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Abstract—Low-cost navigation solutions for indoor envir-
onments have a variety of real-world applications ranging
from emergency evacuation to mobility aids for people with
disabilities. Challenges for indoor navigation include robust
localization in the absence of GPS, intuitive recognition of
user navigation goals, and efficient route-planning and re-
planning techniques. In this paper, we present an architecture
for indoor navigation that integrates observed behavior for
recognizing user navigation goals and estimating future paths
without direct input from the user. Our architecture comprises
of three core components: effective localization, map represent-
ation and route planning, and plan recognition. The outlined
architecture is unique in its integration of the core navigation
and prediction components. To evaluate the feasibility of the
proposed architecture, we develop a prototype application on
a commercial smart-phone. The developed application was
tested in an indoor environment and was found to accurately
predict intended destination and to provide effective navigation
guidance to the user.

Keywords-GPS-free localization; resource-constrained path-
planning; MDP-based intention prediction; hierarchical map
representation; mobile computing.

I. INTRODUCTION

Current mobile phone technology has evolved to a point
where affordable smart-phones with a variety of sensors are
readily available to the public. The capability of the on-
board sensing make them ideal for developing navigation
applications, whereby relevant information is communicated
to users based on their actively or passively determined
location. While outdoor navigation is a well established
technological field and available for most modern smart-
phones, analogous techniques for indoor environments are
still in their infancy.

In this paper, we describe a unique architecture for in-
door navigation that integrates behavior recognition, multi-
sensor indoor localization, and path-planning in order to
pro-actively provide directions without direct input from
users. To our knowledge, this is the first architecture that
attempts to integrate the core navigation components of path-
planning and localization with intent prediction towards a

more refined navigation solution. The system comprises of
three core components: effective localization, map represent-
ation and route planning, and plan recognition. To achieve
effective localization in the absence of GPS, we combine
complementary localization algorithms of dead reckoning
and Wifi signal strength fingerprinting. These measurements
along with pre-built maps of the environment are com-
bined using a particle filter for robust pose estimation.
Towards effective route planning, we use a hierarchical
map representation combined with an iterative D*lite [1]
path-planning algorithm for providing fast and efficient user
specific routes. The final component of the system is the
plan recognizer, which uses a decision-theoretic planner to
identify a user’s high-level destination goals. Based on the
observed state of a user’s current location, the recognizer
identifies potential future plans using a probabilistic tree of
possible states, selects the path the user is most likely to take,
and subsequently transforms it into an end user destination.
To explore the feasibility of our approach we implemented
a prototype solution on commercial mobile phones. The
developed application was tested in an indoor environment
and was found to accurately predict intended destination and
to effectively navigate the user to the identified destination
with minimal user interaction.

The rest of the paper is organized as follows. In Section II
we briefly review research efforts related to this paper. In
Section III we describe the application architecture and
detail its individual components, subsequently describing the
results from the experiments conducted using the application
in Section IV. Finally, in Section V, we conclude the paper
with a summary of the results and outline future work
directions.

II. RELATED WORK

A. GPS-free Localization

Modern smart-phones have an extensive array of available
sensors, many of which are relevant to the localization
problem. These include GSM and Wifi radios, Bluetooth,



Near Field Communication (an extension of RFID), ac-
celerometer, magnetometer, and gyroscope sensors. Such
sensors can be used to estimate various parameters of a
mobile user in a GPS-free environment. For example, RSSI
fingerprinting for pose estimation is an accepted and popular
technique for indoor pose estimation, GSM signal strengths
have been shown to accurately determine which floor of a
building the user is in [2]. Wifi-based RSSI fingerprinting
is another popular indoor localization technique [3; 4] with
an accuracy range of 3-10 meters. A major drawback to
most RSSI-based existing solutions is that they are geared
towards devices with significant computation capabilities
and high-fidelity sensors. Furthermore, RSSI fingerprinting
techniques use a pre-built signal-strength map of the en-
vironment. Most current methods for building an RSSI-to-
position database are tedious, labor-intensive, and require a
large number of samples, as well as extensive re-calibration.
Unlike RSSI methods, a dead-reckoning system comprising
of accelerometer, magnetometer, and gyroscope sensors can
provide fast and accurate estimation of local pose. Jin et.
al., [5] propose a robust dead reckoning tracking system
using a set of commercial sensors carried by the same
walking pedestrian. While effective over short distances,
dead-reckoning solutions have the drawback of being local
estimation techniques that have to be seeded with an accurate
initial position for valid estimation. As such, the sensory
error accumulation is unbounded over time and distance.

