
A Monte Carlo Algorithm for Time-Constrained
General Game Playing

Victor Scherer Putrich1,
Anderson Rocha Tavares2, and

Felipe Meneguzzi3,1

1 Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
Victor.Putrich@edu.pucrs.br

2 Federal University of Rio Grande do Sul, Porto Alegre, Brazil
artavares@inf.ufrgs.br

3 University of Aberdeen, Aberdeen, Scotland
felipe.meneguzzi@abdn.ac.uk

Abstract. General Game Playing (GGP) is a challenging domain for AI
agents, as it requires them to play diverse games without prior knowl-
edge. In this paper, we develop a strategy to improve move suggestions in
time-constrained GGP settings. This strategy consists of a hybrid version
of UCT that combines Sequential Halving and UCB√ , favoring infor-
mation acquisition in the root node, rather than overspend time on the
most rewarding actions. Empirical evaluation using a GGP competition
scheme from the Ludii framework shows that our strategy improves the
average payoff over the entire competition set of games. Moreover, our
agent makes better use of extended time budgets, when available.

Keywords: General Game Playing · Monte Carlo Methods · Sequential
Halving.

1 Introduction

General Game Playing (GGP) is a research area focused on developing intelli-
gent agents capable of playing a wide variety of games without prior knowledge
of any specific game being played [5]. GGP agents receive the rules of poten-
tially unknown games and must play them effectively. This prevents the creation
of game-specific heuristics.Developing supporting artificial intelligence (AI) tech-
niques for such agents is a step towards real-world agents that handle unpredicted
situations.

The Upper Confidence for Trees (UCT) [7] algorithm has been effectively
utilized in GGP environments. UCT is based on building a search tree using
Monte Carlo Tree Search (MCTS). MCTS employs Monte Carlo simulations to
iteratively build a game tree, which progressively converge on the best action as
it gathers more statistical information about the domain.

UCT guarantees asymptotic optimal convergence. However, this assurance
of optimality is not without its costs. Depending on the complexity of decisions

2 Victor S. Putrich, Anderson Tavares and Felipe Meneguzzi

inherent in the given game scenario, UCT might require an impractically long
time to produce high-quality recommendations.

A significant challenge in GGP is designing algorithms that can efficiently
find solutions in a timely manner, particularly in competitive contexts, where
the time required to find a solution is critical to the agent’s performance.

In this paper, we tackle the problem of GGP with scarce time resources.
Specifically, we focus on the following question: Is it UCT the best option for
GGP environments with strict time constraints?

In response, we develop UCT√
SH

4 (presented at Section 4). Our algo-
rithm is a hybrid approach, based on the Simple Regret plus Cumulative Regret
(SR+CR) scheme [15], and Hybrid Monte Carlo Tree Search (H-MCTS) [10],
which are presented at Section 3. Both approaches aim to be more exploratory
in the root node than UCT, in order to avoid overspending time exploiting,
i.e. repeatedly probing the highest-reward movements. Our hypothesis is that
more exploration may improve information acquisition, increasing the chance of
finding better actions.

To evaluate our agent capabilities, we conduct two distinct experiments (Sec-
tion 5). First we present the Prize Box Selection experiment, which is a simplified
Multi Armed Bandit (MAB) problem to compare how selection polices allocate
their resources under scenarios with high and low reward variance. The second
experiment aims to measure the agents’ performance relative to UCT under
time constraints. For this purpose, we use the Ludii GGP environment [12].
Specifically, we use the Kilothon tournament, one of the tracks of Ludii’s GGP
competition 5. Such international competitions have a crucial role in motivating
GGP research [14].

The main contributions of this paper are as follows: First, we introduce
UCT√

SH algorithm, a new SR+CR method. Second, we propose the Clock
Bonus Time (cbt) approach, which enhances the estimation of thinking time
in a GGP environment. Through the Prize Box Selection experiment, we high-
light UCT√

SH allocation criteria, compared to UCB1 and other selection policies
(examined in our work at Section 2 and 3) in its resilience over dealing with
decision-making problems with high and low variance. Lastly, we demonstrate
the improved performance of UCT√

SH over UCT, suggesting its effectiveness as
a selection policy.

