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Planning 

•  Planning algorithms more or less divided 
into: 
– Deterministic 
– Probabilistic 

•  Formalisms differ significantly 
– Domain representation 
– Concept of solution 

•  Plan 
•  Policy 
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Blogohar Scenario (Burnett) 
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Blogohar Scenario 

•  Original scenario consists of two players 
planning for concurrent goals 
– NGO 
– Military 

•  Here, we consider a (simplified) planning 
task for the military planner 
– Select forces to attack militant strongholds 
– Move forces to strongholds and attacking 
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Hierarchical Task Networks 

•  Offshoot of classical planning 
•  Domain representation more intuitive to 

human planners 
– Actions (state modification operators) 
– Tasks (goals and subgoals) 
– Methods (recipes for refining tasks) 

•  Problem comprises 
–  Initial State 
– Task 
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HTN Domain – Actions 

•  attack(Vehicle, Target) 

•  move(Vehicle, From, To, Road) 
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HTN Methods 

•  Defeat Insurgents at Stronghold A 
– Precondition: Target = A 
– Task to decompose: defeatInsurgents(A) 
– Tasks replacing defeatInsurgents(A): 

•  attackWithHumvee(A) 
•  attackWithAPC(A) 
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HTN Methods 

•  Attack T with Humvee 
– Precondition: 
– Task to decompose: attackWithHumvee(T) 
– Tasks replacing attackWithHumvee(T): 

•  move(V,T) 
•  attack(V,T) – this is an action 
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HTN Methods 

•  Attack T with APC 
– Precondition: 
– Task to decompose: attackWithAPC(T) 
– Tasks replacing attackWithAPC(T): 

•  move(V,T) 
•  attack(V,T) – this is an action 
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HTN Methods 

•  Move (Route 1) 
– Precondition: Target = A 
– Task to decompose: move(V,T) 
– Tasks replacing move(V,T): 

•  move(V,base,tersa,nr1) –These are basic moves 
•  move(V,tersa,haram,nr2) 
•  move(V,haram,a,sr2) 
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HTN Methods 

•  Move (Route 2) 
– Precondition: Target = A 
– Task to decompose: move(V,T) 
– Tasks replacing move(V,T): 

•  move(V,base,haram,sr1) –These are basic moves 
•  move(V,haram,a,sr2) 
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Methods Summary 
•  Defeat Insurgents 
•  Attack with  

 Humvee 
•  Attack with 

 APC 
•  Move  

 (Route 1) 
•  Move 

 (Route 2) 
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HTN Problem 

•  How to execute task defeatInsurgents(a) 

– Decompose task through the methods in the 
domain until actions reached 

– Ordered actions is the solution  
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Decomposed Problem 
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HTN Solution 
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Markov Decision Processes 

•  Mathematical model for decision-making in 
a partially controllable environment 

•  Domain is represented as a tuple 

 where: 
– S is the entire state space 
– A is the set of available actions 
– P is a state transition function 
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MDP Domain 
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•  Represented as a 
hypergraph 

•  Connections are not 
necessarily structured 

•  All reachable states 
are represented 

•  State transition 
function specifies how 
actions relate states 



Computing an MDP policy 

•  An MDP policy is computed using the 
notion of expected value of a state: 

•  Expected value comes from a reward 
function 

•  An optimal policy is a policy that 
maximizes the expected value of every 
state 
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MDP Solution 

•  Solution for an MDP is a policy 
•  Policy associates an optimal action to 

every state 
•  Instead of a sequential plan, policy 

provides contingencies for every state 
state0  actionB 
state1  actionD 
state2  actionA 
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States 

Hierarchical Task Network 
•  Not enumerated 

exhaustively 
•  State consists of 

properties of the 
environment 

•  Each action modifies 
properties of the 
environment 

•  Set of properties induces 
a very large state space 

Markov Decision Process 
•  MDP domain explicitly 

enumerates all relevant 
states 

•  Formally speaking, MDP 
states are monolithic 
entities 

•  Implicitly represent the 
same properties 
expressed in HTN state 

•  Large state-spaces make 
the algorithm flounder 
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State Space Size 

Hierarchical Task Network 
•  Set of actions induces a 

smaller state space (still 
quite large) 

•  Set of methods induces a 
smaller still state space 

•  HTN planning consults  
this latter state space 

Markov Decision Process 
•  MDP solver must consult 

the entire state space 
•  State-space reduction 

techniques include: 
–  Factorization 
–  ϵ-homogeneous 

aggregation 
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HTNs to represent MDPs 

•  We propose using HTNs to represent 
MDPs 

•  Advantages are twofold: 
– HTNs are more intuitive to SMEs 
– Resulting MDP state-space can be reduced 

using HTN methods as heuristic 
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Fully Expanded HTN 
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Reachable states 
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Conversion in a nutshell 

•  State-space comes from the reachable 
primitive actions induced my HTN 
methods 

•  Probabilities are uniformly distributed over 
a planner’s choice 

•  Reward function can be computed using 
the target states at the end of a plan 
(Simari’s approach) 
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Reachable States 
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Conversion example 
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Increasing Efficiency 

•  State aggregation using Binary Decision 
Diagrams (BDDs): 
– BDDs are a compact way of representing 

multiple logic properties 
– One BDD can represent multiple (factored) 

states 
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Limitations and Future Work 

•  Limitations 
– Current conversion models only uncertainty 

from the human planner 
– Probabilities uniformly distributed among 

choices 
•  Future Work 

– Evaluate quality of compression through ϵ-
homogeneity  

– Compute probabilities from the world 
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Conclusions 

•  Planning in coalitions is important 
•  Automated tools for planning need to have 

a representation amenable to SME 
•  Our technique offers advantages over 

either one of the the single approaches: 
– Representation using HTNs for SMEs 
– Underlying stochastic model for military 

planning using MDPs 
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QUESTIONS? 
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