
Towards a Monitoring Framework for Agent-Based
Contract Systems

Noura Faci, Sanjay Modgil, Nir Oren, Felipe Meneguzzi, Simon Miles, Michael Luck

Department of Computer Science, King’s College London, Strand, London WC2R 2LS, UK
noura.faci@kcl.ac.uk

Abstract. The behaviours of autonomous agents may deviate from those deemed
to be for the good of the societal systems of which they are a part. Norms have
therefore been proposed as a means to regulate agent behaviours in open and dy-
namic systems, and may be encoded in electronic contracts in order to specify
the obliged, permitted and prohibited behaviours of agents that are signatories to
such contracts. Enactment and management of electronic contracts thus enables
the use of regulatory mechanisms to ensure that agent behaviours comply with
the encoded norms. To facilitate such mechanisms requires monitoring in order
to detect and explain violation of norms. In this paper we propose a framework
for monitoring that is to be implemented and integrated into a suite of contract en-
actment and management tools. The framework adopts a non-intrusive approach
to monitoring, whereby the states of a contract with respect to its contained norms
can be inferred on the basis of messages exchanged. Specifically, the framework
deploys agents that observe messages sent between contract signatories, where
these messages correspond to agent behaviours and therefore indicate whether
norms are, or are in danger of, being violated.

1 Introduction

Interactions in systems composed of heterogeneous and self-interested agents are in-
herently unreliable, requiring some form of societal control to bind these interactions.
The introduction of norms has been proposed to address this need in such systems [8,
1], allowing for open societies of autonomous agents that are, nevertheless, regulated
to some degree. Such norms are usually specified using deontic concepts, including
the notions of obligations, permissions and prohibitions that govern or direct agent be-
haviour in multi-agent systems. By incorporating sets of these norms into a formal
document representation, it is possible to define electronic contracts, which mirror the
the paper versions exchanged between businesses today, and offer the possibility of dy-
namic, runtime enforcement of contract party agent behaviours to ensure compliance
with norms.

This work is situated in the context of the CONTRACT project1 that aims to de-
velop frameworks, components and tools that make it possible to model, build, verify
and monitor distributed electronic business systems on the basis of dynamically gener-
ated, cross-organisational contracts which underpin formal descriptions of the expected

1 www.ist-contract.org



behaviours of individual agents and the system as a whole. In this paper we report on
ongoing development of the project’s framework for monitoring electronic contracts.

The fact that agents are to varying degrees autonomous means that their behaviours
may deviate from those prescribed by norms; that is, agents may violate norms. Thus
there are requirements for monitoring norm violations during run-time contract-based
governance of agent behaviours [14]. Monitoring has also been extensively studied in a
Web Services context (e.g., [6, 12, 13]). However, monitoring of contracts specified as
Service-Level Agreements (SLA), focuses on quality of service metrics rather than on
the behaviours of contractual entities. We adopt the latter perspective in this paper; one
that allows for planning-oriented detection and analysis of norm violation by agents.
Two types of monitoring have been adopted in multi-agent systems:

1. In corrective monitoring (e.g., [5]) violations are detected as they occur, and the re-
sults of analysis of these violations are used to instigate corrective measures. Such
measures might include the imposing of punishments on those contract parties that
violate norms, thus motivating future compliance (as well as possibly compensat-
ing contract parties injured by non-compliance). These punishments may be man-
ifest in the form of less favourable terms offered to the violating parties when re-
negotiating contracts. Furthermore, the very fact that agents are being monitored,
and thus the threat of punishment, may itself motivate compliance.

2. In predictive monitoring (e.g. [18]) norm violations are predicted and actions are
specified to avoid violation. The obvious advantage is that the business process can
continue uninterrupted by remedial measures.

Our focus in this paper is on corrective monitoring based on run-time observation
of agent behaviours. However, we also discuss how the monitoring of agent behaviours
can be used for predictive purposes.