2 Monte Carlo Methods

Monte Carlo techniques employ random sampling to address problems that are
otherwise intractable. The key idea behind Monte Carlo methods is to simu-
late a problem many times, each time using a different set of random inputs.
The empirical average of the results obtained from these simulations provides
an estimate of the true value. As the number of simulations increases, this esti-
mate converges to the most likely outcome. In game-playing algorithms, Monte

4 https://github.com/schererl/GraduateThesis
5 https://github.com/Ludeme/LudiiAICompetition

A Monte Carlo Algorithm for Time-Constrained General Game Playing 3

Carlo methods can be used to evaluate a game-tree node by computing the ex-
pected outcome of its actions, by sampling a sufficient large number of random
completions of a game.

2.1 Regret on Bandit Problem

Multi-Armed Bandit (MAB) problems [1] constitute a category of decision-
making scenarios in which the outcomes of chosen actions are unknown. Imagine
a casino slot machine with k distinct arms, each with its own reward and prob-
ability of winning. The gambler’s objective is to plan a strategy that maximizes
their overall profit. The challenge lies in determining the number of times to pull
each arm to maximize returns while learning rewards and probabilities distribu-
tions. The bandit problem presents a trade-off: the gambler must balance the
pursuit of immediate profits by selecting the currently best-performing arm (ex-
ploitation), against the exploration of lesser-known arms to potentially uncover
higher rewards with more trials (exploration).

One way to measure performance in the Multi-Armed Bandit problem is
through the concept of regret, which is defined as the difference in the reward ob-
tained from the arm pulled and the optimal arm. We use two important measures
of regret adapted from the definitions of Pepels [10] and Bubeck [3]. Specifically,
we use cumulative and simple regret from Definitions 1 and 2.

Definition 1. Cumulative regret is the accumulated regret over a set of arm
pulls. Let µ⋆ be the best expected reward, µj be the reward obtained from arm
j, and E[Tj(n)] be the expected number of trials spent into arm j after n trials.
Then, the cumulative regret Rn can be defined as:

Rn =

k∑
j=1

E[Tj(n)](µ
⋆ − µj) (1)

An alternative experimental setup involves finding the optimal arm by allow-
ing the gambler to discover the rewards and probabilities through a simulated
version of the problem, where taking actions has no repercussions on the real en-
vironment. In order to evaluate situations where only the last arm pull is under
consideration, we define simple regret.

Definition 2. Simple regret is the expected difference between the best expected
reward µ⋆ and the reward of the arm pulled µ:

rn = µ⋆ − µ (2)

In the study conducted by Bubeck et al. [3], the authors showed that there is
a trade-off between minimizing cumulative regret and simple regret. Specifically,
they found that a smaller upper bound on cumulative regret (Rn) leads to a
higher lower bound on simple regret (rn), meaning that when an algorithm
performs well in terms of cumulative regret (worst-case scenario), it is likely to

4 Victor S. Putrich, Anderson Tavares and Felipe Meneguzzi

have a higher minimum simple regret (best-case scenario). Conversely, a smaller
upper bound on simple regret would lead to a higher lower bound on cumulative
regret. This trade-off indicates that no single policy can provide an optimal
guarantee on both simple and cumulative regret at the same time.

2.2 Upper Confidence Bound

Upper Confidence Bound (UCB) [1] is an exploration policy in MAB problems
and MCTS. The policy optimizes cumulative regret over time at a logarithmic
rate over the number of trials performed. A widely adopted variant, UCB1, is
favored for its simplicity and its ability to consistently deliver robust performance
outcomes.

UCB1 computes values to actions considering the potential rewards they can
achieve. This is accomplished by establishing a confidence interval for the value
of the action, a range within which the value can be estimated to lie with high
confidence.

The UCB1 equation, as adapted from Auer et al. [1], is presented below:

UCB1(s, a) = Qs,a +

√
2 lnNs

ns,a
. (3)

Here, Qs,a is the expected reward received each time action a is selected in
state s. Ns is the number of visits the state s received, while ns,a is the number
of times action a has been selected in state s. The square-root term measures
uncertainty in the estimate of taking action a given state s.

UCB1 offers a desirable property: the discovery process can be interrupted
at any time, providing an estimate of each option’s quality based on collected
samples. This anytime property allows for more flexibility in managing compu-
tational resources.

2.3 Sequential Halving

Sequential Halving [6] is a flat, non-exploiting approach6 for the MAB problem.
The algorithm uniformly distributes a predetermined budget among all actions
and progressively eliminates the bottom half in terms of performance. While
effective at reducing expected simple regret compared to UCB1, it reduces ex-
pected cumulative regret at slower rates than UCB1.

