the belief base entails the plan
context. Consequently, this is a candidate plan.

Algorithm 2 Fallback policy plan formulation.

1: procedure fallbackPolicy(E,B,L𝐹𝐵,I)
2: bd ← L𝐹𝐵 (E,B)
3: I ← I ∪ ⟨E0, bd⟩
4: return I

3.5 Fallback Policy

Previous research on dealing with BDI plan selection as a learn-
ing problem includes learning context conditions [32], as well as
modelling a BDI agent as one interacting in a Partially Observable
Markov Decision Process (POMDP) [31]. A POMDP is a model of
stochastic environment in which the agent perceives states indi-
rectly via observations. Both models work with belief concepts to
represent the agent state since POMDP agents store the states in a
set of belief states while BDI agents use their belief base component
for the same role. Such work shows that the BDI procedure of se-
lecting and executing a plan can be implemented as a POMDP state
estimator. Given such correspondence, we integrate a mechanism
for plan selection trained by reinforcement learning to generate a
plan when there is no candidate plan in plan library (i.e., the natural
language inference fails to produce candidates).

To produce plans consistent with the plan-rules format we use
for the plan library, we train a fallback policy that can generate,
for each possible context, a plan body consisting of a single action.
Thus, at each turn the agent either runs steps from a human-defined
plan-rule, or an action from the fallback policy. Since the fallback
policy might contain ineffective plans due to training limitations,
we keep track of the number of times the agent responds with the
same plan for the same event, which we control with an 𝑙 parameter.
Given a predefined step limit 𝑙 , the agent uses the policy L𝐹𝐵 with
the current events E and belief base B to predict which action
should be executed, and create a single-action plan body resulting
in a new intention. Algorithm 2 details how we use the fallback
policy to generate new intentions.

4 EVALUATION

In this section, we describe our experiments to evaluate NatBDI
in reasoning tasks within a textual environment. We conduct the
experiments using a Python implementation of the architecture1 on
the ScienceWorld environment. First, we detail the implementation
settings to execute our experiments. Second, we compare the effects
of using plan-rules to help agents in reasoning tasks considering
prior knowledge introduced by humans through plans written in
natural language. Finally, we show how different NLI models affect
the inference performance in sentence pairs.

4.1 Experiment Setup

Our experiments use two different types of tasks based on the per-
formance of current approaches in the ScienceWorld environment
(Section 2.3) to evaluate NatBDI. These tasks consist of the melt
task, which requires the agent to melt an element, and the find-
non-living-thing task, which requires the agent to take a non-living
object and put it into a container detailed in the task description.
All current approaches [1, 9, 15, 28, 34, 38] perform poorly on the
1Available at https://github.com/yukioichida/nat-bdi

https://github.com/yukioichida/nat-bdi


“melt” task since it requires more sophisticated reasoning than “find-
non-living-thing”. The first usually requires the agent to find and
take the target element, put it into the appropriate container (e.g.,
metal pot) and find a device to melt the element (e.g., stove or blast
furnace). By contrast, the second task only requires the agent to
take a non-living thing and put it into a container, requiring sim-
pler reasoning skills. We choose such tasks to evaluate the agent’s
performance in a simple task, which even using a reinforcement
learning agent can result in a reasonable score, and a hard task to
show the gains of including natural language plans to deal with
the limitation of current machine learning techniques. Each task
variation contains different environment settings, which varies
from having objects placed in different locations to having different
objects in task description (i.e., “melt water”, “melt mercury”, etc).

For each experiment, we initialise the plan library by analysing
annotated sequence of steps provided by the ScienceWorld authors
in both tasks. Since the agent can begin a task in different loca-
tions, we generate navigation plan-rules automatically by running
multiple navigation tasks where we use heuristic search to find
nearly optimal trajectories, and collecting all trajectories found into
plan-rules. In these navigation plan-rules, we use the location at
turn 𝑡 − 1 as plan context and include in the plan body a move
action to the next location at turn 𝑡 . We use the task description
provided by the environment as the main goal, which is analogous
to the initial goal-addition event in AgentSpeak.

In order to evaluate our approach, we integrate into NatBDI
existing LLMs pretrained with NLI datasets. For the experiments de-
scribed in Section 4.2 we use the roberta-large language model [19]
trained using the MultiNLI [36] dataset provided by the Hugging-
Face repository [37]. We explore the use of other LLMs such as
Bert [13] and MiniLM [35] to evaluate the effects of using smaller
language models in Section 4.3. We execute all the inference steps
described in Section 3.4 in a batch approach to leverage the compu-
tational resources using a single NVIDIA RTX 3060 GPU.