Approaches to monitoring of agent behaviours can also be distinguished according
to whether they adopt an intrusive or overhearing approach. In the intrusive approach
(e.g., [2, 4, 16, 9]), the mental states of agents are assumed to be available for inspection.
Agents communicate their states to monitors that subsequently interpret the behaviours
of agents. Intrusive approaches thus make the design of agent-based systems more com-
plex, and rely heavily on the compliance of agents to communicate the required data.
We therefore adopt the overhearing approach [5] in which messages exchanged among
agents are observed, and behaviours are inferred from these messages.

The paper is organised as follows. Section 2 briefly describes the CONTRACT
project’s representation of electronic contracts, their contained norms, and the architec-
ture for enactment and managing of contracts. Sections 3, 4 and 5 then describe the pri-
mary contribution of this paper: we propose a multi-agent framework for non-intrusive
monitoring of electronic contracts, whereby the states of a contract with respect to its
contained norms can be inferred on the basis of messages exchanged. In this way one
can recognise whether a norm is currently in force, in danger of being violated, and
whether a norm is in fact violated or complied with. We believe that our framework is
the first to adopt such an approach to monitoring of electronic contracts.

Section 3 focuses on the entities and associated information flows that comprise
the monitoring aspects of the architecture, while Section 4 then characterises the be-
haviour of the architecture’s agents in terms of the messages these agents receive and



send. Section 5 then describes the mapping from the norms expressed in a contract to
a representation suitable for monitoring, and how violations are detected based on the
processing of these representations and the observed exchange of messages between
contract party agents. Section 6 looks forward to future work; in particular, work on
generation of explanations for norm violations, and representation of danger states that
indicate an increased likelihood of norm violation and thus enable predictive monitor-
ing. Finally, Section 7 concludes and discusses related work.

2 Norms and Architecture

The CONTRACT project encodes contracts as XML documents consisting of normative
clauses that are essentially declarative specifications of agent behaviours. Associated
with these documents are ontologies that describe and define background concepts and
terms. These contract documents and associated ontologies are more fully described in
[15], but the XML encoding of normative clauses is the primary input to the monitor-
ing architecture. Here, we briefly review our underlying model of norms that ground
specification of a contract’s normative clauses.

Norms can be classified into obligations (what should be done), prohibitions (what
should not be done) and permissions (what is allowed to be done). Norms affect target
agents that agree to abide by the norms contained in a contract, which apply under cer-
tain circumstances. Note that these circumstances may occur multiple times during a
contract’s lifetime. For example, an obligation to keep a fire door shut (the obligation’s
goal state or condition) takes force whenever the door is opened. Whenever such trigger-
ing (activating) circumstances arise, an instantiated version of the norm parameterised
by those circumstances begins to take effect on the target agent’s behaviour.

More formally, norms are tuples of the form:

(NormType, NormActivation, NormCondition, NormExpiration, NormTarget)

where NormType∈ {obligation, permission, prohibition}, NormActivation denotes
the conditions under which the norm is activated (triggered), and NormCondition
denotes the goal or state that:

– must be brought about by the NormTarget in the case of an obligation;
– may be brought about by the NormTarget in the case of a permission; or
– must not be brought about by the NormTarget in the case of a prohibition.

Finally NormExpiration denotes the conditions under which the norm is no longer
in force.

Example 1. Consider the following obligation ObDel on an agent AgX to deliver
GoodsZ to agent AgY within one week of receiving the order from AgY :

– NormType = obligation
– NormActivation = order placed(AgY, AgX,GoodsZ) denoting that AgY has

placed an order to AgX for GoodsZ



– NormCondition = deliver(AgX,AgY, GoodsZ, 1 week) denoting that AgX has
delivers GoodsZ to AgY within 1 week

– NormExpiration = delivered(AgX, AgY,GoodsZ, 1 week) denoting that AgX
has delivered GoodsZ to AgY in 1 week

– NormTarget = AgX

Consider also the permission PerDel and prohibition ProDel that are defined in the
same way as ObDel, except that in the former case NormType = permission, and in
the latter case NormType = prohibition. Thus:

– PerDel permits agent AgX to deliver GoodsZ to agent AgY within one week of
receiving the order from AgY

– ProDel prohibits agent AgX from delivering GoodsZ to agent AgY within one
week of receiving the order from AgY 2. ¥