Algorithm 1 illustrates an implementation of Sequential Halving, in which we
use a tree-like structure for consistency with subsequent algorithms. A node v is
a data structure storing the state s, cumulative reward Q, number of visits N ,
and a list of children from v (returned by children if not a leaf). We maintain
k for limiting the number of available actions, where head function iterates over

6 In contrast with exploiting policies, that allocate most resources to the most promis-
ing choice, non-exploiting policies allocate resources uniformly among choices, iter-
atively discarding the poorly-performing ones.

A Monte Carlo Algorithm for Time-Constrained General Game Playing 5

Algorithm 1 The Sequential Halving algorithm (adapted from [6])

1: function SequentialHalving(s, B)
2: Input: state s, budget B
3: Output: Recommended action
4: vroot ← ⟨s,actions(s)⟩
5: k ← |children(vroot)|
6: while k > 1 do
7: b← ⌈ B

k×log2 |children(vroot)|⌉
8: for v′ ∈ head(children(vroot, k)) do
9: Q(v′)← Q(v′) + simulate(v′, b)
10: N(v′)← N(v′) + b
11: sort(children(vroot), k)
12: k = ⌈k/2⌉
13: return children(vroot)[0]

the first k children from vroot. The Sequential Halving formula in Line 7 divides
the budget B by the number of times children can be halved until only one
child remains, given by log2 children(vroot). To distribute the budget over the
remaining children in the current iteration, B is also divided by k.

Algorithms like Sequential Halving aim to minimize simple regret by allo-
cating the same budget to all options prior to each halving. Sequential Halving
act less “greedily” in perceiving the move with highest immediate reward than
UCB1. This results in a lower bound on simple regret only after completing all
simulations. Such algorithms cannot be terminated at any time and have weaker
guarantees on the number of suboptimal selections made [6].

2.4 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) employs Monte Carlo simulations to itera-
tively build a game tree. MCTS is designed to progressively converge on the
best action as it gathers more statistical information about the domain. This
method form the basis of effective approaches for games with complex strate-
gies, such as Go, Poker, Chess, Hex, Othello, Settlers of Catan, and general
game-playing environments [13]. MCTS is based on two principles: (1) with suf-
ficient time, the sampled average reward from random simulations converges to
the true state value, and (2) previous samples can guide future searches.

Algorithm 2 outlines the MCTS process, starting instanciating a root node,
denoted as vroot. A node v consists of a state s, the list of applicable actions in
s, the parent node, a list of children, and the Q and N values for cumulative
reward and visits count, respectively.

The search process involves the following four steps:

– Selection: Beginning at the tree root, the selection phase traverses the tree
using a tree policy (π) that guides the search towards promising nodes. The
selection function searches through the tree until it finds a node with
untried actions.

6 Victor S. Putrich, Anderson Tavares and Felipe Meneguzzi

Algorithm 2 Pseudocode for MCTS algorithm (adapted from [13])

1: function MCTS(s, R)
2: Input: State s, Resource R
3: Output: Recommended action
4: vroot ← ⟨s,actions(s)⟩
5: while r ≤ R do
6: vk ← selection(vroot, π)
7: vk+1 ← expansion(vk)
8: rw ← simulation(vk+1, π∆)
9: backpropagation(vk+1, rw)
10: update r
11: return recommend(vroot)

– Expansion: A node is expanded by applying a random untried action to its
state, resulting in a new child node. This new node is initialized with the
new state, a list of applicable actions, an empty child list, and its parent
reference.

– Simulation: A playout evaluates the potential reward r of the new node.
This is done by following a default policy (π∆), which usually applies random
actions until it reaches a terminal state.

– Backpropagation: Each node from vk+1 up to the root are updated: their Q
is updated by rw and N increases by 1.

The search process continues until the algorithm uses up a specified resource
R, which can be time or a number of iterations. recommend function selects
a move according to one of three criteria: Max Child, with the highest Q value;
Robust Child, with the highest N value; or Max-Robust Child, combining both
Q and N values.

The most popular tree policy for the selection phase is the Upper Confidence
Bound (UCB1, Section 2.2), which considers each node as an individual MAB
problem. When used in MCTS, the algorithm is called Upper Confidence Bound
Applied to Trees (UCT). MCTS and UCT exhibit an anytime property, allowing
them to recommend useful actions even if the search execution is interrupted.