We build on the general ideas of dead-reckoning and RSSI
fingerprinting, from which we derive a baseline implementa-
tion using a particle filter and a k-nearest neighbor approach.
Our work addresses some of the above shortcomings in-
cluding the use of a magnetometer, which allows the users
orientation to be derived in a global frame. We also use a
robotic system to collect signal strength calibration data that
can significantly reduce the overhead in the creation of the
fingerprint database.

B. Intention Recognition

Given a model of a user’s planning process and a series
of observations about recent actions, plan recognition and
prediction is the process of identifying the plan a user
is currently executing and predicting future steps [6]. Our
system uses a model of plan recognition based on recent
work on predicting human planning under the assumption of
near-optimal rationality [7] within a Markov Decision Pro-
cess (MDP). An MDP is a discrete-time stochastic control
process where at each time step a rational agent transitions
state based partially on its choice of action and partially
on a random component. In order to use this model
for intention prediction, previous work [8] has altered the
MDP solution equations to generate a stochastic policy,
whereas traditional MDP solutions consist of an optimal
policy. Instead of returning the optimal action for each state
of the world, a stochastic policy returns the probability with

which an imperfectly rational agent selects an action. This
approach assumes that a user, although rational, does not
always select the optimal action, but rather selects an action
with a probability proportional to its optimality. We discuss
the details of the MDP model in more detail in Section III-C.

C. Map representation and path-planning

Hierarchical maps are a popular technique to represent
environments in domains such as robotics [9] and transit
planning networks [10]. This representation reduces the
search space to the sufficient sub-graph that is needed for
a particular search. As the search goes down the hierarchy
of the graph, it gets more focused on only the sub-graph of
interest to the route between the start and goal nodes. At each
level, one chooses the nodes of interest to the search and
discards the others with their whole sub-graphs and related
arcs. Accordingly, it reduces the computational cost from
exponential to linear in the best case [11]. The hierarchical
graph allows for a compressed representation of large map
details and is flexible to allow dynamic changes.

For route planning applications on a smart-phone, the
speed and efficiency of the algorithms can be restricted
by the on-board computation capabilities. Therefore, an
effective route planner should have both high throughput
and low delays in terms of query processing, and should be
capable of dynamic re-planning. Prior work [12] in dynamic
path-planning using the D* algorithm is highly pertinent
to the domain of indoor navigation, as it is capable of
planning paths in changing environments enabling rapid re-
planning if changes in travel costs are discovered. Daniel
and Cagigas [9] introduce a new hierarchical extension of
the D* algorithm for robot path-planning, where a down-top
strategy and a set of pre-calculated paths (materialization of
path costs) are used to to improve performance. The out-
lined approach has the drawbacks of needing pre-computed
paths and operating on a uniform granularity of information
representation across the different nodes of the graph. Our
algorithm extends the hierarchal D* approach and outlines a
top-down multi-level planner for varying map granularities.
The approach is described in more detail in Section III-B.

