Electronic contracting in aircraft aftercare:
A case study

Felipe Meneguzzi Simon Miles Camden Holt
King’s College London Michael Luck Malcolm Smith
Department of Computer King’s College London Lost Wax

Science
London, United Kingdom

ABSTRACT

Distributed systems comprised of autonomous self-interested en-
tities require some sort of control mechanism to ensure the pre-
dictability of the interactions that drive them. This is certainly
true in the aerospace domain, where manufacturers, suppliers and
operators must coordinate their activities to maximise safety and
profit, for example. To address this need, the notion of norms
has been proposed which, when incorporated into formal electronic
documents, allow for the specification and deployment of contract-
driven systems. In this context, we describe the CONTRACT frame-
work and architecture for exactly this purpose, and describe a con-
crete instantiation of this architecture as a prototype system applied
to an aerospace aftercare scenario.

Categories and Subject Descriptors

D.2.10 [Software]: Software Engineering; 1.2.11 [Artificial Intel-
ligence]: Distributed Artificial Intelligence—multi-agent systems

General Terms

Design, Experimentation

Keywords

Electronic contracting, norms, contracts, BDI, AgentSpeak(L)

1. INTRODUCTION

Interactions in systems composed of heterogeneous and self-in-
terested agents are inherently unreliable, requiring some form of
societal control to bind these interactions. The introduction of
norms has been proposed to address this need in such systems [13],
allowing for open societies of autonomous agents that are, never-
theless, regulated to some degree. Such norms are usually specified
using deontic concepts, including the notions of obligations, per-
missions and prohibitions [4] that govern or direct agent behaviour.
More specifically, by incorporating sets of these norms into a for-
mal document representation, it is possible to define electronic con-
tracts [17], to allow commercial agent systems controlling business
transactions to be defined in terms of contracts that guarantee cer-
tain desirable properties at runtime.

Cite as: Electronic contracting in aircraft aftercare: A case study, F.
Meneguzzi, S. Miles, M. Luck, C. Holt, M. Smith et al., Proc. of 7th
Int. Conf. on Autonomous Agents and Multiagent Systems (AAMAS
2008)- Industry and Applications Track, Berger, Burg, Nishiyama
(eds.), May, 12-16., 2008, Estoril, Portugal, pp. XXX-XXX.

Copyright (©) 2007, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Dept of Computer Science
London, United Kingdom
felipe.meneguzzi@kcl.ac.uk simon.miles@Kkcl.ac.uk

72 Lower Mortlake Road
London, United Kingdom
camden.holt@lostwax.com

In this context, and as part of the CONTRACT project, created
to explore multiple aspects of contract-based systems, we have de-
veloped an electronic contracting framework aimed at facilitating
the construction of deployable systems, and have instantiated the
framework within a system addressing the aerospace aftermarket.
Our framework includes components for many aspects considered
critical for this type of system, such as contract specification, ne-
gotiation and monitoring, as well as the appropriate agent architec-
tures to handle these aspects. The system we have developed using
the CONTRACT framework, has two purposes: first to refine our un-
derstanding of how real systems may be built by transitioning from
an abstract to a concrete agent framework, while generating design
patterns for the management activities in a contract life cycle; and
second to provide a prototype that simulates the dynamics of the
clauses included in aircraft aftercare contracts, as described in the
use case of Section 2, in a fashion not yet achieved elsewhere.

Our main contribution, therefore, is in providing an implementa-
tion of a contract-based BDI-style agent system that uses an inter-
leaved planning and execution architecture. So far, no other work
has yielded practical systems that allow contractual obligations to
be set and monitored by infrastructure agents in the manner ours
does. Importantly, our work on exploring contract-based systems
is situated in a practical commercial context, by specifying and im-
plementing relevant use cases that require contracting functionality.
In Section 2 therefore, we begin this paper by introducing the de-
tails of the use case from the aerospace aftercare market. Using
the CONTRACT architecture described in Section 3, we then define
a contract-based system that implements the aerospace scenario in
Section 4. In Section 5 we demonstrate how the completed system
operates through an example execution. Finally, we compare our
system with existing work in Section 6, and conclude in Section 7.

2. AEROSPACE AFTERCARE

In order to situate and motivate the construction of a contract-
based framework and architecture, we adopt the use case of aero-
space aftercare contracts [10] provided by Lost Wax’s Aerogility
software [14]. In our system, we greatly simplify Aerogility’s sim-
ulated scenario in order to focus on the basic elements of the con-
tract framework and explore the dynamics of contract processing.

