An agent architecture for intelligent information
assistance

Jean Oh*, Felipe Meneguzzi*, Katia Sycara*, and Timothy J. Norman'
* Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
t Computing Science, University of Aberdeen, AB24 3UE, Scotland, UK

Abstract—Human users trying to plan and accomplish
information-dependent goals in highly dynamic environments
with prevalent uncertainty must consult various types of in-
formation sources in their decision-making processes while the
information requirements change as they plan and re-plan.
When the users must make time-critical decisions in information-
intensive tasks they become cognitively overloaded not only by the
planning activities but also by the information-gathering activities
at various points in the planning process. We have developed
the ANTicipatory Information and Planning Agent (ANTIPA) to
manage information adaptively in order to mitigate user cognitive
overload. To this end, the agent brings information to the user
as a result of user requests but most crucially, it proactively
predicts the user’s prospective information needs by recognizing
the user’s plan; pre-fetches information that is likely to be used
in the future; and offers the information when it is relevant to
the current or future planning decisions. This paper describes
a fully implemented agent of the ANTIPA architecture using a
decision-theoretic user model, and reports preliminary user study
results.

I. INTRODUCTION

In a dynamic environment with prevalent uncertainty, users
must consult various types of information in their decision-
making processes while the information requirements change
dynamically as users plan and re-plan. As a result, users
who must make time-critical decisions in information intensive
tasks are cognitively overloaded by the planning activities and
the information requirements of the planning and re-planning.

For example, consider a military scenario where a com-
mander must plan (or re-plan) a critical mission in a fast-
changing real environment. Due to uncertainty and dynamics
in the environment, the commander must constantly collect up
to date information to ensure the success of the mission; reason
about the feasibility of the current plan; and synchronize
with other involved commanders (so that the overall plan
is coherent). Here, information that the user must manage
include intelligence reports, observations from the field, plan
steps that must be executed, synchronization constraints, alerts,
etc. In this context, we develop an information agent that
can manage information adaptively so that the users can
focus on planning activities without being overwhelmed by
information-gathering activities.

In order to help the user to focus on planning tasks, the
agent proactively predicts the user’s prospective information
needs by recognizing the user’s plan; optimizes information
gathering; and presents information in a way that alleviates
the user’s cognitive load. Our research hypothesis is that

predictive information management based on a probabilistic
model of user decision-making expedites the user’s planning
process and enables the user to explore a larger solution space;
therefore, given a suitable user model, our agent assistant
improves the quality of the plans generated by the user.
To verify this hypothesis, we introduce a fully implemented
information agent architecture known here as ANTIPA.

The agent’s task is decomposed into four sub-problems:
recognizing the user’s current state; predicting the user’s goals
and plans; gathering information; and presenting information
to the user. In this paper, we specifically focus on describing
ANTIPA’s plan recognition algorithm (tackling the first two
sub-problems), and omit the details of gathering and presenting
information.

We take a decision-theoretic approach for our plan recog-
nition algorithm. Other approaches use sequential decision-
making models to design how an assistant agent should choose
an optimal action based on its belief about the user’s current
state [1], [2]. In contrast, we use a decision-theoretic model
only to represent how the user makes decisions, and use the
model to predict how the user will behave in the future. The
predicted user plan provides a set of goals for the ANTIPA
agent, for which the agent plans and executes assistive actions
asynchronously. This separation allows the ANTIPA agent to
have a far richer planning capability when compared to other
models where an assistant agent takes turns with the user in
taking actions.

It is important to note that the goal of this research is not
to guide the user in finding optimal planning solutions, but
instead, the agent aims to optimize information management
such that acquired information anticipates the user’s informa-
tion needs for planning decisions. As opposed to directing
the user to make optimal decisions with respect to a certain
objective (as in decision-support systems), we aim to design
an agent that can maximize the support to help the user in
making decisions based on her own criteria and judgement.
From the user’s perspective, independent decision making is
crucial in many problem domains including military planning,
educational support systems, and assistive living technologies
for the disabled and the elderly.