ITII. PREDICTIVE INDOOR NAVIGATION SYSTEM

Our integrated predictive indoor navigation architecture
consists of three major components: indoor localization;
path-planning and map management; and user prediction,
as illustrated in Figure 1. These modules run independently
and continuously exchange information as new data comes
into the system. The data flow in the system originates
with the localization module receiving information from
the various sensors. The raw data, from Wifi and dead
reckoning, is combined using a particle filter to provide
an estimate of the user’s location indicating the dispersion
of probability of the user’s presence within an area of the
building.Once generated, the set of particles along with
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an uncertainty estimate is used to construct a belief-state,
representing the probability distribution of the user’s location
within a building. The belief state is generated by calculating
the proportion of the particles that are within any given
room, generating a vector containing, the probability of
the user being located in that room. This is illustrated in
Figure 2. The belief state is then sent to the destination
prediction module, which uses a probabilistic MDP policy
to calculate the possible future paths that the user might
take, sending the most likely destination to the path-planning
component along with the high-level waypoints between
the user’s current location and it’s destination. The path-
planning component, in turn, uses the predicted destination
as the end node for its path-planning algorithm, generating
a new set of directions for the user. The User Interface (UI)
component provides to the user a visual representation of
the collated information regarding current position, predicted
destination, and the generated route overlaid in a map of the
floor.

A. Indoor Localization

After considering the benefits and drawbacks of the
various sensors, we selected the Wifi radio combined with
dead reckoning using accelerometer, magnetometer, and
gyroscope sensors to provide indoor localization fixes. A

Figure 3: Localization System Architecture

gait-based motion model combined with a heading estimator
provides a pre-filtered dead-reckoning sensor estimate to the
particle filter (PF) (see Figure 3). Simultaneously, pose is
estimated based on fingerprinting between observed Wifi
signal strength readings and pre-collected database of RSSI
estimates. The combined sensor data is fused and filtered
using a PF which results in a smooth and continuous pose
estimation state. At runtime, Wifi signal strength fingerprint-
ing is used to initialize the system and provide a rough
global location estimate. To minimize the computational
requirements of the solution, it is desirable to keep the
dimensionality of the particle filter as low as possible. For
this reason, we do not track heading within the filter, but
estimate only the linear position. The dead reckoning is
performed in a pre-processing step, and all the particles in
the filter are periodically updated based on a model of the
variance of the dead reckoning estimate. The details of the
localization technique are outlined in earlier work [13].

To perform the RSSI fingerprinting, it is necessary to
create a database of signal strength information from the
environment correlated to a free space map of the envir-
onment. Collecting this information by hand is laborious
and error-prone, so we developed an automated solution
that uses a robot equipped with a SICK LMS200 laser
rangefinder and fiber optic gyroscope to collect the signal
measurements. A phone is placed on the robot and the robot
is tele-operated through the environment. The phone collects
signal strength information over the course of the run, and
at discrete intervals ( 1m) the readings from the phone are
correlated with measured robot positions. Additionally, the
robot builds a map of the free space in the environment using
the laser rangefinder. The result is an accurate, high density
sample of signal strength information in a short amount
of time. Moreover, the shape and structure of the built
laser map allows us to incorporate an additional heuristic
to speed up our pose estimation algorithm. Particles from
the PF that lie outside the bounds of the free space map are
automatically discarded, allowing us to constrain the size of
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our comparison database during execution. Figures 4a and
4b show the robot setup and a sample RSSI database.

B. Hierarchical path-planning

In our approach, we use a hierarchal graph to represent
the environment at varying granularities over the different
levels of the graph. For this application, we consider a
two-layer hierarchy (see Figure 5a. Low-level maps are
used to represent individual rooms in a large building with
great spatial detail, without having to represent the spatial
relationships to locations in other rooms. On the other hand,
high-level maps are used to represent larger areas of a
building without representing the exact spatial relationship
of individual locations inside rooms and corridors. Con-
sequently the high-level maps are used to construct abstract
plans to navigate between floors and rooms of a building,
whereas the higher resolution of the low-level maps are
essential for precise navigation within rooms and hallways.
This multi-level approach allows for multi-floor planning
and can be extended to planning between buildings.