Aircraft engine manufacturers are increasingly switching from
selling engines in isolation to providing long-term service contracts
focused on maintaining an operational engine pool. In these con-
tracts, airlines agree to pay engine manufacturers hourly rates for
operational engines, while manufacturers agree to provide certain
minimum service levels (i.e. operational engine availability) or face
predetermined financial penalties when aircraft remain grounded
waiting for functioning engines. Aftercare contracts can be very

Request Perform
Maintenance Maintenance

Manufacturer

Detect Violation

Manager

Gk

Airline

: : Report Violation

Observer

Figure 1: Summary of interactions and use cases.

complex and include provisions for: restricting the provenance of
engines, e.g. not using engines previously mounted on the aircraft
of competitor airlines; specifying a minimum number of available
spare engines at specific locations; and allowing maximum idle
time for aircraft waiting for repairs.

Engine usage is measured in terms of usage cycles, where the
number of cycles clocked up by an engine depends on the length of
the flight. Engines have a hard life represented by a predetermined
number of cycles, after which they must be refurbished before be-
ing used again. In summary, airlines fly aircraft to fulfil a predeter-
mined schedule of flights, which results in cycles being logged for
the engines of the aircraft involved. When engines have clocked up
enough cycles to end their hard life, an airline sends a request for
maintenance to the engine manufacturer, which swaps used engines
for new or already serviced ones. Manufacturers need to respond
to maintenance requests within a certain time limit, otherwise they
are violating the terms of their aftercare contract.

Contract parties can fulfil roles associated with the business goals
of an application and administrative roles associated with the main-
tenance of the contracting environment itself. Business roles are
application-specific, and in the case of this aftercare scenario, con-
sist of the airline operator and engine manufacturer.

Airline operators are responsible for performing flights accord-
ing to their designated schedule, notifying engine manufacturers
of unscheduled events, and scheduling maintenance before an en-
gine’s hard life is reached. Engine manufacturers are responsible
for performing maintenance operations by the contracted deadlines
when these are scheduled, or as soon as possible when these are
unscheduled, as well as maintaining a pool of operational engines
according to contractual obligations.

We use both observers and managers as administrative contract
parties in our implementation. In particular, an observer is re-
sponsible for monitoring maintenance requests from the airline and
subsequent maintenance operations by the engine manufacturer,
notifying the manager when a violation of contract terms is de-
tected. A manager is responsible for receiving notifications of vi-
olations from the observer and taking action towards remedying
them, which in our current implementation consists of notifying a
human operator. These interactions and their associated use cases
are illustrated in the use case diagram of Figure 1.

3. THE CONTRACT ARCHITECTURE

The CONTRACT framework and architecture allow electronic
contracting technologies to be integrated into applications. This
provides several benefits.

e Explicit formulations of obligations and prohibitions on con-
tract parties can be reasoned over and acted on by software
agents to best meet business objectives.

e Verification of the system, with regard to contracts, enables
parties to determine whether it is possible to meet their future
obligations.

e Well-specified mechanisms are available to store, maintain
the integrity of, and access contract documents.

Since the work presented in this paper aims, in part, to under-
stand and assess the applicability of the architecture, we ensure
that each part of it is at least minimally implemented as part of
the testbed. In this section, we briefly describe the framework and
architecture, in the context of the scenario described above.

3.1 Overall Structure

The CONTRACT framework is a conceptual model for specity-
ing applications using electronic contracting. The architecture is
an instantiation of the contract administration aspects of the frame-
work: a set of service-oriented middleware and multi-agent design
patterns to support administration of electronic contracts.

In Figure 2 we show the overall structure of the framework and
architecture. As a whole, this can be seen as series of models and
specifications, comprising a methodology for adapting application
designs to utilise electronic contracts. The primary component is
the framework, depicted at the top, which is the conceptual struc-
ture used to describe a contract-based system, including the con-
tracts themselves and the agents to which they apply. Each level in
the figure provides support for the components below it. Arrows
indicate where one model influences or provides input to another.

From the framework specification of a given application, other
important information is derived. First, off-line verification mech-
anisms can check whether the contracts to be established obey par-
ticular properties, such as being achievable, given the possible states
the world can reach. From this, and the contracts themselves, we
can determine which states are critical to observe during execution
to ensure appropriate behaviour. A critical state of a contract-based
system with regard to an obligation essentially indicates whether
the obligation is fulfilled or fulfillable, (e.g. , achieved, failed, in
danger of not being fulfilled, etc.).