Our fallback policy uses Deep Reinforcement Relevance Network
(DRRN) [15], the current state-of-the-art for ScienceWorld. We
trained a DRRN policy for each task following the Wang et al.
method [34] to use it as a fallback policy when no candidate plan-
rule can be found. To avoid infinite execution of ineffective plans
from a poorly learned policy, whenever we select a fallback plan,
we keep track of the number of times the agent repeatedly recurs to
the fallback policy for the same event. If the agent keeps recurring
to the fallback policy over a fixed number of times, we deem the
intention to have failed. In our experiments we define a 50 turn
limit for the fallback policy phase.

4.2 Experiment Results

In this section, we describe the scores that our natural language BDI
agent obtains. First, we measure the BDI agent performance when
varying the number of plan-rules in the agent’s plan library for each
of the two tasks we selected from the ScienceWorld environment.
We show the effects in the overall score and its progress by adding
natural language plans designed by humans. Second, we evaluate
the trade-off between plan-rules and the DRRN fallback policy, and
the impact that the fallback policy can have depending on the size
and quality of the plan-rules library. Finally, we evaluate using a

DRRN by itself, that is, an agent with no plan-rules that relies only
on the fallback policy.

Table 1 shows the metrics collected when executing the agent in
multiple variations for each task, 75 variations for the first task and
9 for the second. The number of episodes seen in DRRN training
for “find-non-living-thing” and “melt” are 242 and 457 respectively.
The total score represents the accumulated reward received by
the agent averaged over a number of variations of the task in the
same environment, which we then break down the score obtained
from using plan-rules and from using fallback policy. The agent
achieves a large improvement in score by adding natural language
plan-rules when compared to the score obtained by using only the
DRRN policy (i.e., setup with 0 plan-rules). Even a small number
of plan-rules leads the BDI agent to outperform the DRRN alone
by a large margin in the hardest task (melt). Introducing natural
language plan-rules also leads to fewer actions to achieve a goal as
a result of our natural language plan-rules encoding nearly optimal
trajectories in their plan body to solve the task.

Our experiment shows that DRRN policy by itself could not
deal with important aspects of the environment or reason over the
task in both tasks, which corroborates the results presented in [34].
Particularly, in the “melt” task, the DRRN-only agent receives a
score greater than zero due to random move actions that send the
agent to the exact location of the target element. Although the
trained policy could achieve better scores in the “find-non-living-
thing”, its performance is due to the environment which rewards
the agent with a 0.5 score by solely taking a non-living-object,
which is more predominantly featured in the environment than
living objects.

The BDI agent achieves good scores relying on manually de-
signed natural language plan-rules, but it does not obtain a perfect
score since we use a limited number of plan-rules, which do not
cover all possible variations of the tasks. This is a more realistic
setting, as we would not expect the developer to be able to cre-
ate all possible plan-rules. For example, in the task “melt”, there
are variations in which some objects are not working (i.e., broken
stove), which requires the agent to plan more dynamically to find
an alternative plan at runtime. Our expectation here was that the
fallback policy could be useful, however, due to the low perfor-
mance of DRRN in the “melt” task this was not the case. If future
reinforcement learning algorithms improve the performance over
the state-of-the-art, then they can be used as a fallback policy in
NatBDI to achieve even better performance.

Figure 2 illustrates the score evolution throughout training epi-
sodes, given a specific number of natural language plan-rules. In
this experiment, we generate multiple DRRN-trained policies, dis-
tinguishing them by the number of trained episodes to evaluate
the training efficiency and compare it within NatBDI as a fallback
policy component. Regarding the “find-non-living-thing” task, the
policy efficiency improves throughout the training phase, but it
is prone to overfitting. This is apparent in the dip in performance
shown in the results with more training episodes. In the “melt” task,
the number of training episodes do not seem to affect the perfor-
mance of DRRN. This makes sense since we have seen in previous
results that DRRN performs very poorly in this task, and therefore
increasing the number of training episodes here has no discernible
effect.



Table 1: Comparison of our natural language BDI agent in two tasks in the ScienceWorld environment with different plan

library sizes. We show the average scores obtained and the average number of actions performed in each phase out of all task

variations. The bold font identifies which approach (BDI or DRRN) contributed more to the total score.