An administrative architecture [11] has also been defined, consisting of a set of
service-oriented middleware components and design patterns to support management
of electronic contracts. The architecture can be seen as a combination of the following
stages, which are applied to an electronic contracting application as a methodological
process. First, off-line verification mechanisms check whether the contracts to be en-
acted obey certain properties, such as being consistent, or achievable given the possible
states the world can reach. The architecture also provides for definition of application
specific processes suitable for administration of the electronic contracts through their
lifetimes, including enactment, updating, termination, renewal, and so on. Such pro-
cesses may also include observation of the system, so that the contract can be enforced
or otherwise effectively managed. Once suitable application processes are identified,
we can specify the roles that agents play within them, and the components that agents
can utilise to allow them to manage the contracts. In the following section we give more
detail on the agents, components and processes relevant to monitoring.

3 Overview of Monitoring

In this section, we introduce a novel approach to monitoring for on-line detection of
contract/norm violations in contract-based systems. The approach describes observa-
tion of communications between contract parties, and performs matching of the ob-
served communications against augmented transition networks (ATNs)[17] which are
essentially directed labelled graphs consisting of nodes and arcs. These ATNs charac-
terise acceptable, prohibited, and obliged behaviours. The contract parties are treated as
black boxes and their internal state transitions are invisible to the Monitoring compo-
nents.

As discussed in Section 1, our approach to monitoring is based on observation of
messages received and sent by agents that are signatories to a contract (the contract

2 The example prohibition is primarily illustrative; it is admittedly somewhat odd to have a
prohibition on delivery of goods within a certain time period. We model such a prohibition
given the convenient representational match with the permission and obligation.



parties). This requires that each normative clause in a contract is mapped to a represen-
tation whereby:

– the state (of the world) described by a norm’s NormActivation can be recognised
as being brought about, on the basis of messages exchanged; and

– the state (of the world) described by a norm’s NormCondition as being obliged
to, permitted to, or prohibited from, being brought about, can be recognised on the
basis of messages exchanged.

For example, consider the obligation ObDel in Example 1. The obligation is acti-
vated when

order placed(AgY, AgX,GoodsZ)

holds, and this is recognised as being the case when the message

order(AgY, AgX,GoodsZ)

has been sent by AgY to AgX . Observation of this sent message indicates that the
contract is in a critical state with respect to ObDel.

The obligation is fulfilled when ObDel’s

NormCondition = deliver(AgX, AgY, GoodsZ, 1 week)

holds. This is recognised as being the case when the message

notify delivery(AgX,AgY, GoodsZ)

is observed as having been sent by AgX to AgY within one week of receipt of the
above order message. If the notify delivery message is not observed as having been
sent within one week, then ObDel is deemed to be violated.

In Section 5 we further describe a framework for mapping a contract’s normative
clauses to augmented transition networks (ATNs) [17], which constitute the monitoring
representation, and which associate the NormActivation and NormCondition con-
stituents of norms with messages exchanged.

Figure 1 provides an overview of the monitoring architecture. The architecture has
been designed based on the assumption that monitoring parties are external to the con-
tract itself. This means that Monitors can be flexibly deployed for any contracts, pro-
vided that appropriate ATN representations of contracts are available for input to Mon-
itors, and that Monitors can operate asynchronously from the execution of the contract
itself. These design assumptions ensure that the system’s performance and monitoring
performance are independent of each other. Furthermore, failure of one will not ad-
versely affect the other (for example if one monitor fails then another monitor can be
deployed without interrupting execution of the contract).

In the architecture, a Mapper maps a contract (obtained from a Contract Store) to
ATNs for input to the Monitor. This input is provided off-line. During the run-time
enactment of a contract it is the actual messages exchanged that are matched by the
Monitor with the ATNs in order to detect norm violations.



Fig. 1. Monitoring Architecture (ovals denote agents and cylinders denote data stores)

Notice that all messages exchanged between contract party agents, and between
contract party agents and the Environment (communicative entities that are not con-
tract party agents) must be observable by Observers. For effective monitoring, this
requirement is mandatory, and can be enforced by enabling Observer interception of
all communicative interactions. This is illustrated in Figure 1 in which the Observer
probes each of the communication channels between agents, and between agents and
the environment. These communication channels are conceptual entities; in practice,
the probing may be implemented by associating the Observer with the middleware com-
munication interfaces of each agent. Intuitively, if every normative clause is mapped to
messages exchanged by entities, and all such messages are observable, then this pro-
vides some measure of guarantee that every norm violation can be monitored.