Topologically, in our system the high-level maps are
represented as a graph and the low-level maps as a grid
structure connected to the leaf nodes of the graph. Since
most path-planning algorithms treat the grid-like map as a
connection of nodes and edges, a planning approach like the
D* can be leveraged for our domain. D*lite is a dynamic
path-planner capable of handling changing environments
in an efficient, optimal, and complete manner. The D*lite
planning algorithm searches for an optimal path from the
destination to the start node. This improves efficiency as the
destination node is fixed, but the start node varies with the
change in user’s location.

For our system, we developed two separate and iterative
planners, a high-level planner and a grid planner. The
high-level planner handles building-wide connections and
provides a restricted path for the grid planner. The grid
planner operates at the individual floor level and is used
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Figure 5: Hierarchal path-planning

to find a fine-grained path to either the destination (should
it be on the same floor) or an exit (if the destination is
on another floor). Specific to our system, at the lowest
level of the hierarchy there are rooms which correspond
to vertices used in the D*lite algorithm. These rooms are
connected by doorways, which correspond to the edges used
in D*lite. The hierarchy extends upwards to the floor level
and building level, with floors and buildings corresponding
to the vertices while exits (staircases and elevators) and roads
corresponding to the edges at each respective level.

High-level Planner: The first step in the path-planning
process is to run the high-level planner. Based on user-
location and the intended destination, the planner quickly
searches the graph hierarchy, above the user and destination
levels, until it finds a connecting node. Once a route is
established, the planner recursively searches for the shortest
path through the network of edges and vertices moving down
one step at a time to verify connections.

Grid Planner: Once the high-level planner is run and
restricted path generated, we then run an instance of the grid
planner. The planner has two core lists, OPEN and CLOSED,
that determine whether the node has been added to the
tree and subsequently evaluated. Optimality is determined
by identifying the node, M, in OPEN that minimizes a
defined cost function, f(M), while ensuring all neighboring
nodes to M are not blocked by a barrier. In the event that
two nodes have an equal cost, a shortest-distance-to-goal
heuristic is used for node selection. Algorithm 1 details the
node selection criteria.

We optimize the grid planner for the smart-phone platform
by modifying the re-planning step of the algorithm by
actively time-stamping the nodes that are moved into the
OPEN or CLOSED lists. When re-planning after an arbitrary
time 7', we can quickly roll back nodes with a CLOSED
time-stamp greater than a 7T, re-assign them to the OPEN
set, remove all node with an OPEN time-stamp greater than
T, and re-run the planners. This significantly reduces the
computational overhead for re-planning.

Consider the following illustrative example. If the high-
level planner determines that the user is on floor 1 of a



Algorithm 1 Path-Planning Algorithm Pseudo-code
1: function PLANPATH(Start, Goal)

2: OPEN «+— Goal > If Goal is initially empty, exit
3: while ( OPEN is not empty ) do

4: Node N «— OPEN.getBestNode()

5: Move N from OPEN to CLOSED

6: for all (Node K : N.getNeighbors() ) do

7: if K = Start then

8: N.predecessor «+— K

9: cost(K) « cost(N) + distance(N,K)

10: return true > Path Found
11: else if K is not in OPEN or CLOSED then

12: N.predecessor «— K

13: OPEN «— K

14: cost(K) «— cost(N) + distance(V,K)

15: end if

16: end for

17: end while

18: return false > No Path

19: end function

building but the identified destination is on floor 3 of the
same building, it will search the hierarchal graph until it
finds that they are both in the same building (the common
node). It will then verify the path at the next lowest level
by identifying the connecting stairwell or elevator between
floors 1 and 3. The high-level planner continues to run at
the lowest level (the room level) until it finds the connection
through the shortest number of rooms. It then restricts the
search space of the grid planner to rooms along that path,
providing a starting node and a destination node as well as
a restricted path of rooms in which the algorithm can run.