The framework specification is used to determine suitable pro-
cesses for administration of the electronic contracts through their
lifetimes, including establishment, updating, termination, renewal,
and so on. Such processes may also include observation of the sys-
tem, so that contractual obligations can be enforced or otherwise ef-
fectively managed, and these processes depend on the critical states
identified above. Once suitable application processes are identified,
we can also specify the roles that agents play within them, the com-
ponents that should be part of agents to allow them to manage their
contracts, and the contract documents themselves.

3.2 Contracts

Agreements between agents are formally described in electronic
contracts, which document obligations, permissions and prohibi-
tions (collectively clauses) on agents. Agents bound by contract
clauses are said to be contract parties, and a contract specifies con-
tract roles, which are fulfilled by contract parties, so that clauses
apply to specific contract roles. The life cycle of a contract may be
broken down into five stages, as illustrated in Figure 3:

e creation, including the process of finding potential interac-
tion partners and negotiating terms for a contract;

e maintenance and update of the formal representation of a
contract document in a controlled repository;

o fulfillment of the contract clauses by the participants;

Framework
(applied to application)

.r\

Architecture

DY

I
I Critical Contract !
Verification o < -)
R | Application P Administration
Mechanisms
! States Processes
I
/ \ ! Supporting
Methodolo
Agent)%
; Contract
! Architecture -) Contract
! Administration
Component Documents !
Roles
Interfaces !
I

Technology-specific Deployment

Figure 2: Overall structure of the CONTRACT architecture.

Management

Termination /
Renewal

Creation A Fulfilment

Maintenance
& Update

Figure 3: Life cycle of a contract.

e management, consisting of overseeing the fulfillment of obli-
gations by designated agents, and taking action when viola-
tions are detected;

e termination or renewal of contracts when contracts are about
to expire, or when their validity is violated.

3.3 Contract Parties

Contracts in our system are agreed upon by agents, which are
assumed to be autonomous, pro-active, flexible (decision-making)
and social. Agents engage in contract-directed interactions to ful-
fil the clauses specified in a contract. Contract interactions require
a minimum of two agents fulfilling the role of participants. Some
applications may require contract-related processes to have certain
properties, e.g. that violations are acted on, or that the integrity
of the contract documents is maintained. These requirements lead
to obligations on (and the creation and use of) administrative par-
ties, and contracts may document their required behaviour We can
roughly classify contract parties into two kinds.

Business Contract Parties Agents for whom the contract is cre-
ated: the obligations on the business contract parties are large-

ly concerned with the business of the application. In our use
case example, the aircraft operator and engine manufacturer
are business contract parties.

Administrative Contract Parties Agents are required to ensure
that the contract is accessible, retains integrity and legiti-
macy, is monitored and enforced, and other such adminis-
trative functions that ensure the contract has force. The obli-
gations on these agents relate to their administrative roles.

3.4 Enforcement

Two particular administrative contract party roles are those of
observer and manager. The former detects whether the system en-
ters a critical state (success, violation, in danger of violation) with
regard to a particular clause. A manager reacts on the basis of ob-
servation, e.g. to inform a user of the problem, penalise a contract
party in some way, and so on. There may be several observers and
managers for an application, for example checking compliance on
behalf of different users, and handling violations in different ways.

As discussed in the next section, we add single instances of both
administrative roles to the use case implementation.

4. A CONTRACT-BASED SYSTEM FOR
THE AEROSPACE AFTERMARKET

To allow the evaluation of the contracting framework separately
from the specific use case, we have divided the system into two
main parts: the aftercare simulation and the contract-related func-
tionality. The simulation part of our system implements a small
subset of the aftercare scenario, including the scheduling of flights,
update of engine usage information and engine maintenance opera-
tions. The contracting part of our system focuses on the communi-
cation and monitoring of requests by contract partners to fulfil their
obligations, and taking action when violations of these obligations
are detected.