Task Variations Episodes

Number

plan-rules

Score

(Total)

Score

(BDI)

Score

(DRRN)

Number

BDI actions

Number

RL actions

0 0.66 0.00 0.66 0.00 50.00
8 0.75 0.30 0.45 3.33 38.00

find-non-living-thing 75 242 15 0.84 0.58 0.26 6.25 24.00
23 0.91 0.79 0.12 7.64 13.33
30 0.98 0.98 0.00 9.19 4.00
0 0.03 0.00 0.03 0.00 50.00
4 0.14 0.11 0.03 5.11 44.44

melt 9 457 7 0.36 0.34 0.02 10.89 33.33
10 0.57 0.56 0.01 17.11 22.22
13 0.67 0.67 0.00 20.89 16.67
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Figure 2: Scores per episodes when scaling the number of plan-rules.

4.3 Natural Language Inference Model Analysis

As a final set of experiments, we measure the impact of using
different LLM implementations for NLI in NatBDI. We evaluate
three LLMs with distinct number of parameters fine-tuned with
the MultiNLI dataset to analyse the effects of the model size in
ScienceWorld tasks. We organise the NLI model experiment in
the following points: First, we provide details about each LLM by
describing their sizes and performance on NLI dataset used in its
pretraining process. Second, we detail the scores obtained in each
ScienceWorld task for each LLM. Finally, we discuss the use of
sentences processed using lexical overlap to measure the contrast
between beliefs and plan context sentences. Table 2 shows the
performance obtained by NatBDI using all plan-rules for each task,
that is, with the configuration described in the last row of each task
from Table 1.

NatBDI executes plans hierarchically, following the traditional
reasoning cycle of BDI agents. Therefore, errors encountered dur-
ing plan decomposition will abort the plan-selection process, which
turns later subgoals unreachable. Incorrect inferences between be-
liefs and plan contexts results in incorrect plan selection, which
leads the agent to select irrelevant plans or to an early stop due
to not finding any candidate plan. In fact, the roberta-large results
score higher than smaller language models such as bert-base and
MiniLM, in both the MultiNLI matched test set and in the two tasks
from the ScienceWorld text environment. This indicates that larger

models can provide better NLI, and consequently, lead to more suc-
cessful plan selection and execution when used for NLI in NatBDI.
In contrast, the use of bert-base and MiniLM models result in fewer
inferences since such models could not progress as well as roberta-
large in the plan decomposition, which translates to fewer plans
executed in general.

To measure the difficulty in inferring entailment between the
belief base and the plan context, we compute the lexical overlap
between sentences used as premise and hypothesis to count the
number of identical words between the pair. Given a sentence pair
consisting of a belief and a context, we compute the number of
words contained in beliefs that are absent in the plan context. In
cases where lexical overlap is high between the premise and the
hypothesis, the inference tends to easily infer entailment relation
since both sentences are similar and may express the same idea. For
example, it is trivial for an NLI model to infer entailment between
the belief-context pair “you see a pot” and “you see a container”
due to the large lexical overlap (i.e., 3 words). Hence, in such cases,
sophisticated language models exploit shallow syntactic heuristics
to infer logical entailment between sentences [22]. Our results show
that the amount of lexical overlap is low when comparing to the
average word number in both sentences considering our manually
designed plan-rules. The average lexical overlap in entailment sen-
tence pairs is lower than the average number of plan context words
since most beliefs contain more words.



Table 2: Results of using different LLMs for NLI. The following columns describe them: model size (Params); accuracy on

MultiNLI matched test set (MNLI-m); score obtained using NatBDI; average number of actions performed, errors raised and

plan-rules (Plans) used; lexical overlap computed on entailment pairs (LO(E)); average word number in belief (|B|) and context

(|C|) sentences; and total sentence pairs processed. We highlight the best scores in bold font.

Model Params MNLI-m Task Score Actions Errors Plans LO(E) |B| |C| Pairs

MiniLM 22M 82.2 find-non-living-thing 0.69 7.65 0.37 2.57 0.64 7.84 4.20 1076
(L6) melt 0.23 8.78 1.00 3.59 1.34 10.96 4.83 691
Bert 110M 84.6 find-non-living-thing 0.84 9.61 0.20 2.72 0.60 8.40 4.16 1075
(base) melt 0.33 11.44 0.67 3.56 1.16 11.12 4.80 690
Roberta 355M 90.8 find-non-living-thing 0.98 9.19 0.08 2.84 0.40 7.30 4.19 1076
(large) melt 0.67 20.89 0.33 5.67 1.21 11.06 5.25 790

5 RELATEDWORK

This section covers related work on NLI, the use of natural language
in BDI agents, and natural language representation of beliefs.