C. Decision-theoretic path prediction

Formally, an MDP is a tuple & = (S, A, P, R), where S is
a finite set of states, A is a finite set of actions, P is a state-
transition function, and R is a reward function [14]. The
state-transition function defines the probability with which
actions take the agent from one state into another. Given
{s,s'} € S and a € A, P,(s'|s) denotes the probability of
transitioning from state s to state s’ when executing action a.
The reward function assigns values to particular states!.
Thus, a rational agent must choose actions that maximize
the long term expected reward of its actions. A policy 7
is a total function 7 : S — A mapping states into actions,
which allows an agent to decide which action to take at each
state. One can calculate the value V™ of a state for an agent
following a certain policy 7, and given a certain discount
factor ~y, as follows (where a = 7(s)):

VT(s) = R(s) +7 ) Pu(s'|s)V7(s)
s'eS

The optimal policy 7*(s) is then one that maximizes this
value, and can be found by various means, such as the value

In some representations, rewards are assigned to state-action pairs, but
it is trivial to convert from one to the other.

iteration algorithm. Value iteration uses the following two
Bellman equations [15], where V* and Q* are the equations
for the maximum reward of an action and a state.

Q"(s,a) = R(s) + V*(P(s,a))
V*(s) = max Q*(s,a)

The results of these equations are calculated iteratively until
they converge, and an optimal policy is one where:

m*(s) = argmax Q* (s, a)

Here, we adapt previous work [7; 8] to generate a a
stochastic policy 7% : Sx A — R that returns the probability
with which an imperfectly rational agent selects an action.
Using this approach, we solve the MDP problem using the
policy iteration algorithm without modification to obtain an
optimal policy, while keeping track of the long term values
of each state. Using the values obtained by value iteration
the stochastic policy is calculated as follows:

Q*(s,a)
Za’EA Q*(S’ Cl/)

Using the values obtained by value iteration the stochastic
policy is calculated as follows:

7~ (als) =

_ @sa)
ZQ/GA Q*(S’ a‘/)

The process of predicting future activities starts with a
belief state containing probabilities of the agent being in a
certain state. Formally, the belief state is a function from
the MDP states into probability values B : S — [0,1],
where B(s) returns the probability that the user is in state
s. From this belief state and the obtained stochastic policy,
we create a multi-rooted tree representing the possible future
state sequences starting from likely state. The root node of
this tree is connected to the states whose probability in the
belief state are above a minimum threshold, as illustrated in
Algorithm 2. The algorithm takes as input a belief state B,
a stochastic policy 7™, a probability threshold thr denoting
the minimum probability for a state to be considered relevant
for plan prediction and a maximum plan depth mazD
denoting the maximum number of future steps to predict.

The possible sequence of next states is computed recurs-
ively, by querying the actions a user is likely to take. This
is illustrated in the CREATEPLANTREE procedure, which
starts by checking that the maximum plan depth has not
been reached, followed by selecting all actions that the user
would choose with a probability higher than a set threshold.
These actions lead to potential next states, given the MDP
transition function, and for each possible next state, this
procedure repeats recursively. Notice that, in order to avoid
creating loops in the predicted paths, we keep track of the
nodes already visited. The successor states are computed in a

m(als) =



Algorithm 2 Predicting future user paths.

Algorithm 3 Predicted user’s destination.

1: function PREDICTFUTUREPATHS(B, 7, thr, mazD)
2 n «— newTreeNode(nil, nil, 1, 0)

3 for all s such that B(s) > thr do

4 n’ « newTreeNode(nil, s, B(s),0)

5: CREATEPLANTREE(n, 7™, s, thr, 1, mazD, ()

6: end for

7 return n

8: end function

9: procedure CREATEPLANTREE(n, 7™, s, thr, d, mazD,

visited)
10: if d < mazD then
11: for all a € A such that 7~(s,a) > thr do
12: p—m(s,a)
13: node n’ « newTreeNode(a, s, p,d)
14: n.ADDCHILD(n')
15: v’ — visited U s
16: for all s’ such that (Py(s,s’) > 0)A
(s'.getValue > s.getValue)A
(s" & visited) do
17: CREATEPLANTREE(n, 7™, 8" thr,d + 1,
mazD,v")
18: end for
19: end for
20: end if

21: end procedure

way that assumes the user follows the gradient of increasing
rewards towards an objective.