This paper is organized as follows. First, we define the
target problem in Section II, and introduce the ANTIPA agent
architecture for intelligent information management in Section
III. Next, we describe a decision-theoretic implementation of
plan recognition within the architecture in detail in Section
IV, followed by a discussion on related work in Section V.

Finally, we evaluate the approach through a game that is our
abstraction of the information intensive environment in which
our agent is designed to operate. We report promising initial
results from user experiments in Section VI. We then conclude
the paper with a discussion and future directions.

II. PROBLEM DEFINITION

We define information-dependent planning problems as a
class of planning problems where a user (or a planner) must
access various types of information sources to acquire current
information that is required for executing certain actions.
Here, in addition to domain-specific planning objectives, the
user must also take the cost of getting information into
consideration in selecting actions. Furthermore, the quality of
information (that also depends on the source of information)
affects the user’s transition to another state after taking the
action.

For instance, consider a student preparing for a final exam
by reviewing selected topics covered in a semester. When
a question is encountered, the student may search online
for a quick answer by taking a risk that the answer found
may be incorrect, or email the teacher and wait to get a
generally more precise answer. The outcome of the student’s
action (to understand the concept) depends on the quality of
information, which in turn depends on the source from which it
has come. For example, by receiving high-quality information,
the student’s state regarding the understanding of a certain
concept is more likely to transition from not-learned to
learned, thus increasing the chance of getting a better grade
(reward) in the final exam.

Given that the user is trying to solve an information-
dependent planning problem, we design an agent that can
adaptively identify and manage the user’s information needs
to facilitate the user’s actions. The agent may not be able to
directly observe the user’s true states nor the actions that the
user has taken; in this case, it must infer the user’s state from
a series of primitive sensory data known as observations. For
instance, in the student example, possible observations include
the keywords that the user types into search engines or a set
of documents that the user opens.

III. THE ANTIPA AGENT ARCHITECTURE

In order to address user cognitive overload in information-
dependent planning problems described in Section II, we
now introduce ANTicipatory Information and Planning Agent
(ANTIPA), the intelligent information agent architecture for
recognizing the user’s plan simply by observing user behav-
ior and managing relevant information requirements. Figure
1 depicts the high-level architecture of an ANTIPA agent
where the agent processes are contained within the dashed
box; the cloud represents the agent’s observations; rounded
boxes represent data structures; and rectangle stacks represent
reasoning tasks. The basic interactions between the user and
the agent are: the agent observes some of the user’s planning
activities; and the agent may present information to the user.
At deployment time, the agent is supplied with two inputs: a
domain description representing the user’s planning problem

. -
Information Catalog
User

Domain Description E activities 5

User model i Agent
Belief State || Current State
Recognizer

Planning Model t»1 Future Plan Predictor

Information model \ 4

|
|
|
|
|
: ,W‘/% Information Gatherer
|
|
I
|

Information Presenter I_
»| Information sources i
|

The ANTIPA agent architecture.

Fig. 1.

(e.g., state-based planning problems, plan libraries, workflow,
or similar activity representations); and an information catalog
that describes a set of properties of information sources from
which the agent can retrieve information. These two inputs to
the information agent are shown as the two rectangles at the
top left of Figure 1.

As part of the process of deciding on collecting and
presenting information, the agent’s reasoning process tries to
accomplish four main objectives. First, the agent must be
able to identify the current state of the user from a sequence
of observations on user activities. Second, the agent needs
to predict the user’s information needs that are changing
dynamically through time. In order to accomplish this, the
agent needs to identify the user’s high-level goals and a set
of planned actions to achieve these goals, in a process known
as plan recognition [3]. If the agent can recognize the user’s
goals and plans, then the agent can infer the information
needs associated with these planning activities. Third, the
agent needs to construct a plan for collecting the information
from various information sources. This plan must consider the
tradeoff between obtaining high-priority information (of which
the user is likely to make the most use) and satisfying temporal
deadlines (i.e., certain information must be obtained before
a specific time point to be useful). Finally, the agent must
decide when to offer certain information to the user based on
its belief about the user’s current state. In order to accomplish
these objectives, the ANTIPA architecture is composed of four
main components as follows.