4.1 AgentSpeak and Jason

As we have seen, the architecture developed for the CONTRACT
framework is driven by events in the environment that are associ-
ated with certain conditions specified in contract clauses. These

Aftercare CONTRACT
Simulation Engine

Manufacturer

Manager

joeInwIS

Observer

Airline

Figure 4: Main parts of the system.

events drive complying agents to adopt plans to fulfil their obli-
gations. Such a mechanism lends itself very well to implementa-
tion through reactive-planning BDI agents, such as PRS [9], and
AgentSpeak(L) [16]. In consequence, our CONTRACT demonstra-
tor was implemented using Jason [2], which is a Java-based AgentS-
peak(L) [16] interpreter. More specifically, AgentSpeak(L) [16] is
an agent language, as well as an abstract interpreter for the lan-
guage, and follows the beliefs, desires and intentions (BDI) model
of practical reasoning [3]. In simple terms, a BDI agent tries to re-
alise the desires it believes are possible by committing to carrying
out certain courses of action through intentions, and in AgentS-
peak(L), this is simplified in that an agent chooses plans of action
that are considered possible by the agent’s beliefs, making the no-
tion of desires implicit in the plan representation. The language of
AgentSpeak(L) allows the definition of reactive procedural plans,
so that plans are defined in terms of events to which an agent should
react by executing a sequence of steps (i.e. a procedure). Plan ex-
ecution is further constrained by the context in which these plans
are relevant.

In this section, we describe the implementation of the aerospace
aftermarket scenario in AgentSpeak(L), by detailing the descrip-
tions of the various roles and their corresponding agents in terms
of the AgentSpeak(L) plans used by these agents in fulfilling their
goals. In what follows, we denote plans by the AgentSpeak(L) trig-
gering event associated with the execution of that plan, as !plan.

4.2 Roles and Agents

We have developed agents, and their corresponding behaviours,
to fulfil goals in both the simulation and the contract-related parts
of the system, as illustrated in Figure 4. Clearly, the administra-
tive roles play no part in the simulation of the aftercare services,
whereas the manufacturer and the operator have goals that span
both areas, since their goals relate to the simulation as well as the
fulfilment of contractual obligations. These agents/roles are sum-
marised in Table 1, and further detailed in the following sections.

4.2.1 Airline Operator

Airline operators manage a fleet of aircraft and have a flight
schedule that must be fulfilled throughout the system execution.
When the system starts up, operators receive information regard-
ing their aircraft and engines as perceptions: aircraft(Name, Air-
line, Location), where Name is the aircraft identifier, Airline is the

Check Contracts

IsignContract L — — ——— —_
Y
——— —
Check Flight I—Fly Aircraft |
Obligations HlyAircraft |_ —_——
lupdateLogs
| Update Logs |
Y b —_————

Check Maintenance «] Schedule

Obligations IrequestMaintenance

Figure 5: Airline operator reasoning.

name of the operating airline, and Location is the current location
of the aircraft; and engine(Engine, Location, Cycles, Provenance),
where Engine is the engine identifier, Location is the current loca-
tion of the engine, which may be an airport or an aircraft (in case
it is mounted on one), Cycles is the number of usage cycles cur-
rently logged for the engine, and Provenance is the list of aircraft
on which the engine has been mounted in the past. Moreover, oper-
ators receive the schedule of flights that must be flown through per-
ceptions, scheduledFlight(Time, Operator, Aircraft, Origin, Desti-
nation), where Time is the scheduled time for the flight, Operator
is the airline responsible for executing the flight, Aircraft is the air-
craft that should be used to carry out the flight, Origin is the de-
parture point of the flight and Destination is the arrival point of the
flight. After having the simulation data internalised in the belief
base, airline operators seek to sign maintenance contracts with en-
gine manufacturers to provide for the aftercare of the engines used
by their fleet. Initially, an operator broadcasts its intention to sign
maintenance contracts using the /requestContracts plan, and engine
manufacturers that are willing to provide this service reply with a
message of acceptContract (received as a perception by the opera-
tor). Upon receipt of an acceptance by an engine manufacturer, an
operator signs the contract using the /signContract plan.

As flights are carried out, the usage logs of aircraft and their
components need to be updated to reflect the number of usage cy-
cles spent in each flight. Operators use /flyAircraft plans to fly
aircraft, which in turn use /updateLogs plans to update the num-
ber of usage cycles for an aircraft’s engines. An airline opera-
tor is responsible for tracking usage data and matching it to the
known hard life of engines to allow for maintenance to be sched-
uled ahead of time with the engine manufacturer, which is achieved
through the /requestMaintenance plan. Engines are also vulnerable
to unscheduled problems, which demand immediate scheduling of
maintenance with the engine manufacturer, again through the same
IrequestMaintenance plan. A high-level view of the reasoning cy-
cle for the airline operator is illustrated in Figure 5, including the
AgentSpeak(L) plans invoked in this process (as solid boxes) and
their results (as dashed boxes).