The tree resulting from the CREATEPLANTREE procedure
contains a set of the most likely paths a user might take by
following a stochastic policy describing his/her imperfect
rationality. In order to provide a target destination to the
path-planning algorithm, we need to select a single path that
the user is most likely to take. Our approach, illustrated
in Algorithm 3, consists of selecting the non-cyclic path
with the largest long term reward. The first level of the tree
generated from Algorithm 2 contains a number of subtrees
with starting states comprising the most likely current user
states. Moreover, for each state s in the MDP model, we
keep the long term expected value V*(s) computed through
value iteration (see Section II-B). Given these possible initial
states, and the value of subsequent states, the approach we
follow is to calculate the maximum reward of each path,
and weigh this reward by the probability of the user being
in state stored in each node at level 1 in the tree.Once the
highest reward path is selected, its the leaf node becomes
the predicted destination.

For example, consider a policy m, generated for a sample
environment whereby the rooms are highlighted in the map
subsection shown in Figure 6b have a reward of 10, and
all other rooms have no reward. Additionally, we define a
probability threshold value of 0.1 and a maximum depth
of 10 future steps. Moreover, consider a belief state By
with the probability of the user being in the states/rooms
as highlighted in Figure 6a. Consequently, only the states

1: function COMPUTEDESTINATION(PlanTree, V )
2 maxR — 0

3 for all path P = [no, ..., nm]| € PlanTree do
4 T mno.px YoV (n.s)
5 if > mazR then
6: maxR «—r
7 bestPath <+ P
8 end if

9 end for

0 return n,, € bestPath
1: end function
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Figure 6: Example inputs.

having a probability higher than 0.1 are added to the tree
(i.e. R1602 and R1604), which is then expanded using
CREATEPLANTREE function.This expansion, considering all
actions that a user might choose to take him/her to other
rooms results in in the tree of Figure 7. The high reward
paths are highlighted in green in the figure.

In order to select the most likely path predicted for the
user, we sum the reward of every node on each path and
weigh it by the probability of the state upon which it starts.
In our example, Path 1’s root is R1602 and Path 2’s root
is R1604. Note that based on Figure 6a, these states were
picked because they have a probability value higher than
the defined threshold. Since R1604 has the lower probability
between the two, the expected reward of the path starting
on that state is less than for the alternative path, R1602C is
selected as the predicted state.

R1602 - 0 : prob = 0.332

- 2 N
Cri602a-0) {R16020-0 ) R1602B-0 )
R1600 - 0 : prob = 0.137

’5121:-0\; ’Fn;og-\o\; (Ri612-0)
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Figure 7: Predicted plan tree, given belief state of Figure 6a.
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IV. IMPLEMENTATION AND EXPERIMENTS

A. Implementation on a mobile platform

We developed a stand-alone application implementing
the outlined system for an Android-based smart-phone, the
Google Nexus S. The primary issue encountered during
development was load balancing between the the different
system components. Consequently, the resource intensive
components of the system were developed as background
services integrated using the main application that displays
the user interface. The relatively simplistic interface provides
the user with options to toggle path-prediction, select a
destination, add annotations, manually re-plan the route,
etc. Data communication between the different modules is
handled via Android’s broadcast system. Using this system,
a service sends a broadcast update that can be accessed
by any registered application. This push-based data service
affords an added layer of robustness to the system, in the
event of computation back-log. In such an implementation,
each of the different modules acts as an independent applic-
ation depending only on periodic communication to further
its own state. The prediction component contains a high-
computation algorithm, namely the solution of the MDP
problem in order to generate the stochastic policy needed for
future path prediction. Under normal operation, the results of
an MDP solver are not necessarily degraded by the amount
it takes to finish processing. However, in situations where
annotations change at a high rate, the lack of a correct
MDP policy substantially degrades the user experience, since
proactive navigation directions will be either non-existent,
or outdated. To overcome this challenge, we have designed
a remote MDP solver that can be used by the mobile
application on request. Whenever the remote MDP-solver
is available to the mobile application, value iteration is run

in the server, speeding up prediction.