Finally, the Monitor processes each norm violation in order to provide an explana-
tion of the violation that is made use of by Management party agents in order to, for



example, impose punishments in the case of corrective monitoring, or instigate preemp-
tive action in the case of predictive monitoring. In Section 6 we look forward to future
work addressing explanation generation. The following section then characterises the
behaviour of the agents in Figure 1 in terms of their interfaces with other agents.

4 Agent Behaviours in the Monitoring Architecture

The monitoring architecture is intended to be integrated into a wide range of appli-
cations, and deployed in varying ways. To ease this integration process, we follow a
service-oriented approach by defining the form of messages sent from and received
by the monitoring components (i.e. their interfaces). Publishing an interface allows
technology-specific agents to be implemented such that they use the correct format of
messages to communicate, regardless of their internal architectures. In this section, we
define the interfaces for the components introduced in the previous section. For each
component, we define the form of each message type it sends, the parameters the mes-
sage provides, and the role of the agent expected to receive it. Note that in what follows,
messages will contain the unique names monitor-id, observer-id,. . . of agents and other
components of the monitoring architecture.

4.1 Monitor

The Monitor is required to report violations of active contracts (corrective monitor-
ing) and issue warnings when there is a risk of violation (predictive monitoring). These
behaviours are specified by messages sent from the Monitor to Observers and Manage-
ment parties. These messages are of the following form:

– Subscribe(monitor-id, observer-id, contract-id, timeInterval/eventExp): The Mon-
itor agent, named monitor-id, subscribes to the Observer, named observer-id with
respect to a given contract, named contract-id, in order to receive observed data
at intervals corresponding to period, timeInterval, or when a condition eventExp is
true.

– Cancel(monitor-id, observer-id, contract-id) : The Monitor agent, monitor-id, can-
cels its subscription to the Observer, observer-id for contract-id.

– Inform(monitor-id, manager-id, contract-id, norm, explanation, violator(s)) : The
Monitor agent, monitor-id, informs manager-id of a violation of a norm by viola-
tor(s) in contract-id, because of explanation.

– Inform(monitor-id, manager-id, contract-id, norm, explanation, violator(s), timeIn-
terval): The Monitor agent, monitor-id, informs manager-id of the existence of a
danger state in which, after a period of time, timeInterval, after the sending of the
inform message, violator(s) may violate norm in contract-id, because of explana-
tion.

4.2 Observer

The Observer collects data (observes messages). This requires that the Observer sub-
scribes to communication channels between agents, and between agents and the envi-
ronment.



– Subscribe(observer-id, communication channel-id) : Observer, observer-id, sub-
scribes to communication channel communication channel-id

Messages are relayed from the Observer to the Monitor:

– Notify(observer-id, monitor-id, contract-id, contract messages) : Observer, observer-
id, notifies Monitor, monitor-id, of contract messages exchanged, sent and received
by contract parties in contract-id.

4.3 Mapper

The Mapper maps the representation of the contract in a contract store to the ATN mon-
itoring representation for input to the Monitor. This behaviour is specified by messages
sent from the Mapper to the Contract store and Monitor:

– Subscribe(mapper-id, contractStore-id): mapper-id subscribes to contractStore-id.
– Notify(mapper-id, monitor-id, contract-id, contractParty-id, transition-structure):

mapper-id notifies monitor-id with the mapped ATN representation, transition-
structure, of a new active contract, contract-id, where this ATN specifies contract
messages (see above) associated with transitions between states, as described in
Section 5.

4.4 Contract Store

The Contract Store provides the Mapper with Contracts, as specified by messages sent
from the Contract Store to the Mapper. These messages are of the form:

– Inform(contractStore-id, mapper-id, activeContract-id, norm clauses):
contractStore-id provides mapper-id with a new contract, activeContract-id, and
its contained normative content, norm clauses, which is to be mapped to the ATNs.