3 Alternatives to UCT

Simple regret minimization is strictly related to choosing a child node from the
root at the recommendation phase, and the cumulative regret is related to the
searching process. UCB1 has optimal bounds on cumulative regret recommen-
dation, but it is penalized in terms of simple regret. At the root node, sampling
in MCTS/UCT typically focuses on finding the best move with high confidence.
Once UCB1 identifies such a move, it continues to spend time on it, possibly
resulting in low information gain [15].

In time-sensitive situations, not considering other options and continuing
with the current best choice may be a potential flaw that could be improved. By

A Monte Carlo Algorithm for Time-Constrained General Game Playing 7

exploring more, the agent may quickly switch towards other promising alterna-
tives, potentially reaching higher reward regions of the search tree.

3.1 UCB√ and SR+CR

Bubeck et. al [3] shows that UCB1 exhibits a slow decrease in terms of sim-
ple regret, with the best-case scenario being a polynomial rate decrease. This
can be problematic when fast recommendations are required. Karning et. al [6]
suggest that the more exploratory policies have better bounds on simple regret
minimization.

UCB1 allocates budget based on sample means and often chooses the current
top-performing option, leading to a slow reduction in simple regret. Tolpin and
Shimony [15] modify UCB1’s policy into UCB√. This policy adjusts the UCB1

formula using a quicker-growing sublinear function, leading to a faster increase
in the uncertainty bonus on less visited nodes. The new policy changes the lnNs

term in UCB1 to
√
Ns, aiming to narrowing the gap between the selections of

non-optimal nodes.
Tolpin and Shimony also point out that nodes closer to the root and those

deeper in the tree have different goals. The former is more crucial for move
recommendations. As a result, the search strategy near the root should prioritize
reducing simple regret more quickly, while nodes deeper in the tree should aim
to match the value of taking the optimal path, aligning more with minimizing
cumulative regret.

The Simple Regret plus Cumulative Regret (SR+CR) scheme proposed by
Tolpin and Shimony integrates two different policies to strike a balance between
minimizing simple regret and cumulative regret. They introduced two specific
algorithms, both of which combine the UCT policy with more exploratory strate-
gies. The first one, UCB

√
+UCT, operates by applying the UCB

√
policy at the

root node and UCB1 to all child nodes. Their second algorithm, 1
2 -greedy+UCT,

introduces an even more exploratory policy. The 1
2 -greedy policy behaves such

that it randomly selects a move 50% of the time, without considering action’s
rewards.

3.2 Hybrid Monte Carlo Tree Search

Hybrid Monte Carlo Tree Search (H-MCTS) [10] is a SR+CR algorithm that
combines the Sequential Halving Applied on Trees (SHOT) algorithm [4] with
UCT. SHOT is a recursive Sequential Halving for building game-trees using a
non-exploiting policy. The simple regret minimization at H-MCTS applies SHOT
not only at the root node, but also deep down the tree.

The proposed method switches from UCT to SHOT when the computational
budget spent in the node achieves a certain threshold, after considering chang-
ing the policy to be safe (when a subset of good moves are already identified
and evaluated). The algorithm transition between focusing on cumulative regret
minimization to simple regret minimization after start growing SHOT at UCT

8 Victor S. Putrich, Anderson Tavares and Felipe Meneguzzi

regions that had a sufficient number of visits. Since the computational budget
per node is initially small, the simple regret tree remains shallow, as SHOT elim-
inate nodes from selection, the budget spent increases, causing the SHOT tree
to grow deeper.

H-MCTS outperforms UCT for various exploration coefficients [10] and is
highly effective in games with large branching factors, as it prunes low-promising
nodes and directs the search towards the most promising areas. However, in
games requiring tactical strategies with narrow branching, exploiting strategies
might be more suitable.

4 Improving UCT in Time-Restricted Scenarios

In this Section, we modify the basic UCT algorithm to improve performance
under tight temporal bounds.

4.1 UCT√
SH

Although H-MCTS is promising at balacing simple and cumulative regret, it
requires a predefined budget for the SHOT portion, which is not possible to
estimate for previous unknown domains. Furthermore, by neglecting the ex-
ploitation of nodes, the agent becomes prone to excessive resource allocation in
unpromising regions.