Current State Recognizer: The agent models the user’s
current state (which the agent cannot observe directly) as a
probability distribution over a set of possible states, known
as a belief state. When the agent perceives a new observation
from the user interacting with an environment, Current State
Recognizer updates its belief state such that the updated
belief state best explains the observations. The updated belief
state then triggers other components to adjust accordingly
(e.g., the agent can determine a set of information to present

immediately according to the current belief state).

Future Plan Predictor: Given a belief state, Future Plan
Predictor identifies most likely plans from the current belief
state and constructs a tree of action-nodes, known here as a
plan-tree, representing a set of planning paths highly likely
to be taken by the user. An action-node includes a gquery for
the information that is required for the action (e.g., a database
query), the priority—the probability that the user will take the
action, and a set of constraints (e.g., a deadline constraint
specifying the time by which the data must be retrieved). This
plan-tree is then supplied to the Information Gatherer.

Information Gatherer: Given a plan-tree of predicted
information-gathering tasks, Information Gatherer determines
(or schedules) when and which information sources to use
in order to satisfy the information needs of the user as well
as coping with resource constraints (e.g., network bandwidth)
imposed by the problem domain; that is, the agent should not
interfere with the user’s planning activities by overconsuming
computing resources. Initially, the information-gathering tasks
are ordered by the priorities and the deadlines, ensuring not
only the acquisition of the most useful information, but also a
timely acquisition of data. In order to accommodate changing
information requirements, Information Gatherer must optimize
its current schedule incrementally to satisfy newer (thus more
relevant) information-gathering constraints. The retrieved data
is stored locally until used by Information Presenter.

Information Presenter: The agent directly interacts with
the user through Information Presenter, which selects a subset
of data from the locally cached data, and presents to the user at
appropriate times. When to present which data is determined
by the estimated user’s future information needs. In order to
avoid information overload, Information Presenter must only
present data in temporal proximity to the actual need, with a
sufficient time for the information to be useful for the action
at hand. Additionally, Information Presenter must select an
appropriate presentation format when offering information to
the user. Finally, user feedback (e.g., whether the presented
information has been used) is collected and is provided for the
agent as reinforcement in order to allow future improvements
on the quality of supplied data.

IV. A DECISION-THEORETIC APPROACH

Towards the goal of recognizing user plan, we take a
generative view where the user has a certain decision-making
model; such that, if the agent manages to learn the model, then
the agent can make the same decisions as the user in any given
state. Our current approach is specifically focused on state-
based planning problems such that a planning problem can
be defined in terms of states, actions, reward, and a transition
function. Here, we describe a formal representation of our
decision-theoretic model, and the algorithm for predicting
information needs using this model.

A. MDP-based User Model

We make two specific assumptions in modeling the user’s
decision-making process. First, we assume that the user’s
decision-making process respects the Markov property: the

conditional probability of being in a certain state in the next
time step depends only on the user’s current state and not
on any past states. Second, we assume that users will try to
maximize the plan quality (while minimizing the action cost)
by means of their local information and bounded reasoning
capability.

Based on these assumptions, we use a Markov Decision
Process (MDP) [4] to represent the user’s planning process.
An MDP is a specification of a sequential (discrete time)
decision-making process for a fully observable environment
with a stochastic transition model, i.e., there is no uncertainty
regarding the user’s current state, but transitioning from one
state to another is nondeterministic. The user planning objec-
tive modeled in an MDP is to create a plan that maximizes
her long-term cumulative reward.

Formally, an MDP is represented as a tuple (S, A,r,T,~),
where S denotes a set of states; A, a set of actions; 7 : SxA —
R, a function specifying a reward (from an environment) of
taking an action in a state; T : S x A x S — R, a state
transition function; and ~y, a discount factor indicating that a
reward received in the future is less worth than an immediate
reward. Solving an MDP generally refers to a search for a
policy that maps each state to an optimal action with respect
to a discounted long-term expected reward.

