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* Planning algorithms more or less divided
into:
— Deterministic
— Probabilistic

* Formalisms differ significantly

— Domain representation

— Concept of solution
* Plan
* Policy
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 QOriginal scenario consists of two players
planning for concurrent goals

- NGO
— Military

» Here, we consider a (simplified) planning
task for the military planner
— Select forces to attack militant strongholds
— Move forces to strongholds and attacking



» Offshoot of classical planning
* Domain representation more intuitive to
human planners
— Actions (state modification operators)
— Tasks (goals and subgoals)
— Methods (recipes for refining tasks)

* Problem comprises

— Initial State
— Task
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» Defeat Insurgents at Stronghold A ~/")
— Precondition: Target = A
— Task to decompose: defeatinsurgents(A)

— Tasks replacing defeatinsurgents(A):
 attackWithHumvee(A)
o attackWithAPC(A)



AHu(T)

« Attack T with Humvee t
— Precondition: vehicle(humvee,V) A =committed(V)

— Task to decompose: attackWithHumvee(T)

— Tasks replacing attackWithHumvee(T):
* move(V,T)
e attack(V,T) — this is an action



» Attack T with APC L X
— Precondition: vehicle(apc,V) A —committed(V)
— Task to decompose: attackWithAPC(T)

— Tasks replacing attackWithAPC(T):
 move(V,T)
o attack(V,T) — this is an action
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» Move (Route 1) A
— Precondition: Target = A
— Task to decompose: move(V,T)
— Tasks replacing move(V,T):
 move(V,base,tersa,nr1) —These are basic moves

* move(V,tersa,haram,nr2)
* move(V,haram,a,sr2)
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» Move (Route 2) A
— Precondition: Target = A
— Task to decompose: move(V,T)
— Tasks replacing move(V,T):
 move(V,base,haram,sr1) —These are basic moves
 move(V,haram,a,sr2)
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» Defeat Insurgents m”” =(r =a™® {00 fyn < 40}

A AttaCk Wlth vehicle(humvee,V) A =committed(V),
AHW(T)
m ==
H u mvee tAHu(T)’{tMv(V,T)’ta(V,T)},{tMv(V,T) < ta(V,T)}
: vehicle(apc,V') A =committed(V),
® AA(T)
AttaCk Wlth m = FAAT) {tMv(V,T) ta(V,T)} {tMv(V,T) b ta(V,T)}
APC / M
T=a,t A
o M Ove mle(V,T) X { tmv(V,base,tersa,nrl), tmv(V,tersa,haram,an), z,mv(V,haram,a,sr2)},

(R Oute 1 ) {tmv(V,base,tersa,nrl) 2 tmv(V,tersa,haram,an) 2 Z‘mv(V,haram,a,er)}
(
* Move e e
Mv(V.,T)
m b {th(V,base,haram,hw) tmv(V,tersa,a,er)}
(Route 2) ™ , ,

{ tmv(V ,base haram ,hw) £y ZLmv( V tersa,a,sr2) }
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 How to execute task defeatlnsurgents(a)
tDI(T)

— Decompose task through the methods in the
domain until actions reached

— Ordered actions is the solution
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tmv(V,base,haram,hw)

tmv(V,haram,a,er)

tDI(a)

tmv(V,base,haram,hw)

tmv(V,haram,a,sr2)
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tmv(V,base,haram,hw)

tmv(V,haram,a,er)

tDI(a)

tmv(V,base,haram,hw)

tmv(V,haram,a,sr2)
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» Mathematical model for decision-making in
a partially controllable environment

 Domain is represented as a tuple
> =(S,A,P)
where:
— S Is the entire state space

— A is the set of available actions
— P is a state transition function
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Represented as a
hypergraph
Connections are not
necessarily structured

All reachable states
are represented

State transition
function specifies how
actions relate states
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* An MDP policy is computed using the
notion of expected value of a state:

Vis) = max u(a,s) +2Pr(s 1)V (s")

* Expected value comes from a reward
function

* An optimal policy is a policy that
maximizes the expected value of every

state
n*( s) = argmax e, u(a,s) + EI:r(S'I S)V*(sv)

sS'ES
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» Solution for an MDP is a policy

* Policy associates an optimal action to
every state

 Instead of a sequential plan, policy
provides contingencies for every state

state0 - actionB

state1 = actionD
state2 = actionA
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Hierarchical Task Network Markov Decision Process

 Not enumerated
exhaustively

« State consists of
properties of the
environment

vehicle(humvee,hl) A vehicle(apc,a2)

 Each action modifies
properties of the
environment

« Set of properties induces
a very large state space

MDP domain explicitly
enumerates all relevant
States

Formally speaking, MDP
states are monolithic
entities

Implicitly represent the
same properties
expressed in HTN state

Large state-spaces make
the algorithm flounder
21



Hierarchical Task Network Markov Decision Process
o Set of actions induces a « MDP solver must consult

smaller state space (still the entire state space
quite large) . State-space reduction
« Set of methods induces a techniques include:
smaller still state space — Factorization
« HTN planning consults — €-homogeneous

this latter state space aggregation

22



* We propose using HTNs to represent
MDPs

» Advantages are twofold:
— HTNs are more intuitive to SMEs

— Resulting MDP state-space can be reduced
using HTN methods as heuristic
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tAHu(a) tAA(a}

MV T) > AV M(VT) \: Av.T)
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« State-space comes from the reachable
primitive actions induced my HTN
methods

* Probabillities are uniformly distributed over
a planner’s choice

» Reward function can be computed using
the target states at the end of a plan
(Simari’'s approach)

26



e =AY
_—v'\'.)?.,‘
p o

£y

o7\
L/




t14

t13

t12

t11

t10

t9

t8

t/

t6

t5

t4

t3

t2

t1

t0

t0
tl
t2
t3
t4
t5
t6
t/
t8
t9

t10

t11

t12

t13

t14

28



» State aggregation using Binary Decision
Diagrams (BDDs):
— BDDs are a compact way of representing
multiple logic properties

— One BDD can represent multiple (factored)
states
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 Limitations

— Current conversion models only uncertainty
from the human planner

— Probabilities uniformly distributed among
choices

 Future Work

— Evaluate quality of compression through e-
homogeneity

— Compute probabilities from the world
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» Planning in coalitions is important

» Automated tools for planning need to have
a representation amenable to SME

* QOur technique offers advantages over
either one of the the single approaches:

— Representation using HTNs for SMEs

— Underlying stochastic model for military
planning using MDPs
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QUESTIONS?
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