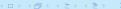

Extending agent languages for autonomy

Felipe Meneguzzi¹

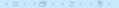
felipe.meneguzzi@kcl.ac.uk

¹Department of Computer Science King's College London


- Background
- 2 AgentSpeak(PL)
- Motivations in Meta-reasoning
- Social AgentSpeak(L)
- Normative Processing in AgentSpeak(L)
- **6** Conclusions and Future Work

Background

- BDI agent languages:
 - Useful abstraction for complex systems
 - Mostly used for single agents with static plans
 - Simple, but theoretically sound
- However, lack of direct support for:
 - societal cooperation
 - autonomy and dynamic adaptation
- Ad hoc implementations of techniques rather than language support



Aims

- Extend traditional agent languages with:
 - Declarative goals
 - Motivated behaviour
 - Social cooperation
- Allow development of complete multiagent systems

Contributions

- Introduction of declarative goals in AgentSpeak(L)
- Dynamic plan creation in AgentSpeak(PL)
- Motivated goal generation in AgentSpeak(MPL)
- Multiagent cooperation through plan delegation
- Normative processing

Procedural and declarative goals

- Procedural → efficient, yet inflexible:
 - Predefined encapsulated behaviours
 - Designer must foresee relevant plans
- Declarative → expressive, but not trivial:
 - Desired world states
 - Requires a more complex reasoning mechanism
- How to link desired world states to actions?

AgentSpeak(PL)

- AgentSpeak(L) + Planning → AgentSpeak(PL)
- Declarative goals are used to determine courses of actions:
 - Desired world states and basic capabilities are specified
 - Interpreter uses planner to generate new plans
 - New plans are stored by the agent, improving it

Motivations in Meta-reasoning

Motivations

- Root cause of future-directed behaviour
- Studied by a number of other disciplines
- In our work: abstraction of meta-reasoning:
 - Goal generation
 - Representation of dynamic priorities

AgentSpeak-MPL

- AgentSpeak(L) + Motivations:
 - Standard AgentSpeak(L) language
 - External motivation specification
- Motivation model for:
 - Goal generation
 - Plan selection
- Motivation model based on mBDI

Social AgentSpeak(L)

- Much research devoted to languages for individual agents with static plan libraries
- Cooperative strategies implemented ad hoc:
 - Generally assume knowledge of others abilities
 - Distributed, but based on predefined abilities
- Planning capable agents can drop these assumptions
- Our social AgentSpeak:
 - uses dynamically discovered abilities
 - abilities are plans which agents execute on behalf of others
 - generates new (high-level) plans using these abilities

Normative Processing in AgentSpeak(L)


- Autonomous agents operating in an open environment need regulation
- Norms are the mechanism of choice
- Most research focuses on the macro level
- We focus on the machinery in agents that
 - process norms, and change the plan library
 - lead to norm compliance
- Norms can cause plans to be:
 - suppressed in case of prohibitions
 - generated anew to comply with obligations

Conclusions

- Machinery exists that can be added to agent languages
- They need to be sensibly integrated to languages
- Necessary to create a general-purpose language

Future Work

- Motivation-based norm acceptance/rejection
- Motivation-modulated planning
- Motivated intention adoption and dropping
- Integration of various notions of declarative goal in AgentSpeak

Questions?