Because of our assumption that the agent can only partially
observe the user’s true states, Partially Observable MDP
(POMDP) may appear more suitable to some readers such that
the assistant agent takes the best assistive action according to
the current belief state. However, such a POMDP model limits
the agent to act in a sequential order by tightly coupling the
agent’s action selection with that of the user’s. Here, we use
an MDP to estimate how the user plans the future actions
(when the user can fully observe her current state), so that the
assistant agent can plan information-gathering actions for the
predicted user plans (from the agent’s current belief state) in
order to satisfy the user’s future information needs in a timely
manner.

We now describe how to formulate an information-
dependent planning problem as an MDP. Let I denote a set of
information needs; ® — I, a set of information sources that
can satisfy information needs in [; S, a set of states describing
the user’s environment; A, a set of actions available from a
state (that may be associated with certain information needs
inI); 7: 5 x Ax I — R, adomain-specific reward function;
c¢: 1 x ® — R, an information-gathering cost function; and
T:SxAxIxS — R, afunction that defines how the user’s
state changes from the current state after taking an action
that may require the gathering of certain information from
the sources. Given information-dependent planning problem
g = (S, A,7,T,1,P, c), we construct a corresponding MDP
m = (S, A,7",T',~) as follows.

Since we assume that the user’s planning objective is maxi-
mizing the reward while minimizing the information-gathering
cost, we redefine reward function 7’(s, a) in state s after taking
action a (which may require information 4,) as the net amount
of reward by subtracting the expected cost E[c(i,)] of getting
information i, such that: 7/(s,a) = 7(s,a,%) — E[c(i4)]-

Since the cost of obtaining information is tied to the

choice of information source, the expected cost of information
gathering depends on the user’s selection strategy of infor-
mation source. We estimate the selection strategy using a
heuristic model where the user stochastically selects a source
to maximize data accuracy as follows. Let u;(¢) denote the
probability that the user selects source ¢ to get information ¢
(such that 3 4 ui(p) = 1); and let o (7,) denote a catalog
lookup function that returns 1 if information ¢ can be found
in source ¢, or 0 otherwise. Then, the probability u,(p) is
estimated proportionally to the data accuracy g, of source ¢
(which is specified in the information catalog), such that:

(i, ¢)q
wilp) = e
> oli¢)ay
p'eP
Let c,(i) denote the cost function of getting information ¢

from source . Finally, the expected cost E|c(i)] of retrieving
information ¢ can be expressed as follows:

Ele(i)] = Y uile)eq (i)
ped

Lastly, the transition function of the original problem g is
specified in terms of a conditional probability T'(s|s, a, %) of
the user transitioning from state s to another state s’ after
taking action a, given that information need i is satisfied. In
order to express the transition probability in terms of state and
action only, we apply Bayes rule as follows:

> p(@)T

i€l

(8'|s,a) = (s']s,a,i),

where p(i) denotes the probability of satisfying information
need i. The probability p(¢) of satisfying information require-
ments can be obtained by summing up the probabilities of
successful information acquisition from each source weighted
by the probability u;(¢) of the user actually chooses the

source:
p(i) = > ui($)vpdy,
ped

where v, and ¢, denote the availability and the data accuracy
of information source ¢ € ®, respectively.