4.2.2 Engine Manufacturer

Engine manufacturers build and own a pool of aircraft engines
that are sold or leased to airline operators which may also con-
tract them to carry out regular maintenance on such engines. Like
the airline operator, the engine manufacturer has its belief base

Agent/Role | Percepts Goals Plans
Operator | scheduledFlight Perform flights according to schedule IflyAircraft
unscheduledEvent Notify engine manufacturer of unscheduled | /updateLogs
maintenanceDone events IrequestMaintenance
aircraft Schedule maintenance ahead of time IrequestContracts
engine IsignContract
acceptContract
Manufacturer | requestMaintenance | Perform scheduled maintenance according | /performMaintenance
requestContract to deadlines levaluateContract
engine perform unscheduled maintenance as soon | ‘acceptContract
as possible ImoveEngine
Manufacturer Maintain the observer informed of the IcontractSend
and communication between the Manufacturer | /notifyObserver
Operator and the Operator
Observer | requestMaintenance | Notify the manager when violations occur !handleMessage
maintenanceDone Monitor maintenance requests from the InotifyManager
airline operator IcheckMaintenanceDone
Monitor maintenance actions from the
engine manufacturer
Manager | violation Receive notifications from the Observer !handleViolation
and detect contractual violations
notify relevant parties of violations

Table 1: Summary of roles.

-
> |
-

tell(requestMaintenance) J

- +IperformMaintenance

:| +!moveEngine

il

|—|‘ tell(maintenancePerformed) J

Figure 6: Events associated with a maintenance request.

initialised at the beginning of the simulation with information on
the engines it can maintain. As operators send requests for main-
tenance contracts, manufacturers receive requestContract percep-
tions, and decide whether or not to accept these requests through
the !evaluateContract plan, possibly accepting the request using
the /acceptContract plan.

Once a contract is established, an engine manufacturer is obliged
to respond to scheduled maintenance requests within a predeter-
mined time frame, and to unscheduled requests as soon as possible.
Requests for maintenance are received by the manufacturer as re-
questMaintenance perceptions and, if they are valid, maintenance
is performed using the /performMaintenance plan. Maintenance
involves moving the required spare engine to the location of the
aircraft needing maintenance and swapping it with the used engine.
Once a manufacturer has finished performing maintenance, it in-
forms the operator that the aircraft is ready to fly by sending it a
maintenanceDone message. This sequence of events is illustrated
in Figure 6.

+!contractSend (Target, SpeechAct, Message) true
<- .send(Target, SpeechAct, Message);

'notifyObserver (Target, SpeechAct, Message) .

+!notifyObserver (Target, SpeechAct,Message)
observer (Observer)
<- .my_name (From) ;
.send (Observer, tell, message (
From, Target,Message)) .

Listing 1: Communication plans.

4.2.3 Observer

An observer is responsible for monitoring the activities of con-
tract parties and detecting whether or not any contract violations
take place. In the aftercare scenario, an observer only monitors the
requests and responses to maintenance operations. In order to mon-
itor these requests, our observer implementation leverages the fact
that agents representing contract parties include plans that comprise
a communication layer for CONTRACT-related communication. For
example, if an operator wishes to send a maintenance request to an
engine manufacturer, instead of directly invoking a communication
action, it uses plans that include communication actions, as well
as replicating sent messages to the observer. This layer consists of
a plan that ensures that all messages exchanged between contract
parties are also forwarded to the observer, keeping it up to date re-
garding the status of contractual commitments. The plans to send
messages and to notify the observer are shown in Listing 1, and the
flow of messages from each role is illustrated in Figure 7. Such
an approach is similar in spirit to that of Garcia-Camino et al. [6],
since agents are not directly aware that their contractual obligations
are monitored by an external agent through each agent’s communi-
cation layer.

Since the observer is not a compulsory part of the system, its ex-
istence and identity is not known in advance by airline operators or
engine manufacturers. Therefore, at the beginning of the simula-

Messages
Engine Airline
Manufacturer

T X

Notifications

Observer Manager

Figure 7: Flow of messages among the agents.

+message (From, To,Message) [source(From)] : true
<- !handleMessage (Message, From, To).

+!handleMessage (
requestMaintenance (
Time,Plane, Location,Engine), From, To)
true
<- !print ("Handling request for maintenance
from ",From," to ", To);
//When I hear a maintenance request,
//store the request
+maintenanceRequested (
Time,Plane, Location, Engine, From, To) ;
?maintenanceDeadline (Deadline) ;
TriggerDeadline = Time+Deadline;
//And create a trigger
+trigger (maintenance, TriggerDeadline) .