4.5 Manager

The Manager receives the results of monitoring from the Monitor, as specified by mes-
sages sent from the Manager to the Monitor:

– Subscribe(manager-id, monitor-id, contract-id) : manager-id subscribes to a Mon-
itor, monitor-id, for a contract, contract-id.

– Cancel(manager-id, monitor-id, contract-id) : manager-id cancels its subscription
to monitor-id for contract-id.

5 Contract Monitoring: Representation and Interpretation

This section describes the mapping of normative clauses in a contract to its monitoring
representation – Augmented Transition Networks (ATNs) – such that the normative
clauses map to messages exchanged between contract parties. It is these messages that
are observed in order to determine when a contract is in a critical state with respect to a
given normative clause, and whether contract parties comply with the normative clause.



5.1 Mapping Norms to Augmented Transition Networks

ATNs were originally developed for natural language processing, and are recursive in
the sense that ATNs can themselves label arcs. In the ATN representation of normative
clauses, nodes correspond to states of the contract in which norms are activated and
norms may or may not be violated. Transitions between nodes are labelled by mes-
sages sent and received by contract party agents. Intuitively, the messages correspond
to actions executed by agents, where these actions in turn bring about states of affairs
in which norms are activated, and states of affairs in which norms may or may not be
violated.

We have defined a general framework for mapping that takes as input the XML
encoding of a contract and its associated OWL (www.w3.org/TR/owl-ref/) encoded do-
main and action ontologies [15]. Domain ontologies define the predicates used in the
description of states, and the action ontologies describe the actions executed by contract
party agents and interacting agents in the environment, where these action ontologies
include the pre and post-conditions of the actions that are in turn described by predicates
in the domain ontology.

Given norm (NormType, NormActivation, NormCondition, NormExpiration,
NormTarget), then for N = NormActivation or N = NormCondition, the actors
and actions associated with N are identified, and respectively denoted by actors(N )
and actions(N ). Currently, this process of identification is not automated, and involves
selection of actions in the action ontology whose post-conditions (defined in the domain
ontology) match the NormActivation and NormCondition.

A mapping is then defined that takes as input N , actors(N ) and actions(N ), and
returns a set of messages MN and synchronisation conditions SynchN on MN :

message map(N , actors(N ), actions(N )) 7→ (MN ,SynchN )

Intuitively, messages MN are those exchanged between actors(N ). The synchronisa-
tion conditions SynchN describe temporal relations on these messages such that if the
messages are observed as specified by these temporal relations, then one can infer that
actors(N ) have executed actions(N ) in order to bring about N . Note that in what fol-
lows we will focus on the contents of messages and will not commit to a specific agent
communication language.

Example 2. Recall ObDel in Example 1:

– NormType = obligation
– NormActivation = order placed(AgY, AgX,GoodsZ)
– NormCondition = deliver(AgX, AgY, GoodsZ, 1 week)
– NormExpiration = delivered(AgX, AgY, GoodsZ, 1 week)
– NormTarget = AgY

For NormActivation, the actors and actions are as follows:

actors(order placed(AgY, AgX,GoodsZ)) = {AgY, AgX}
actions(order placed(AgY, AgX,GoodsZ)) = {order(AgY,AgX, GoodsZ)}
and the mapping yields the tuple (Morder placed(...),Synchorder placed(...)) =



({m1 = order(AgY,AgX, GoodsZ)}, {(m1, t1)})

and the synchronisation indicates that t1 is the time at which the order message m1 is
sent.

For NormCondition, the actors and actions are as follows:

actors(deliver(AgX,AgY, GoodsZ, 1 week)) = {AgX,AgY }
actions(deliver(AgX, AgY, GoodsZ, 1 week)) = {deliver(AgX,AgY,GoodsZ)}
and the mapping yields the tuple (Mdeliver(...),Synchdeliver(...)) =

({m2 = notify delivery(AgX, AgY, GoodsZ)}, {(m2, t1 + 1week})

and the synchronisation indicates that the time at which the notify delivery message
is sent is within 1 week of the order message m1 being sent. ¥