B. Automated Map Translation

In order to model the indoor environment and extract a
logical layout of the building, we utilize a vector graphic
representation, the Scalable Vector Graphics (SVG) format
[16], of the floor plans of the building. SVG is an XML-
based format that can be processed by a multitude of
standard tools in order to extract data from an image. Using
the defined formats, an interconnected network of rooms
is established based on their adjacency information. This
extracted information is useful to both the path-planner and
the destination prediction modules. As we have seen in
Section III-C, an MDP problem is composed of a set of
states, a set of actions, a transition function and a reward
function. Thus, using the map representation, we generate
the set of states for the MDP using the resulting set of
rooms from the vector map representation. Moreover, the
connections between the rooms is used to create the set of
actions within the MDP, with each doorway representing
the action of moving from one room to another through
it, and vice-versa. The transition function from this set of
actions and states is generated by using a small ¢ “error”
rate, representing a user’s indecision between moving from
one room to the other, so that the probability of a user
transitioning from one room to another is 1 — €.

C. Experimental Platform

We tested the system on a single floor of an indoor
environment (see Figure 8) to analyze the feasibility of the
implemented solution. Three sets of experiments involving
navigation from a defined start to multiple destination
locations were performed. The user held the smart-phone
pointing forward and walked at a normal pace. Each set



of experiments was repeated multiple times for consistency,
for a total of 20 runs. There were approximately 20 Wifi
access points (Figure 6b) observed in the environments. The
dead-reckoning information was obtained at a faster rate
(30Hz) than the Wifi signal measurement (1 HZ). An RSSI
database was constructed prior to experimentation using
a Pioneer 3DX robot (see Figure 4b), along with a laser
map of the environment. In all experiments the user starts
from a pre-defined starting location and has two potential
destination locations to head towards. In Experiment 1, the
user heads towards destination 1 (room 1602 in Figure 8),
while in experiment 2, the user heads towards destination
2 (room 1513). Finally, in experiment 3, the user starts
heading towards destination 2, but changes intent and heads
to destination 1 during the course of the experiment. Once
the prediction module identifies the user destination intent,
it is communicated to the path-planning module. The routes
and destinations are illustrated in Figure 8.

Table I: Map loading and path-planning times

With local- | Process Load | Grid Grid Re- | High-

ization and | Time (s) | Time | Planning | planning | Level

prediction (s) (ms) (ms) Planning
(ms)

Yes 46.90 3.58 | 749 22.8 20

No 46.90 3.44 | 408 23 20

Table I outlines the profiled times for loading the envir-
onment map and for running path-planner on it. For path-
planning, we compute a path stretched across the entire
map. From the table we can see that the time taken to
process a new map of relatively high-granularity is around
47s. Looking at the path-planning component we can see
that while it takes a relatively large amount of time for the
initial plan, future re-planning is significantly faster. After
the initial processing, future load times and subsequent re-
planning drop dramatically, as once a connected graph is
built, we make the assumption that the base topography
(as indicated by the floor plan) remains the same. Con-
sequently, instead of processing the map in its entirety we
load only the connectivity graph, thereby reducing overall
load time. Finally, the increase in computational times when
other system modules are running is a clear indication of
the constraints of the mobile platform. Despite the added
complexity, our re-planning algorithm is able to significantly
reduce re-planning time, highlighting the effectiveness of our
map-representation and path-planning.