+!handleMessage (
maintenanceDone (Time,Plane, Engine), From,
To)
maintenanceRequested (
TimeReqg,Plane, Location, Engine, To, From)
<- +maintenancePerformed (
Time,Plane, Location,Engine, From, To) .

Listing 2: Plan to handle messages between contract parties.

tion, all contract parties broadcast a message requesting observers
to identify themselves. If an observer is present in the system, it
replies with its identity, which allows contract parties to forward
their communication to it. This is illustrated in Figure 8.

Observed messages are handled by the observer in a generic way,
as illustrated by the plan in Listing 2. In order to detect violations of
deadlines for maintenance, observers generate triggers associated
with the deadline for maintenance operations. Whenever an ob-
server detects a request for maintenance from an operator, it awaits
confirmation from the manufacturer that maintenance has been per-
formed (i.e. maintenanceDone), as shown in the plans of Listing 3.

If the deadline for this maintenance request is reached without
the observer having perceived a maintenanceDone message, it noti-
fies the manager responsible for the actual handling of the violation
within the system. This is illustrated by the plans in Listing 4.

4.2.4 Manager

Whenever a violation is detected by the observer, it notifies the
manager, which is responsible for taking some sort of remedial ac-
tion. In our system, managers have a generic plan to handle vi-
olation notifications through some pre-defined way, as illustrated
in Listing 5. In this example, a plan reacts to the perception of
a violation (violation(Violation, From, To)), which is forwarded to
the /handleViolation plan where the violation is actually handled
by the Manager. In the aftercare scenario, the only possible viola-
tion relates to an engine manufacturer not honouring the deadline
for scheduled maintenance (represented as maintenance(Time)) and
the handling of this violation consists simply of informing a human
user of the violation through a console message.

S. EXECUTION EXAMPLE

Figure 9 shows a screenshot of the application depicting the Ja-
son console and the messages sent by the agents as they carry out
their obligations. In it, we can see two airlines, simpleJet (high-
lighted in solid boxes), and millerAir (highlighted in dashed boxes),
performing flights, and updating engine logs as they execute these
flights. At one point in the simulation, an engine mounted in a

Listing 3: Observer plans to handle maintenance requests.

+!checkMaintenanceDone (maintenance (
Time,Plane, Engine))
maintenanceRequested (
Time,Plane, Location, Engine, From, To) &
maintenancePerformed (
TimeDone,Plane, Location, Engine2, To, From)
&
time (Now) &
(TimeDone < Now)
<— true. //No violation detected

+!checkMaintenanceDone (maintenance (
Time,Plane, Engine))
maintenanceRequested (
Time,Plane, Location, Engine, From, To) &
time (Now)
<- .send(manager, tell, violation (maintenance (
Now) , To,From)) .

Listing 4: Observer plan to detect violations.

e rEmm

tell(needObserver)

| }
|

tell(observer)

1
1
[

tell(needObserver)

J
1. \
|

tell(observer)

Figure 8: Finding an observer.

EAMAS Console - lostwax

Tmiller i doing: TyFlaneiplaned lasVentiras losSanfos) |

=10l

| »

ArAiTTerAl] doite: UpdateEndinelddlenaiie H praned 8 Tl
[millerair] doing: updateEnginelog(engines,planed, [millerain) |

[generalkinetic] sayving: millerdir just requested mainienance.
[generalkinetic] saying: Perfarming maintenance on planed
[generalkinetic] doing: swapEngine{engineH, engineR4 planed losSantos)
[EAEFH AR R R ERTa g ERgIREr St franed, for eRgiieRd st s g antas
e ETARTRETE] S ayTi g TRTarTA G il Err AT ER R e 18 dana Tar ERginer St irangd]

i[oeneralkinetic] saying: Perorming maintenance on planed
{oeneralkinetic] doing: swapEngine(engineG engineR3 planed losSantos)
[Externalfction] Replacing engineds at planed, far engineR3 at losSantos
generalkinetic] saying: Informing millerdir maintenance is done for engine at planed |

[ScriptedEnvironment] Adding percept unscheduledEvent(s engines)

1]

/7 Clean || Stop || S‘fﬁDehug || [Pause || = Sources || 4 New agent

Figure 9: Screenshot of the application.

+violation (Violation, From, To)
true
'handleViolation(Violation,From, To) .

[source (S)]
<-

+!handleViolation (maintenance (Time) ,From, To)
true
.print (From,
for ",To," by time ",Time,",
not.").