Notice that both activation of a norm and the norm conditions may involve multiple
actors jointly executing actions according to specific temporal constraints. For exam-
ple, suppose that the obligation on AgX , to deliver GoodsZ to AgY within 1 week, is
activated only if AgY has placed the order, and within three days of placing the order
AgX receives confirmation from its bank that AgY has cleared monies owed to AgX
for previous orders. For this activation condition N ′ we would have:

(MN ′ ,SynchN ′) =
(
{m1 = order(AgY,AgX, GoodsZ),
m2 = notify clearance(Bank AgX, AgX, debt(AgY ))},
{(m1, t1), (m2, t1 + 3days)}
)

In general, for each normative clause NC in a contract, its NormActivation (NCA)
is mapped to a pair (MNCA ,SynchNCA ), which labels a transition to a node (see
Figure 2) that denotes a state S which, if the norm is an obligation or prohibition, is
critical and so must be monitored. Its NormCondition (NCC) is mapped to a pair
(MNCC

,SynchNCC
) that labels a transition from S to S′.

Fig. 2. ATN representation of a normative clause

During contract enactment (i.e., at run-time) these ATNs are interpreted with re-
spect to messages observed as defined by the associated synchronisation conditions. In
this way, critical states are identified and norm violations detected.



5.2 Interpretation of Augmented Transition Networks

If we refer to Figure 2, then we can make the following general statements:

– If NC is an obligation, then the contract is in a critical state S with respect to NC
if messages MNCA are observed according to SynchNCA , and the obligation is
violated if messages MNCC

are not observed as having been sent according to
SynchNCC

.

– If NC is a prohibition, then the contract is in a critical state S with respect to
NC if messages MNCA

are observed according to SynchNCA
, and the prohibi-

tion is violated if messages MNCC
are observed as having been sent according to

SynchNCC .

– If NC is a permission, then the contract is in an allowed state S with respect to
NC if messages MNCA

are observed according to SynchNCA
, and the permis-

sion is executed if messages MNCC
are observed as having been sent according

to SynchNCC
. We will further motivate requirements for ATN representations of

permitted behaviours (where the issue of violation does not arise) in Section 5.3.

Example 3. Recall the obligation ObDel, permission PerDel and prohibition ProDel

described in Example 1. Each of these have the same NormActivation and Norm
Condition. Hence for each we obtain the ATN shown in Figure 3:

Fig. 3. ATN representation of ObDel, PerDel, and ProDel

In the case that the ATN represents ObDel or ProDel, then the contract is in a crit-
ical state with respect to the norm if AgX is observed as having received the message
order(AgY, AgX, GoodsZ) from AgY at some time t1. If the ATN represents ObDel,
then ObDel is violated if notify delivery(AgX, AgY,GoodsZ) is not observed as
having been sent by AgX to AgY within 1 week after time t1. If the ATN represents
ProDel, then ProDel is violated if notify delivery(AgX, AgY, GoodsZ)} is observed
as having been sent by AgX to AgY within 1 week after time t1. ¥

5.3 Composition of ATNs

Thus far we have considered only ATNs with two nodes representing individual nor-
mative clauses. However, a contract may implicitly specify work-flow patterns by asso-
ciating the NormCondition of one norm with the NormActivation of another. For



example, AgX’s delivery of GoodsZ to AgY , resulting in the contract state S′, may
itself be an activation condition for another norm. Hence, if the ATN in Figure 3 de-
notes either ObDel or PerDel, then S′ may denote a state of the contracts in which the
obligation:

AgY is obliged to send payment for GoodsZ to AgX within three days

is activated (illustrating why we want to encode ATN representations of permitted be-
haviours). A transition from S′ to S′′ will then be labelled by a message sent from AgY
to AgX indicating payment. If this message is not observed as having been sent in three
days, then the obligation will be deemed violated.

Now, suppose the ATN in Figure 3 denotes ProDel. In this case, observation of the
sent message notify delivery(AgX,AgY,GoodsZ) within 1 week, indicates viola-
tion of the prohibition. S′ may then denote a critical state of the contract with respect
to a now activated secondary obligation — a contrary to duty obligation — which now
applies to AgX . Such an obligation might be to pay a penalty that is imposed as a pun-
ishment by a management party agent that is informed of AgX’s violation of ProDel.