Algorithm 3 Pseudocode of UCT√
SH algorithm

1: function UCT√
SH(s, R)

2: Input: State s, Resource R
3: Output: Recommended action
4: start r
5: vroot ← ⟨s,actions(s)⟩
6: n← |children(vroot)|
7: h← 1; k ← n
8: while r ≤ R do
9: if k > kmin and r > (R h

log2 n
) then

10: Sort(vroot, k)
11: h← h+ 1; k ← max(kmin, k/2)
12: ch← children(vroot)
13: vs ← argmax

v∈head(ch,k)

πUCB√(v)

14: vk ← selection(vs, πUCB1)
15: vk+1 ← expansion(vk)
16: rw ← simulation(vk+1, π∆)
17: backpropagation(vk+1, rw)
18: update r
19: recommend(children(vroot))

A Monte Carlo Algorithm for Time-Constrained General Game Playing 9

To enhance the performance of UCT under a GGP environment with rigid
time constraints, we propose a different SR+CR method, using Sequential Halv-
ing and UCB√ , as shown in Algorithm 3. We take inspiration on the SR+CR

scheme and H-MCTS (Section 3), which aim to enhance recommendations based
on simple regret minimization near the root.

UCT√
SH prioritize simple regret minimization at root node by combining

UCB√ with Sequential Halving eliminations, and the cumulative regret compo-
nent uses UCT. In UCT√

SH , the aim of Sequential Halving is not to converge
to the single best move, but rather to limit the number of children to search,
which allows UCB√ to explore the most promising areas.

We establish a lower boundary on the number of children, kmin, for elimina-
tion to take place. When an elimination happens, the algorithm organizes the
root’s child nodes in descending order based on their expected reward. The halv-
ing operation is represented diving k by two. During the root’s child selection
process, we use k to limit the selection to the first k-th children, as shown in
Line 13.

We employ an iterative methodology to ascertain when to halve the number of
children. We compute a ratio representing the fraction of halving stages already
completed. For that, we divide the halve counter h by the maximum number of
halving operations log2 n. We compute the resource allocation required for the
next halving operation multiplying this ratio with the total resource R. After
the used resource r surpasses this value, we increment h by one. This method
ensures that the same portion of R is equally divided across all halving stages.

A key distinction from traditional MCTS lies in the separate treatment of
root selection. The root selection, depicted at line 13, iterates over the first k-th
children, by calling the head(ch, k). The selected child is the one which maxi-
mizes πUCB√ . Notice that rather than eliminating moves based on the number
of visits a node has, we determine when to apply eliminations based on R, which
can be time or number of playouts.

4.2 Clock Bonus Time

GGP agents face the challenge of playing games without prior knowledge. In
some GGP scenarios, agents have a time budget to play the entire game and must
decide how much time to allocate for each move. In Kilothon competition, when
the total time budget exhausts, the agent is punished by having its subsequent
moves randomly selected. A common strategy is to use a predefined fixed time
budget, which can lead to inefficient time management. Agents may lose long
games by exhausting their time, or could benefit from using more time to better
decisions in shorter-duration games. We propose a method for estimating the
time to spend on each move in a GGP environment, using a certain number of
simulations during the search to gather information about the game itself. Our
model employs a minimum “thinking” time, and for games where the agent can
spend more time, it provides a thinking time bonus. The Clock Bonus Time
(cbt) formula is as follows:

10 Victor S. Putrich, Anderson Tavares and Felipe Meneguzzi

cbt = max(τmin,min(τmax, G/m))− τmin . (4)

In Eq. 4, G is the total time to play a game, τmin and τmax are the minimum
and maximum allowed thinking times per move, respectively. The bonus is given
by G divided by the estimated number of moves left to finish the game m, which
we compute using playouts. The max and min functions ensure that the agent
performs at least the minimum thinking time and avoids overestimating the time
it has. We then discount the new time by τmin because it is a bonus increased
to the minimum thinking time. One way to integrate cbt with MCTS consists of
calling cbt after half of τmin has passed, which is when r ≥ R/2.

5 Experiments

To evaluate UCT√
SH, we conduct two experiments. First, we examine the agent’s

decision-making in different scenarios of reward variance. This design simulates
game situations where making a suboptimal choice significantly affects the out-
come (high variance), as well as those where suboptimal choices have a milder
effect and are less harmful (low variance). However, in these latter scenarios, a
series of misjudgments due to lack of confidence in the most rewarding decision
can potentially lead to an overall loss. The experiment examines our agent’s per-
formance within a practical context. For this, we leverage a game competition
called Kilothon, hosted within the Ludii environment. This competition serves
as a benchmark on UCT√

SH performance in a GGP environment.