B. Current State Recognizer

To update a belief state, we use a variation of the forward
algorithm [5], which we briefly sketch here. Let s; denote the
user’s state at time t; b = [b1,...,bg|], a belief state where
b(s) = p(st = s) is the belief probability of that the user is in
state s at current time ¢; and z1, ..., 2¢, a series of observations
from time step 1 through time step ¢. We assume that an initial
probability O(z|s) of the agent sensing observation z in state
s is known (or it can be learned off-line). For each state s € S,
Current State Recognizer updates the probability of being in
state s given a sequence of observations 21, ..., z;, denoted by
(St = 8|21, .y 2t)-

In order to compute this value efficiently, the algorithm
instead utilizes the joint probability of that the user reaches
state s at time ¢ after collecting observations 21, ..., z;, denoted
by as(t) = p(z1,...,2t A sy = s) as follows. Given the

first observation z; and initial belief state b, the initial o
values at time step 1 can be computed for all states s € S
as: as(l) = O(z1]s1 = s)b(s). As the agent receives
new observation z, the « values are updated by recursively
combining the previous alpha values of all incoming states
with the probabilities of sensing the new observation in each

state:
Z T"(s', s)as (t),

s'esS

al(t+1)

where we estimate state transition probability 7" (s'|s) by
combining state transition function 7”(s’|s,a) of the MDP
user model and its optimal policy 7 (which can be computed
using known algorithms such as value iterations [4]). By
summing up transition probabilities 7”(s’|s,a) for all the
actions dictated by policy m we get:

T"(s'|s) = Z 7s(a)T'(s']s, a).
acA
Finally, the belief state can be updated by normalizing the
current alpha values using the following equation:

bs) = —2@)

Z o (t)

s'eS

The belief state is updated whenever the agent receives a new
observation, notifying Future Plan Predictor and Information
Presenter accordingly.

C. Future Plan Predictor

We formulate the user’s decision making as an MDP de-
scribed in Section IV-A, so that the agent can predict the user’s
future plan by computing the optimal policy of the MDP. For
solving an MDP, we use a well-known dynamic programming
algorithm known as value iteration for simplicity, but more
efficient algorithms can also be used instead. We construct a
stochastic policy such that a policy specifies a probabilistic
distribution over a set of available actions from each state (as
opposed to a deterministic policy that maps a state to the best
action). The intuition for using a stochastic policy is to allow
the agent to explore multiple likely plan paths in parallel.

As an output, Future Plan Predictor constructs a tree-like
plan segment in which a node contains a predicted user-action
and a set of associated features. The features considered in
our implementation consist of the action description (or an
information query in case of information actions), the priority
and the deadline of information need. The priority of the
information need is specified using the probability representing
the agent’s belief that the user will select the action in the
future. The deadline by which the data must be fetched is
indicated by the depth of a node (in the tree structure) since
the depth implies the number of time steps away from the
current time to the future time step when the user will execute
the action.

The algorithm builds a plan-tree by traversing the most
likely actions (to be selected by the user) from the current
belief state according the policy generated from the current
MDP user model. First, the algorithm creates a root node

Algorithm 1 Future step prediction, where: node n; policy 7;
state s; normalization factor p
function PREDICT-FUTURE-STEPS(n, 7, S, p)
for all action a € A do
pl—m(s,a)p
if p’ > 0 then
n' «— newTreeNode(a,p’)
addChild(n,n’)
s « sampleNextState(s, a)
PREDICT-FUTURE-STEPS(n/, 7, ', ')
end if
end for
end function

Fig. 2. An example of MDP user model and its optimal policy.

with probability 1 with no action attached. Then, according
to the belief probability distribution over the set of states and
to the MDP policy, likely actions are sampled such that the
algorithm assigns higher priorities to those actions that are
available from the states where the agent’s belief is densely
assigned and to those actions that lead to a better state with
respect to the user’s planning objective. The recursive process
of predicting and constructing a plan tree from a state is
described in Algorithm 1.

Note that the algorithm adds a new node for an action only
if the agent’s belief of the user selecting the action is higher
than some threshold 6; actions are pruned otherwise. When
this routine is called recursively, the probability of an action
being selected is weighted so that the probabilities of child-
nodes sum to the probability of their parent node.