6 Future Work

We have thus far implemented black box agents and their associated communication
interfaces as described in Sections 3 and 4. It remains to further specify and implement
the mapping mechanisms outlined in Section 5.1 and implement violation detection
algorithms (based on matching ATNs and observed messages) and violation explanation
algorithms for use by the Monitor.

To enable explanation of violations, we may need to refer to some external repre-
sentation of the the workflow (that is not implicit in the contract). For example, consider
an obligation Ob1 whereby certain behaviours Per1, P er2, . . . are permitted in order to
realise this obligation (in planning terms the goal state that is obliged to be realised by
Ob1 may be achieved by plans Per1, P er2, . . .). Certain behaviours Pro1, P ro2, . . .
may be prohibited from realising Ob1. If Ob1 is detected as having been violated, then
an explanation may, for example, indicate that Ob1 was violated because behaviours
Per1, Per2, . . . were not executed (as determined by the messages corresponding to
these behaviours not being observed), and because behaviours Pro1, P ro2, . . . were
not allowed for realising Ob1. Notice that such an explanation could be augmented by
domain and situation specific information indicating why Per1, P er2, . . . could not be
executed. For example consider an obligation to repair an aircraft engine within a given
time (this example is taken from the CONTRACT prject use case [10]). In order to fulfill
this obligation, it may be permitted to source engine parts from one part manufacturer
and prohibited to source engine parts from another part manufacturer. If the obligation
is violated (no message notifying completion of repair is sent) then the explanation may
account for the fact that the permitted ordering of parts did not take place (augmented
by situation specific data as to why the permitted behaviour did not occur).

Finally, we note that the focus of this paper has been on corrective monitoring
whereby critical states are monitored for violation of norms. Predictive monitoring re-
quires representation and recognition of danger states, which are associated with agent



behaviours that suggest that a norm may be in danger of violation. Future work will
address how such states may be identified empirically, for example by observing and
analysing violation of norms at contract run-time and the intermediate states that are
reached prior to violation. These intermediate states can then be explicitly included in
the ATN representation of contracts, so that during future run-time executions, obser-
vation of messages indicating transition to these states may signal preemptive action to
avoid violation.

7 Conclusions

We conclude with a discussion of closely related work. As mentioned in the introduc-
tion, monitoring of contracts has been extensively studied in a Web Services context
(e.g., [6, 12, 13]), where the focus has been on quality of service metrics rather than on
the behaviours of contractual entities. Other work has adopted an overhearing approach
to monitoring in organisational contexts. Legras et al. [7] use overhearing of messages
to monitor changes to the beliefs that agents have about their relationships with other
agents in an organisation. Based on this information, a model of how each agent per-
ceives their organisational relationships is accordingly updated. Conversely, Kaminka
et al. [5] have developed a plan-recognition approach to overhearing in order to monitor
the state of distributed agents that work in a team and collaborate to carry out a specific
task. The monitor makes use of the known plan representation of this task to infer on the
basis of overheard messages, the belief states of different team-members. These works
have thus adopted overhearing in order to infer the mental states of the agents, where
these states are domain-dependent and private to the agents. By contrast, in this paper
we have described a multi-agent framework that adopts overhearing for a different pur-
pose: it is the states of a contract with respect to its contained norms that are inferred on
the basis of messages exchanged. Thus, the proposed approach relies on public knowl-
edge which are norms in a contract. In this way, one can recognise whether a norm
is currently in force (activated), in danger of being violated, and whether a norm is in
fact violated or complied with. Moreover, in contrast to existing approaches to contract
monitoring, our approach benefits from requirements emerging from real world busi-
ness applications [3].

Acknowledgements The research described in this paper is partly supported by the Eu-
ropean Commission Framework 6 funded project CONTRACT (INFSO-IST-034418).
The opinions expressed herein are those of the named authors only and should not
be taken as necessarily representative of the opinion of the European Commission or
CONTRACT project partners.

References

1. R. Conte, R. Falcone, and G. Sartor. Agents and norms: How to fill the gap? Artificial
Intelligence and Law, 7:1–5, 1999.