We tabulate the results from our experiments in table II.
The system is not initialized with a starting location and
attempts to converge based on the measured signal strength.
From the table we can see that for the localization algorithm,
on average, is able to converge to within 1 meter of the actual
starting location for all three experiment types. Paths 1 and
3 are approximately 15m long, while in experiment 2 the

Table II: Experimental Results

Exp.| Path- Start pose | Final pose | Mean € of | Time to
length € (m) € (m) most prob. | predict
(m) loc. (m) (s)

1 16.5 0.71 342 2.20 43

2 31.67 0.94 4.26 2.49 53.47

3 15.46 0.90 3.34 2.71 30.324

user travels a total of 32m to destination. Moreover, we can
see that the mean error for the localization over the course of
the different experiments is approximately 3m and in most
cases the system is also able to converge to a final destination
position within an error bound of approximately 5m. It is
interesting to observe that the estimate of final position is
of by a value greater than the calculated mean error. We
believe this is due to the fact that the selected destination
locations lie outside the boundaries of generated robot map.
Consequently, there exists a smaller sample of data points
correlating to the destination locations in our RSSI database.
As a result, the system is not able to converge to the final
location with a higher degree of certainty.

During the course of experimentation, we encountered
runs with significant localization drift due to magnetic
interference in the environment as well as outdated RSSI
database. In order to focus on analyzing the architecture,
data from runs suffering from significant magnetic distortion
was disregarded. Finally, looking at the prediction compon-
ent of the system we can see that system accurately estimates
destination for each of the runs. The time to convergence is
the time taken by the prediction module from initialization to
when the first prediction was communicated to the user. The
prediction is communicated as a destination location and the
associated route. The prediction time includes time for map
loading, initial pose estimation, belief state identification and
intent recognition. After the initial recognition, subsequent
recognitions happen at a significantly faster rate, thereby
reducing overhead. For Experiment 1, averaged over the
different runs the system predicted 3 state changes, where
each state change correlates to an alternate destination than
what is currently highlighted. For our experiments, the
system toggled between destinations 1 and 2. The initial
recognition of a state change took about 43s, while re-
computation took approximately 4s. For experiment 2, there
were 3 state changes with a prediction time of 53.47s.
Finally, for experiment 3, the system averaged a prediction
time of 30.3s and an average re-computation of 4.8s.
Interestingly, the system recomputed destination locations
for experiments 1 and 3, there were no re-computations
required for experiment 2. We hypothesize that multiple
predictions in experiments 1 and 3 occur whenever there
is higher uncertainty in the position estimation. As there are
multiple routes possible to destination 1, there is a higher



degree of uncertainty in the position estimate. Additional
analysis shows the position with the highest mean error for
the different runs to lie in the section of the corridor that
constitutes a major part of paths for experiments 1 and 3,
while this section of the corridor constitutes only a small
portion of experiment 2 path.

V. CONCLUSION

In this paper we have developed an unique architecture
for GPS-free indoor navigation and path prediction that
uses a combination of multiple sensor data and probabilistic
planning models to provide seamless navigation aid. This
architecture has been adapted for deployment within the
computational restrictions of smart-phones and subsequently
tested for effectiveness via a series of experiments involving
human users. Experimental results have shown the effective-
ness of the predictive navigation in minimizing the need for
direct user input in the device. To our knowledge, this is the
first architecture that atempts to integrate the core navigation
components of path-planning and localization with intent
prediction on a commercial smart-phone.

Although the current instantiation of our architecture has
yielded promising results, there are a number of extensions
that could be incorporated into the implementation. To
enhance the indoor localization component, we intend to
look at methods to combine the robot map with the building
floor plan to improve the robustness and to pro-actively
account for magnetic distortions. To address degradation of
the built RSSI database, we will collect signal samples over
multiple runs, locations, and during different times of day,
and analyze it to identify the rate of decay so that it can
improve the quality of the location estimate. Regarding the
path prediction component, we intend to use the remote
server to perform more complex (and thus computationally
more expensive), user prediction based on the work of [7; 8].
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