<-— " should have done maintenance

but it did

Listing 5: Manager plan to handle violations.

millerAir aircraft reaches the end of its hard life, and needs to be
replaced. This prompts millerAir to request its contracted engine
manufacturer, generalKinetic (highlighted in dotted boxes) to per-
form maintenance. The engine manufacturer complies by swapping
the specified engines and notifying millerAir that maintenance has
been performed.

6. RELATED WORK

Unlike existing work on automated contracting, which we con-
sider in this section, our system is the first (of which we are aware)
to have formal underpinnings, cover the entire contracting ecosys-
tem, and be able to function in complex, realistic domains.

For example, Kollingbaum [12] described the NoA architecture
for norm aware agents. In his framework, agents are able to rea-
son about contracts and the obligations imposed on them, before
deciding what actions to take. The focus of the NoA framework is
on the nature of normative agents, rather than on the exact form a
realistic contract should take, and evaluation thus takes place in a
simple blocks world.

Other notable work on contracts is also abstract in nature. For

example, Dignum et al. [5] describe a language for contracting
that is based on modal logics. While elegant, no attention is paid
to the rest of the contracting ecosystem. Similarly, most existing
work on contracting focuses on the contracting language, or some
other very specific aspect, such as verification or conflict detec-
tion (c.f. Grosof’s SweetDeal [8], Abraham’s work using disquo-
tation theory [1], and Giannikis’s e-Contracts system [7]), without
attempting to situate the contract in a larger environment. Other ap-
proaches, such as Neal et al.’s DLP [15] have no formal semantics,
tying them to a single specific implementation.

Finally, work on policies (e.g. [11]) seems to attempt to deal with
systems as a whole, rather than consulting components in isolation.
However, while such work shares similar language to contracts,
such as obligations, permissions and prohibitions, such norms form
hard constraints in policies. By contrast, within contracts, such
norms form soft constraints, providing the requisite flexibility to
make contracting a much more practical tool for dealing with many
realistic situations where violations are not only often unavoidable,
but sometimes even desirable.

7. CONCLUSIONS AND FUTURE WORK

The CONTRACT project seeks to develop frameworks, compo-
nents and tools that make it possible to model, build, verify and
monitor distributed electronic business systems on the basis of dy-
namically generated, cross-organisational contracts which under-
pin formal descriptions of the expected behaviours of individual
services and the system as a whole. The project covers both theo-
retical and practical aspects aimed at:

e specifying electronic business-to-business interactions in
terms of contracts;

e dynamically establishing and managing contracts at runtime

in a digital business environment;

e applying formal verification techniques to collections of con-
tracts in a digital business environment;

e and, applying monitoring techniques to contract implementa-
tion in order to help provide the basis for business confidence
in e-Business infrastructures.

In this paper we have shown how the CONTRACT framework and
architecture developed in the project provides some of this func-
tionality through instantiation as an implemented system in the con-
text of the aerospace aftermarket. In particular, we have adopted
an AgentSpeak(L) approach in our prototype system, and have de-
scribed its design and operation. We provide concrete versions of
the contractual roles envisioned for CONTRACT-based systems, in
particular, the administrative roles of Observer and Manager, and
the business roles for the Airline Operator and Engine Manufac-
turer from our reference scenario. Moreover, we provide an obser-
vation mechanism that includes plan patterns that can be reused in
other CONTRACT-based applications.

Our system demonstrates two important issues in relation to prac-
tical application of contract-based agent technology. First, it shows
how we can provide functionality that moves beyond the current
generation of aerospace aftermarket tools, by providing a contract
level analysis of the agreements between the parties involved, with
the capacity to identify and flag violations or potential violations
for individual contracts. This moves significantly beyond aggre-
gated simulation of provision, which is the typical mode of such de-
cision support tools. Second, it shows how traditional (BDI-style)
agent architectures such as AgentSpeak(L), most commonly seen
in academic environments, can be deployed to provide the reason-
ing capability that is required to perform this kind of analysis.Thus,
not only do we address the business case for contract-based sys-
tems, we also demonstrate the use of standard agent technologies
in such business contexts.

Further work will continue on refining the architecture in light of
experience of using the system, as well as from experience gained
with several other use cases in the domains of dynamic insurance
settlement, modular certification testing, and service-level agree-
ments in software engineering [10]. In addition, we will incor-
porate verification techniques into the architecture to provide the
complete functionalities described above.