5.1 Prize Box Selection Experiment

The Prize Box Selection Experiment is a simplified MAB where there are K
boxes containing a deterministic amount of money. The money for each box is
pre-selected from a Gaussian distribution N(µ, σ). We test different policies for
a given number of trials and boxes, recording how often the policy selects each
box during the experiment.

We compare UCB1, Sequential Halving, UCB√, and UCB√
sh (root policy of

UCT√
SH), at a scenario with high and low variance in reward’s distributions.

Both scenarios with 10000 trials for distribute across 30 prize boxes. In the low
variance case, we set µ = 0.3 and σ = 0.05, limited to [-0.5, 0.5]. For the high
variance case, we set µ = 0.3 and σ = 0.5, limited to [-1,1].

Figure 1 depicts the low variance scenario, where the boxes are arranged in
descending order and showing only the 20 boxes with the highest rewards (i.e.,
boxes 1-10 have the lowest reward and are omitted).

In this scenario, UCB√ presents the most dispersed trials among all boxes,
with UCB1 following. The use of eliminations in this specific scenario guides the
policies that adopt them towards more focused selections, UCB√

sh and Sequen-
tial Halving concentrated a higher quantity of resources on a smaller subset of
boxes than UCB1 and UCB√ .

A Monte Carlo Algorithm for Time-Constrained General Game Playing 11

Fig. 1. Box selection frequency under low variance reward distribution.

In the high variance test at Figure 2, both UCB1 and UCB√
sh exhibit a

stronger preference for the highest rewarded box. While Sequential Halving does
not change its selection distribution no matter the reward distribution is, due
to its non-exploiting nature. UCB√ and Sequential Halving share more similar
frequencies of selection between them, indicating their preference for exploration
over UCB1. Using UCB√

sh avoids overspending trials on the best box in high-
variance scenarios, which can be a desirable characteristic from the perspective
of simple regret minimization, although it has a clear preference for the best
rewarding box.

Fig. 2. Box selection frequency under high variance reward distribution.

Our analysis emphasizes that while exploiting (i.e allocating budget to the
most promising option) is valuable for reward maximization, exploration is cru-

12 Victor S. Putrich, Anderson Tavares and Felipe Meneguzzi

cial in game playing as it leads to the rapid discovery of beneficial moves. In
this context, UCB√

sh displays a particularly desirable quality of enhanced ex-
ploration in our experiments.

Essentially, the primary objective is to identify and execute the optimal move
in the game. The frequency of selecting the best move during the search is not
of primary concern. Furthermore, UCB√

sh appears to be less sensitive to vary-
ing rewards distributions. This resilience stems from its ability to not overlook
exploitation in high variance scenarios, and to focus resources on low variance
situations through the application of Sequential Halving eliminations.

5.2 GGP Competition Experiment

General Game Playing (GGP) is a research area focused on developing intelligent
agents capable of playing a wide variety of games without prior knowledge of any
specific game being played [5]. Ludii is a system for general game research, which
has contributed significantly to the field. Games are implemented using Ludii’s
Game Description Language (GDL). Ludii’s GDL is robust and straightforward,
it allows researchers and game designers to create new games and even reproduce
historical ones [12].

Ludii hosted a GGP competition, where games chosen for the competition
were turn-based, adversarial, sequential, and fully observable, including deter-
ministic and stochastic games. Kilothon was one of the competition tracks, where
participants play 1094 games against an implementation of UCT algorithm, na-
tive from Ludii (which we will refer to as Kilothon agent). Each agent has a strict
one-minute time limit to play each game in its entirety. When the one-minute
time limit is reached, the agent must resort to random moves until the game
concludes.

The Kilothon agent uses a fixed thinking time of 0.5 seconds per move, and
incorporates two modifications to the pure UCT algorithm: Tree Reuse enables
the agent to store the search tree from previous plays and reusing it in the future,
and Open Loop [11] for dealing with stochastic games.

Results As a baseline, we implemented our UCT version, without tree reuse
neither open loop, to compete against the Kilothon agent, and compare results
with and UCT√

SH . For both, we use 0.5s of thinking time, and we differentiate
agents when using the cbt method. We conduct 10 Kilothon trials for each agent,
computing the average payoff of our agents to evaluate their effectiveness in
Kilothon.

Table 1 presents the average payoff ± standard deviation of our tested agents
across all games, along with the maximum payoff achieved by each of them. Our
results highlights the performance of UCT√

SH method over UCT, which achieves

better scores than UCT including after adding the cbt method. UCTcbt√
SH

had the

highest score, that could achieve second place in the official competition, where
the first place achieved 0.231, and the second 0.031.