Figure 2 shows an example of the MDP user model where a
state is drawn as an oval with a reward written inside; an action
as a boxed arrow (where information-dependent actions are
shaded); and, state transition in directed edges annotated with
transition probabilities. The optimal policy computed using
discount factor 0.95 is written inside each action, e.g., in the
leftmost state, the policy prescribes to take action al with
probability 0.98 and action a2 with probability 0.02. A plan
tree constructed from this MDP is illustrated in Figure 3 where
a tree edge is labeled with the probability of an action (on the
right side of the edge) being selected according to the agent’s
belief. Note that actions a3 and a6 are pruned out (and thus
drawn in dashed lines) when probability threshold is 0.01.

The resulting plan-tree represents a horizon of sampled
actions for which the agent can prepare appropriate assistance.

l____'l
| a3 :
0 —'I
_—
al r— .98 — a4
—1
Root [
02 _|
a2 — .017 — ab
N~
.003
N T T
: a6 :
'—'I

Fig. 3. A plan-tree predicted from MDP user model in Figure 2.

This predicted plan is provided to Information Gatherer to
determine the information to acquire from various sources.

V. RELATED WORK

Plan recognition has been studied in various fields: assistive
technologies where assistant agents can guide a human user to
execute a plan correctly [1]; cooperative multiagent problems
where individual agents can infer the plans of other agents to
synchronize their actions [6]; adversarial multiagent systems
where an agent tries to figure out the intention of an adversary
from observed actions [7]; intelligent user interface that can
predict the next user action [8], and more can be found in a
survey as in [3].

There has been a renewed interest in decision-theoretic
approaches to plan recognition, shown in recent efforts in
which planning algorithms are applied to recognize user plans
without the need for constructing elaborate plan libraries of all
possible plan alternatives [9]. Notably, researchers in cognitive
science used an MDP model similar to ours to represent how
a human predictor recognizes the plan of another actor by
observing a sequence of the actor’s current activities [10].

In an approach known as imitation learning (a.k.a. inverse
optimal control), an expert demonstrates to an (apprentice)
agent a set of (semi-) optimal decision-making examples
during a training session, from which the agent tries to learn
the (hidden) reward function that matches with the expert’s
decision making [11], [12], [13]. This approach is generally
restricted to cases where a reward from a state linearly depends
on a set of features of the state. Our current implementation
does not have the learning capability for updating the MDP
user model online; the learning capability will be sought in
future work.

A POMDP-based approach was used in [1] to assist de-
mentia patients, where the agent learns an optimal policy
to take a single best assistive action in a belief state. In
contrast, the ANTIPA architecture separates plan recognition
from the agent’s action selection (e.g., gathering or present-
ing information), which allows the agent to asynchronously
plan and execute multiple alternative information-gathering
(or information-presenting) actions. Our work is thus focused

on how the agent can proactively assist the user after rec-
ognizing the user goals, i.e., the agent can predict the user’s
most likely planning alternatives; subsequently, the agent can
autonomously plan out assistive actions such as collecting
relevant information.

Regarding information gathering, an approach exists for
speculative plan execution in I/O-bounded planning problem
domains [14]. In this approach, an agent uses a query classifier
to speculate an outcome of a slow (computationally demand-
ing) plan operator; continues to execute the next part of the
plan using the guessed data; and verifies the speculated part
of execution when the actual data from the source becomes
available. In contrast, our information agent utilizes plan
recognition techniques to predict the user’s future plan and
pre-fetches the information that the user is likely to need in
the future.

In web browsing, the idea of prefetching is not new, but
existing work focuses on prefetching based on the contents
of web pages and the browsing patterns of common users
as opposed to using the user’s specific high-level plans, e.g.,
Mozilla Link Prefetching or Google Web Accelerator. Many
internet users, however, turn these options off because these
approaches do not take user constraints into consideration
such as network bandwidth constraints. We use a constraint-
based planning technique for information gathering where user
constraints and preferences can be seamlessly incorporated,
which we will not discuss further since it is outside the scope
of this paper.

VI. EXPERIMENTS

We now describe the experimental setup, and discuss the
user tests results.