2. B. Horling, B. Benyo, and V. Lesser. Using self-diagnosis to adapt organizational structures.
In Proceedings of the Fifth International Conference on Autonomous Agents, pages 529–536,
Montreal, Canada, June 2001.



3. M. Jakob, M. Pchouek, J. Chabera, S. Miles, M. Luck, N. Oren, M. Kollingbaum, C. Holt,
J. Vazquez, P. Storms, and M. Dehn. Case studies for contract-based systems. In Proceed-
ings of the Seventh International Joint Conference on Autonomous Agents and Multiagent
Systems, Industry and Applications Track, 2008.

4. N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence, 75(2):195–240, 1995.

5. G.A. Kaminka, D.V. Pynadah, and M. Tambe. Monitoring teams by overhearing: A multi-
agent plan-recognition approach. Journal of Artificial Intelligence Research, 17:83–135,
2002.

6. A. Keller and H. Ludwig. The WSLA framework: Specifying and monitoring service level
agreements for web services. Journal of Network Systems Management, 11(1):57–81, 2003.

7. F. Legras and C. Tessier. Lotto: group formation by overhearing in large teams. In AAMAS
’03: Proceedings of the second international joint conference on Autonomous agents and
multiagent systems, pages 425–432, New York, NY, USA, 2003. ACM.

8. F. Lopez Y Lopez, M. Luck, and M. d’Inverno. A normative framework for agent-based
systems. Computational and Mathematical Organization Theory, 12(2-3):227–250, 2006.

9. H. Mazouzi, A. El Fallah Seghrouchni, and S. Haddad. Open protocol design for complex in-
teractions in multi-agent systems. In AAMAS ’02: Proceedings of the first international joint
conference on Autonomous agents and multiagent systems, pages 517–526, New York,USA,
2002. ACM.

10. F. R. Meneguzzi, S. Miles, M. Luck, C. Holt, M. Smith, N. Oren, N. Faci, M. Kollingbaum,
and S. Modgil. Electronic contracting in aircraft aftercare: A case study. In Proceedings of
the Seventh International Joint Conference on Autonomous Agents and Multiagent Systems,
Industry and Applications Track, 2008.

11. S. Miles, N. Oren, M. Luck, S. Modgil, N. Faci, C. Holt, and G. Vickers. Modelling and
administration of contract-based systems. In Proceedings of the AISB 2008 Symposium on
Behaviour Regulation in Multi-agent Systems, pages 19–24. The Society for the Study of
Artificial Intelligence and Simulation of Behaviour, 2008.

12. Z. Milosevic, S. Gibson, P.F. Linington, J. Cole, and S. Kulkarni. On design and implemen-
tation of a contract monitoring facility. In Proceedings of the First International Workshop
on Electronic Contracting, page 10. IEEE, 2004.

13. C. Molina-Jimenez, S. Shrivastava, J. Crowcroft, and P. Gevros. On the monitoring of con-
tractual service level agreements. In WEC ’04: Proceedings of the First IEEE International
Workshop on Electronic Contracting (WEC’04), pages 1–8, Washington, DC, USA, 2004.
IEEE Computer Society.

14. C. Molina-Jiménez, S. K. Shrivastava, E. Solaiman, and J. P. Warne. Contract representation
for run-time monitoring and enforcement. In CEC, pages 103–110, 2003.

15. S. Panagiotidi, J. Vazquez-Salceda, S. Alvarez-Napagao, S. Ortega-Martorell, S. Willmott,
R. Confalonieri, and P. Storms. Intelligent contracting agents language. In Behaviour Regu-
lation in MAS, AISB 2008 Convention Communication, Interaction and Social Intelligence,
pages 49–55, 2008.

16. M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research, 7:83–
124, 1997.

17. W. A. Woods. Transition network grammars for natural language analysis. Communications
of the ACM, 13(10):591–606, 1970.

18. L. Xu and M.A. Jeusfeld. Pro-active monitoring of electronic contracts. In J. Eder and
M. Missikoff, editors, Advanced Information Systems Engineering (CAiSE), pages 584–600.
Springer-Verlag, 2003.