A Monte Carlo Algorithm for Time-Constrained General Game Playing 13

Table 1. Average payoff ± standard deviation and maximum payoff of each agent in
Kilothon.

AGENT PAYOFF ± s.d. MAX

UCTcbt√
SH

0.1512± 0.0176 0.1984

UCTcbt 0.0813± 0.0334 0.1489
UCT√

SH 0.0672± 0.0196 0.1019
UCT −0.0063± 0.0168 0.0157

The board games category, contains the vast majority of games in Kilothon
contest. Ludii board games are classified according the following classes classifi-
cations [2, 8]: hunt, where a player controls more pieces and aims to immobilize
the opponent; race, where the first to complete a course, with moves controlled
by dice or other random elements, wins; sow or mancala, where players sow
seeds to specific positions and capture opponent seeds; space, where players
place and/or move pieces to achieve a specific pattern, with possibility of blocks
and captures; and war, where the goal is to control territory, immobilize or
capture all opponent’s pieces.

hunt race sow space war
Board Categories

0%

10%

20%

30%

40%

50%

60%

70%

W
in

ni
ng

 P
er

ce
nt

ag
e

Winning Rate Agents
UCT
UCT cbt
UCT sh
UCT sh cbt

Fig. 3. Winning percentage in board categories for each agent, after running 10 Kilo-
thon tournaments each.

Figure 3 showcases the winning rate of our agents under the five board game
categories. The win ratio is computed as win/(win+loss), not including draws.

UCT√
SH outperforms UCT in Sow (+6%), Space (+7%), and War (+4%)

games. Against the Kilothon agent, UCT√
SH secures the respective win ratios in

hunt, race, sow, space and war, respectively: 56%, 53%, 57%, 55%, 51% . Sow and

14 Victor S. Putrich, Anderson Tavares and Felipe Meneguzzi

Space games show high variability among agents, with the highest scores achieved
by UCTcbt√

SH
of 69% and 63%. Both these games display significant performance

boosts via the cbt method for UCTcbt and UCTcbt√
SH

, both surpassing a 60% win

rate. Our evaluations reveal that the UCT√
SH strategy, especially with the cbt

method, outperforms baseline UCT. The UCTcbt√
SH

agent had the highest score,

showcasing its improvement over the baseline.

Sampling Five GGP Board Games While Kilothon competition encom-
passed an extensive variety of games, we examine a subset that fell within the
board game category. To this end, we selected games that were also part of a
study conducted by Pepels [9].

We compare UCT√
SH vs UCT, where both agents had 0.5, 1, and 2 seconds

of thinking time for each move. Each experiment running over 1000 matches.
Table 2 showcases the results.

Table 2. Results for UCT√
SH against UCT.

Game 0.5s/move 1s/move 2s/move

Pentalath 51.7%± 3% 64.9%± 2% 66.8%± 2%
AtariGo 57.0%± 3% 63.6%± 2% 71.9%± 2%
NoGo 61.0%± 3% 66.9%± 2% 79.6%± 2%
Breakthrough 48.8%± 3% 56.2%± 3% 66.9%± 2%
Amazons 46.9%± 3% 60.0%± 3% 70.1%± 2%

Overall 53.0%± 3% 62.3%± 2% 71.0%± 2%

Our study reveals the advantages of UCT√
SH over UCB1 across various game

domains. Although a thinking time of 0.5s appears to be insufficient for UCT√
SH

to gain an edge over UCB1, which increases significantly after 1 and 2 seconds.
In Pentalath, the win rate began at 51.7% and rose to 66.8% as the thinking time
increased, while NoGo achieved the highest final win rate of 79.6%. Both Break-
through and Amazons exhibited a significant increase in win rates, escalating
from less than 50% to 66.9% and 70.1%, respectively.

6 Conclusion

This work addresses two drawbacks in UCT, the base method of most general
game playing (GGP) agents: (i) UCT exploitation factor guarantees asymptotic
optimality but prevents information acquisition under strict time constraints;
(ii) the use of fixed time-budget for search per move may be an overestimate
and an underestimate for long and short games, respectively.

For (i), we introduce UCT√
SH , a new MCTS method, which foregoes the

asymptotic optimality in exchange for a timely response. UCT√
SH uses the sim-

ulation budget more exploratively than traditional UCT, since during the search

A Monte Carlo Algorithm for Time-Constrained General Game Playing 15

time the goal is to find the best possible move and return it to the game. For
(ii), we present the Clock Bonus Time (cbt) strategy to better allocate the search
time per move, given a fixed time budget to play the entire game.