A. Open-Sesame Game

For the purpose of our experiments, we designed a game,
known here as Open-Sesame, that succinctly represents an
information-dependent planning problem. The game consists
of a grid-like maze where the four sides of a room in the
grid can either be a wall or a door to an adjacent room;
the user must enter a specific key code to open each door.
The key codes are stored in a set of information sources; a
catalog of information sources specifies which keys are stored
in each source as well as the statistical properties of the source.
Additionally, a browser-like interface is provided where the
user can specify a door and an information source as inputs to
retrieve the corresponding key code. The interface also allows
the user to send multiple queries in parallel. Note that a door
is closed when the user leaves the room, and thus the key code
must be re-entered each time.

Here, depending on the user’s planned path to the goal, the
user needs a different set of key codes. Thus, the key codes to
unlock the doors represent the user’s information needs. When
ANTIPA agent is enabled, the agent aims to predict the user’s
future path and prefetch the key codes that the user will need
in the future.

We note that Open-Sesame is not meant to fully represent
a real-world scenario, but rather to evaluate the ability of

fanNno

Game Information

Open Sesame

Key code input You may need this informat " Key Code Browser

0-6 - 89241
o 0-6
To open door [0-6]

No\ Found
Enter Key Code:

89241

A D
Key for [0-6] can be found ft source [A]]
I \
r E|C 7 D 8 A \ 9 C
L |
C D R E e B
i || | M D
oo o2 [o.0 ™
N— [——
Source A Source B Source C
Delay: 965ms Delay: 2844ms Delay: 4505ms
Availability: .9 Availability: .95 Availability: .85
O’ N —

Fig. 4. Graphical user interface of Open-Sesame

the architecture to predict information needs in a controlled
environment and provide a preliminary validation of the ar-
chitecture itself.

The implementation of Open-Sesame is illustrated in Figure
4. In this example, the key codes are stored in three informa-
tion sources A, B, and C. Information source A is available
with .9 probability, and its average time delay is 965 ms. In
the figure, room 0 is shaded, indicating the user is currently in
the room. The three sides from room 0 facing north, east, and
west are walls; and there exists a door that opens to room 6 to
the south, the key code for which can be found in information
source A.

B. Games and Settings

We created three Open-Sesame games: one 6 x 6 and
two 7 X 7 mazes with varying degrees of difficulty. In each
game, the key codes were distributed over 7 remote sources
with varying source properties. Each room was painted with
a randomly selected color from a set of 5 colors, which
was the only type of observations for the agent (here, we
purposely limited the agent’s observation capability to simulate
a partially observable setting). The starting position of the user
was room O on the northwestern corner of the grid, and the
objective of the game was to reach the room that has a star in
it. The agent was given the map of a maze, the user’s starting
position, and the information catalog. During the experiments,
each human subject was given 5 minutes of time to solve a
game either with or without the agent assistance.

C. User Study Results

The results are summarized in Table I, which are based on
the user tests on 7 human subjects who participated in 13
games. In the table, the total time measured the duration of a
game; the game ended when the subject either has reached the

Without agent | With agent
Total time (sec) 300 262.2
Total query time (sec) 48.1 10.7
Query time ratio 0.16 0.04
of moves 13.2 14.6
of steps away from goal 6.3 3

TABLE I
USER STUDY RESULTS

goal or has used up the given time. The results indicates that
the subjects without agent assistance were not able to reach
a goal within the given time, whereas the subjects with the
agent assistance achieved a goal within the time limit in 6 out
of 13 games.

The total query time refers to the time that a human subject
has spent for information gathering, averaged over all the
subjects under the same condition (i.e., with or without agent
assistance), and the query time ratio represents how much
time a subject spent for information gathering relative to the
total time. The agent assistance reduced the user’s information-
gathering time to less than 1.

The number of moves that the user has made can be
viewed as the user’s search space in an effort to find a
solution. That said, the agent assistant generally increased
the search space. Although the sample size is too small to
draw a statistically significant conclusion, these initial results
are promising since they indicate that intelligent information
management improves the user’s performance with respect to
the quality of solution (measured by the length of the shortest
path to a goal from the subject’s ending state).