There is a wide-range of pretrained NLI models openly avail-
able that are trained on well-known datasets such as SNLI [4]
and MNLI [36]. Both datasets consist of premises and hypotheses
represented exclusively at the sentence level. Regardless of the as-
sumptions of these common datasets, state-of-the-art approaches
to NLI fine tune pretrained language models that process a di-
verse range of text lengths in the pretraining task. Clark et al. [10]
introduce a model that leverages pretrained language models to
make inferences over facts consisting of multiple sentences. In
this case, the model informs whether a statement is true given a
set of facts and rules described in natural language. While tradi-
tional NLI models classifies pairs of sentences into either having
entailment/contradiction or an undetermined relation (neutral), we
enforce the closed-world assumption. Thus, whenever we fail to
find entailment, we assume the context query is false.

Few approaches combine BDI agents and natural language, such
as in [18], and more recently in [20] and in [17]. In [18], the authors
propose using sEnglish (system-English, a controlled natural lan-
guage) to provide a natural language environment for programming
BDI agents to be deployed in robotic applications. Their approach re-
lies on ontologies and translations from sEnglish to agent programs
in the Jason [3] implementation of AgentSpeak. Longo et al. [20]
combine natural language processing for translating natural lan-
guage sentences into a logical form, first-order logic as a cognitive
reasoner, and BDI agent as a reactive reasoner in a cognitive chat-
bot framework called AD-Caspar. Neither Lincoln and Veres [18]
nor Longo et al. [20] use LLMs or exploit natural language inference
for plan selection as we do in NatBDI.

Ichida and Meneguzzi [17] leverage component correspondences
between task-oriented dialogue systems and BDI architecture to
develop a BDI conversational agent. In contrast with our approach,
which infers logical entailment directly over natural language infor-
mation through LLMs, they use a function to translate utterances
into symbolic beliefs.

As an agent interacts with the environment over time, its belief
base can grow arbitrarily large with newly perceived information.
However, since the observations are natural language information,
it is difficult to detect whether a belief overwrites information about
previous states. Atzeni’s work [2] applies case-based reasoning in

textual environments by memorising past problems and their so-
lutions to solve new problems. Similar to this approach, in future
work we envision a memory component within the belief base
to store temporal information perceived by the agent. This com-
ponent must deal with the scalability issue, since the belief base
can grow, at best, linearly throughout time. Since our agent stores
vectorised information of natural language beliefs, summarising
text by pruning irrelevant past information can alleviate problems
in the expansion of the belief base.

6 CONCLUSION

In this paper, we develop the seminal approach for an entire class
of BDI-based agent architectures that use machine learning com-
ponents to deal with natural language information. Combining a
natural language interface and reasoning capabilities with the folk
psychology abstraction of mental states in the BDI model provides
the dual benefit of improving human understanding of the under-
lying machine learning models and the agent’s handling of noisy
information. We leverage the BDI model, a well-known approach to
agent-oriented programming, to develop agents with mental states
amenable to being scrutinised. The natural language plan library al-
lows humans to create plans to customise the agent’s behaviour and
helps avoid unintended conduct. Unlike modern PTLM approaches
that solely use a black-box model approach to reason over natural
language, we explored the BDI architecture to uncover the agent’s
mental state to understand its behaviours. Our empirical results
show that even a few manually designed plan-rules in natural lan-
guage can substantially improve performance of agents working in
textual environments. This is especially true for tasks that require
longer horizon reasoning or complex causality.

We plan a number of extensions for future work. First, our experi-
ments currently comprise a subset of the ScienceWorld benchmarks,
given the need to develop plans for each task. Thus, we aim to ex-
pand our experimentation to the entire ScienceWorld suite, as well
as to other textual environments such as Jericho [15]. Second, given
the fast pace of development in reinforcement learning, we aim
to improve fallback policies. Finally, while fallback policies help
mitigate the need to develop a plan library for every single situa-
tion faced by the agent, our key direction for future work lies on
learning plan-rules from data. This should allow human developers
to co-design an agent’s plan library in an efficient and transparent
way.
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