Acknowledgments

The research described in this paper is partly supported by the
European Commission Framework 6 funded project CONTRACT
(INFSO-IST-034418). The opinions expressed herein are those of
the named authors only and should not be taken as necessarily rep-
resentative of the opinion of the European Commission or CON-
TRACT project partners.

The first author is supported by Coordenacdo de Aperfeicoa-
mento de Pessoal de Nivel Superior (CAPES) of the Brazilian Min-
istry of Education.

8. ADDITIONAL AUTHORS

Additional authors: Nir Oren (King’s College London, email:
nir.oren@kcl.ac.uk), Nora Faci (King’s College London,
email: noura. faci@kcl.ac.uk), Sanjay Modgil (King’s Col-
lege London, email: sanjay.modgil@kcl.ac.uk), Martin
Kollingbaum (Carnegie Mellon University, email:
mkolling@cs.cmu.edu).

9. REFERENCES

[1] A.S. Abrahams and J. M. Bacon. A software
implementation of Kimbrough’s disquotation theory for
representing and enforcing electronic commerce contracts.
Group Decision and Negotiation, 11(6):487 — 524, 2002.

[2] R. H. Bordini, M. Dastani, J. Dix, and A. E.
Fallah-Seghrouchni. Multi-Agent Programming: Languages,
Platforms and Applications. Springer, 2005.

[3] M. E. Bratman. Intention, Plans and Practical Reason.

Harvard University Press, Cambridge, MA, 1987.

A. Daskalopulu, T. Dimitrakos, and T. Maibaum.

Evidence-based electronic contract performance monitoring.

Group Decision and Negotiation, 11(6):469-485, 2002.

V. Dignum, J. J. Meyer, F. Dignum, and H. Weigand. Formal

specification of interaction in agent societies. In Proceedings

of the Second Goddard Workshop on Formal Approaches to

Agent Based Systems, pages 37-52, 2002.

[6] A.Garcia-Camino, J.-A. Rodriguez-Aguilar, and

W. Vasconcelos. A distributed architecture for norm
management in multi-agent systems. In Proceedings of the
Workshop on Coordination, Organization, Institutions and
Norms in agent systems (COIN), 2007.

[7]1 G. K. Giannikis and A. Daskalopulu. Defeasible reasoning

with e-contracts. In Proceedings of the IEEE/WIC/ACM

International Conference on Intelligent Agent Technology

(IAT’06), pages 690-694, 2006.

B. Grosof and T. C. Poon. SweetDeal: Representing agent

contracts with exceptions using semantic web rules,

ontologies, and process descriptions. International Journal

of Electronic Commerce, 8(4):61-98, 2004.

[9] E F. Ingrand, M. P. Georgeff, and A. S. Rao. An architecture
for real-time reasoning and system control. I[EEE Expert,
Knowledge-Based Diagnosis in Process Engineering,
7(6):33-44, 1992.

[10] M. Jakob, M. Péchoucek, J. Chabera, S. Miles, M. Luck,

N. Oren, M. Kollingbaum, C. Holt, J. Vazquez, P. Storms,
and M. Dehn. Case studies for contract-based systems. In
Proceedings of the 7th International Conference on
Autonomous Agents and Multiagent Systems, 2008.

[11] L. Kagal. Rei: A policy language for the mecentric project.
Technical Report HPL2002270, HP Labs, 2002.

[12] M. Kollingbaum. Norm-governed Practical Reasoning
Agents. PhD thesis, University of Aberdeen, 2005.

[13] F. Lopez y Lopez, M. Luck, and M. d’Inverno. A normative
framework for agent-based systems. In Proceedings of the
First International Symposium on Normative Multi-Agent
Systems, 2005.

[14] LostWax. Aerogility. http://www.aerogility.com/, 2007.

[15] S. Neal, J. Cole, P. F. Linington, Z. Milosevic, S. Gibson, and
S. Kulkarni. Identifying requirements for business contract
language: a monitoring perspective. In Proceedings of the
Seventh IEEE International Enterprise Distributed Object
Computing Conference, 2003.

[16] A.S.Rao. AgentSpeak(L): BDI agents speak out in a logical
computable language. In W. V. de Velde and J. W. Perram,
editors, Proceedings of the Seventh European Workshop on
Modelling Autonomous Agents in a Multi-Agent World,
volume 1038 of LNCS, pages 42-55. Springer, 1996.

[17] L. Xu and M. A. Jeusfeld. Pro-active monitoring of
electronic contracts. In Advanced Information Systems
Engineering, volume 2681 of LNCS, pages 584—600.
Springer, 2003.

[4

—_

(5

—

(8

—_—