VII. CONCLUSIONS

In this paper, we introduced an intelligent information
agent architecture, ANTIPA, that proactively assists cognitively
overloaded users through intelligent information management.
The ANTIPA architecture presents a flexible framework that
could possibly be customized for various types of intelligent
assistant applications including adaptive learning support and
assistive living technologies.

We described a decision-theoretic approach for plan recog-
nition to identify the current planning progress conducted by
the user, and to predict the user’s future planning paths. Our
current efforts aim at refining the information-managing com-
ponents. Future work will include enhancing the information-
gathering scheduler to take into consideration redundant in-
formation sources, as well as the design of a finer-grained
process to reason about user cognitive overload. Moreover,
we aim to develop online learning algorithms for estimating
the user model such that the MDP user model is updated to
best reflect the user’s current behavior.

We empirically evaluated an implementation of the ANTIPA
architecture through a user study. As part of evaluating our
approach, we designed an information-gathering and nav-
igation game, Open-Sesame. Despite its simplicity, Open-
Sesame retains important characteristics of planning problem
that requires information gathering in a concise form, which
makes it suitable for evaluation purposes. Based on a set

of preliminary user experiments, we conclude that the agent
assistance significantly reduced the information-gathering time
and enhanced the user performance during the games.

VIII. ACKNOWLEDGEMENT

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence and was accom-
plished under Agreement Number W911NF-06-3-0001. The
views and conclusions contained in this document are those
of the author(s) and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Army Research Laboratory, the U.S. Government, the U.K.
Ministry of Defence or the U.K. Government. The U.S. and
U.K. Governments are authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation hereon.

REFERENCES

[1] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihailidis,
“A decision-theoretic approach to task assistance for persons with
dementia,” in Proc. IJCAI, 2005, pp. 1293-1299.

[2] A. Fern, S. Natarajan, K. Judah, and P. Tadepalli, “A decision-theoretic
model of assistance,” in Proc. of AAAI, 2007.

[3] M. G. Armentano and A. Amandi, “Plan recognition for interface
agents,” Artif. Intell. Rev., vol. 28, no. 2, pp. 131-162, 2007.

[4] R. Bellman, “A markov decision process,” Journal of Mathematical
Mechanics, vol. 6, pp. 679-684, 1957.

[5] L. Rabiner, “A tutorial on HMM and selected applications in speech
recognition,” Proc. of IEEE, vol. 77, no. 2, pp. 257-286, February 1989.

[6] G. Sukthankar and K. P. Sycara, “Robust recognition of physical team
behaviors using spatio-temporal models,” in Proc. AAMAS, 2006, pp.
638-645.

[7] D. Avrahami-Zilberbrand and G. A. Kaminka, “Incorporating observer
biases in keyhole plan recognition (efficiently!),” in Proc. AAAL 2007.

[8] P. Gorniak and D. Poole, “Predicting future user actions by observing
unmodified applications,” in Proc. AAAI, 2000, pp. 217-222.

[9] M. Ramirez and H. Geffner, “Plan recognition as planning,” in Proc.
IJCAI. Morgan Kaufmann Publishers Inc., 2009, pp. 1778-1783.

[10] C. Baker, R. Saxe, and J. Tenenbaum, “Action understanding as inverse
planning,” Cognition, vol. 31, pp. 329-349, 2009.

[11] A. Ng and S. Russell, “Algorithms for inverse reinforcement learning,”
in Proc. ICML, 2000, pp. 663-670.

[12] P. Abbeel and A. Ng, “Apprenticeship learning via inverse reinforcement
learning,” in Proc. ICML, 2004.

[13] B. Ziebart, A. Maas, J. Bagnell, and A. Dey, “Maximum entropy inverse
reinforcement learning,” in Proc. AAAI 2008, pp. 1433-1438.

[14] G. Barish and C. A. Knoblock, “Speculative plan execution for infor-
mation gathering,” Artif. Intell., vol. 172, no. 4-5, pp. 413-453, 2008.

