Anytime Cognition

An information agent for emergency response

Felipe Meneguzzi, Katia Sycara
Jean Oh and Nilanjan Chakraborty – CMU
Siddharth Mehrothra – Agent Dynamics
Michael Lewis – University of Pittsburgh

ACITA
September 2011
Outline

- Motivation
- Scenario Description
- ANTICO Architecture
 - Domain Description Language
 - User Observer
 - Intent Predictor
 - Cognitive Workload Estimator
 - Information Gatherer
 - Information Adapter
 - Information Presenter
- Application Description
- Current Work
Motivation

- Planning is challenging:
 - Under time-pressure
 - Relying on uncertain information
- Humans under significant cognitive workload
 - Result in missed deadlines

Anytime Cognition concept:
- Generic information assistant architecture
- Maintains a manageable cognitive workload

Without ANTICO

- Acquire Info \(t_1\)
- Analyse Info \(t_2\)
- Decide \(t_3\)
- Act \(t_4\)

With ANTICO

- Acquire \(t'_1\)
- Analyse \(t'_2\)
- Decide \(t'_3\)
- Act \(t'_4\)

Deadline
- Missed
- Met
Scenario Description

- Based on the National Planning Scenarios developed by the DHS
- ANTICO focuses on six areas:
 - Emergency Assessment/Diagnosis
 - Emergency Management/Response
 - Incident/Hazard Mitigation
 - Public Protection
 - Evacuation/Shelter
 - Victim Care

- Attack Scenario
 - Based on the nerve agent scenario
 - Deployment of multiple Sarin Gas Canisters into a public building in DC
 - Initial phases of the response are critical
 - Conflicting diagnosis info
 - Potential for additional casualties from first responders
ANTICO Architecture

- **Generic assistance architecture**
 - Integrates multiple AI components
 - Modularized to allow different techniques to be used

- **Main objectives**
 - User activity recognition
 - Unobtrusive assistance
ANTICO Domain Description Language (ADDL)

- Designed to be generic and applicable to various problem domains
- XML-based
 - Human-readable
 - Network friendly
- Domain description includes:
 - User Workflows
 - Information Sources

```xml
<?xml version="1.0" encoding="UTF-8"?>
<anticoDomain>
  <stateVariables>
    <variable name="zip-code" domain type=numeric min=15201 max=15295/>
    <variable name="hazmat-dispatch" domain type=boolean/>
    ...
  </stateVariables>
  <activities>
    <activity name="callHazMat">
      <observations>
        <observation name="dialedXYZ" prob=".5"/>
        <observation name="lookedContacts" prob=".5"/>
      </observations>
      <infoObject>
        <query value="select phone from Contacts where name='HAZMAT' and zip=$(zip-code)$"/>
        <constraints>
          <deadline value="17:00 02-06-2011 GMT"/>
        </constraints>
        <retrieval status="queried" source="Contacts" timestamp="" data=""/>  
        <presentation>zoom-coords=""</presentation>
      </infoObject>
      <effects>
        <variable name="hazmat-dispatch" value="true" prob="0.9"/>
      </effects>
    </activity>
    ...
  </activities>
</anticoDomain>
```
User Observer

- Obtains and interprets
 - User activities
 - Messages from the field
- Multiple observer objects specialized in specific observation types, e.g.
 - UI activities
 - Input devices
 - External messages
Intent Predictor

- Uses a domain description in ADDL
- Analyzes observations from User Observer
 - Generates a set of information requirements
 - Employs HMM-based intention recognition
Using the information requirements from intent predictor, determines:

- Which information to be gathered
- When to gather information
- How to cope with resource restrictions
Cognitive Workload Estimator

- Calculates cognitive workload
 - Based on the number of tasks executed by user
 - Queuing model for user workload
- Estimates the maximum amount of information to be presented

- ANTICO platform
 - User Observer
 - Intent Predictor
 - Information Gatherer
 - Information Adapter
 - Domain Knowledge Manager
 - Cognitive Workload Estimator
 - Information Object
 - Wrapper
 - Text Summarizer
 - Information Sources
 - Domain Knowledge

Felipe Meneguzzi - ACITA 2011
Adapts information before presentation to appropriate level of detail

Level of detail of presented information depends on:
- Cognitive workload
- Time available for user

ANTICO platform

- User Observer
- Intent Predictor
- Information Gatherer
- Information Adapter
- Domain Knowledge Manager
- Cognitive Workload Estimator

Information Sources

Wrapper
Text Summarizer

Information Knowledge
Information Presenter

- Presents information to the user
- Uses current belief state to determine optimal time for presentation
- Monitors when and whether information has been used to improve future presentation

ANTICO platform

User Observer → Intent Predictor → Domain Knowledge Manager → Cognitive Workload Estimator

Information Gatherer → Information Adapter

Information Presenter

Domain Knowledge Manager

Cognitive Workload Estimator

Intent Predictor

Information Gatherer

Information Adapter

Information Object

Information Sources

Wrapper

Text Summarizer

Domain Knowledge

Felipe Meneguzzi - ACITA 2011
Application Description

- Timer
- Event Messages Panel
- Map
- Reminders Panel
- Diagnostics Information
- Vulnerable Population Information
- Weather Updates
- Relevant Org. Contact Info
Contributions

- Mitigation of user cognitive workload
- Adaptive presentation of time and context-sensitive information
- Proactive management of information requirements
- Generic XML-based domain description language
- Integration of several AI techniques:
 - Probabilistic plan recognition
 - Constraint optimization
 - Domain independent
Current Work

Current Work by CMU

- Integration of ANTICO with CPOF Sandbox
- Aimed at:
 - Testing of agent assistance for CPOF users
 - Refinements to information assistance in a realistic environment
 - Great potential for technology transition

CPOF Sandbox

- Developed by CERDEC
- Replicates UI functionality of CPOF in a “Sandbox” environment
 - Uses simulated data plus human interaction
 - No access to sensitive data
 - Aimed at usability studies in a controlled environment
Integration with CPOF Sandbox

Evac Plan Data

Schools