We use two experiments to empirically evaluate UCT√
SH against UCT. The

Prize Box Experiment indicates that UCT√
SH is less sensible to changes in the

distribution of rewards as UCB1 and UCB√ do. These latter two have a more
spread-out choice allocation when rewards have little variation. However, when
there’s a lot of variation in the rewards, UCT√

SH tends to favor the best option,
although not as consistently as UCB1, which almost always selects the top choice.

Although it may appear that constantly selecting the known best option
would maximize rewards, as proposed in Tolpin and Shimony’s study [15], they
argue differently. They suggest that policies that promote more exploration at
the root level can actually lead to faster identification of better moves.

In the Kilothon competition, our method exceeded the performance of the
baseline UCT. The implementation of the cbt strategy more than doubled the
scores for both agents, with UCTcbt√

SH
securing the second place in the official

Kilothon competition. This achievement is remarkable, considering our agent
relies solely on Monte Carlo simulations and does not utilize any other enhance-
ments or parallelism.

Results displayed at Table 2 demonstrate a significant advantage of UCT√
SH

over UCT, this advantage becomes more pronounced when the thinking time is
increased to at least 1 second. These findings suggest that using 0.5 seconds of
thinking time, as Kilothon agent does, the time constraint imposed might be too
unrealistic for agents to play in many game domains.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine learning 47(2), 235–256 (2002)

2. Brice, W.C.: A history of board-games other than chess. by h. j. r. murray. oxford:
Clarendon press, 1952. pp. viii 287, 86 text figs. 42s. The Journal of Hellenic Studies
74, 219–219 (1954). https://doi.org/10.2307/627627

3. Bubeck, S., Munos, R., Stoltz, G.: Pure exploration in finitely-armed and
continuous-armed bandits. Theoretical Computer Science 412(19), 1832–1852
(2011)

4. Cazenave, T.: Sequential halving applied to trees. IEEE Transactions on Compu-
tational Intelligence and AI in Games 7(1), 102–105 (2014)

5. Genesereth, M., Love, N., Pell, B.: General game playing: Overview of the aaai
competition. AI magazine 26(2), 62–62 (2005)

6. Karnin, Z., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed
bandits. In: International Conference on Machine Learning. pp. 1238–1246. PMLR
(2013)

7. Kocsis, L., Szepesvári, C., Willemson, J.: Improved monte-carlo search. Univ.
Tartu, Estonia, Tech. Rep 1, 1–22 (2006)

8. Parlett, D.: The Oxford history of board games. Oxford University Press, Oxford
(1999)

16 Victor S. Putrich, Anderson Tavares and Felipe Meneguzzi

9. Pepels, T.: Novel selection methods for monte-carlo tree search. Master’s thesis,
Department of Knowledge Engineering, Maastricht University, Maastricht, The
Netherlands (2014)

10. Pepels, T., Cazenave, T., Winands, M.H., Lanctot, M.: Minimizing simple and
cumulative regret in monte-carlo tree search. In: Workshop on Computer Games.
pp. 1–15. Springer (2014)

11. Perez Liebana, D., Dieskau, J., Hunermund, M., Mostaghim, S., Lucas, S.: Open
loop search for general video game playing. In: Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation. pp. 337–344 (2015)

12. Piette, É., Soemers, D.J.N.J., Stephenson, M., Sironi, C.F., Winands, M.H.M.,
Browne, C.: Ludii – the ludemic general game system. In: Giacomo, G.D., Catala,
A., Dilkina, B., Milano, M., Barro, S., Bugaŕın, A., Lang, J. (eds.) Proceedings of
the 24th European Conference on Artificial Intelligence (ECAI 2020). vol. 325, pp.
411–418. IOS Press (2020)

13. Świechowski, M., Godlewski, K., Sawicki, B., Mańdziuk, J.: Monte carlo tree search:
A review of recent modifications and applications. Artificial Intelligence Review pp.
1–66 (2022)

14. Świechowski, M., Park, H., Mańdziuk, J., Kim, K.J.: Recent advances in general
game playing. The Scientific World Journal 2015 (2015)

15. Tolpin, D., Shimony, S.: Mcts based on simple regret. In: Proceedings of the AAAI
Conference on Artificial Intelligence. vol. 26.1, pp. 570–576 (2012)

