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r\i Overview

* Background
— HTNSs
— MDPs

* Conversion
— Generating MDP states
— Generating transition functions
— Generating reward function

* Experiments
 Future Work
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r\i Planning

* Planning algorithms more or less divided into:
— Deterministic
— Probabilistic

* Formalisms differ significantly
— Domain representation

— Concept of solution
* Plan
* Policy
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ﬁ Hierarchical Task Networks (HTN)

e Offshoot of classical planning

* Domain representation more intuitive to
human planners

— Actions (state modification operators)
— Tasks (goals and subgoals)
— Methods (recipes for refining tasks)

* Problem comprises
— Initial State
— Task
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r‘i Domain Example

* Going to London from New Jersey
— Various options of vehicle to use
— Various routes depending on the chosen vehicle

* Two operator/action templates:
— Move To g ey

— Get Vehicle a®"
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ﬁ Operators

(:operator (!moveTo ?11 212 ?v)
( (has ?v) (at ?211))
((at ?211))
((at ?212)))
(:operator (!getVehicle ?v)
()

()
((has 7?v)))

22/08/2011 Felipe Meneguzzi



p" Tasks

* Go To —top level task

tGT(L)

* Obtain Vehicle —task to obtain long range
transportation

fOV(V)

* Move To — task to move through multiple
intermediary points to reach a destination

FMT(L)



ﬁv Methods

(:method (goTo ?1)

()
((!getVehicle car)

(obtainVehicle)

(!'moveTo ?71))
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ﬁv Methods

(:method (obtainVehicle)
( (at home))
((!moveTo home ailrport car)
(!getVehicle plane))
( (at home))
( (!moveTo home harbor car)

(!'getVehicle ship))
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ﬁv Methods

(:method (moveTo ?1)
( (has plane))
((!moveTo ailrport nyc plane)
(!moveTo nyc london plane))
( (has ship))
( (!moveTo harbor soton ship)
(!moveTo soton london ship))
((has ship))
( (!moveTo harbor 1lpool ship)
(!moveTo lpool london ship))
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ﬁ HTN Problem

 How to execute task goTo(london)

tGT (london)

— Decompose task through methods in the domain
until actions reached

— Ordered actions are the solution
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amv(home,airport,car)
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Decomposed Problem

tG T(london)

tOT(plane) tI\/IT(Iondon)

agv(plane) amv(airport,nyc,plane) amv(nyc,london,plane)
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HTN Solution

tG T(london)

tOT(pIane) tMT(Iondon)
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p" Markov Decision Processes (MDP)

 Mathematical model for decision-making in a
partially controllable environment

* Domain is represented as a tuple

2=(S5,A,Pr,u)
where:

— S is the entire state space

— A is the set of available actions
— Pr is a state transition function
— u is a utility function
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r‘i MDP Domain
O

 Represented as a
hypergraph <9/(
 Connections are not

necessarily structured -

 All reachable states are
represented

e State transition function

specifies how actions @
relate states C D
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r\i Computing an MDP Policy

 An MDP policy is computed using the notion
of expected value of a state:

V' (s) = max
acA(s)

u(a,s)+y E Pr(s'ls)V (s")

e Expected value comes from a reward function

* An optimal policy is a policy that maximizes
the expected value of every state

7' (s) = argmax ,c, [u(a,s) + yE Pr(s'l )V (s")
'eS
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r‘i MDP Solution

e Solution for an MDP is a policy

* Policy associates an optimal action to every
state

* |nstead of a sequential plan, policy provides
contingencies for every state

stateO = actionB
statel = actionD
state2 = actionA



Using HTNs to Represent MDPs

~ CONVERSION

) {
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Hierarchical Task Network

Not enumerated
exhaustively

State consists of properties
of the environment

at(airport) A has(plane)

Each action modifies

properties of the
environment

Set of properties induces a
very large state space

States

Markov Decision Process

MDP domain explicitly
enumerates all relevant
states

Formally speaking, MDP
states are monolithic
entities

Implicitly represent the
same properties expressed
in HTN state

Large state-spaces make the
algorithm flounder



ﬁv State Space Size

Hierarchical Task Network Markov Decision Process

* Set of actions induces a  MDP solver must consult
smaller state space (still the entire state space
quite large) » State-space reduction

e Set of methods induces a techniques include:
smaller still state space — Factorization

 HTN planning consults this — e-homogeneous aggregation

latter state space
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ﬁv Generating States

* MDP State-space is derived from the
reachable states induced by the primitive
actions in a fully expanded HTN

* State-space comes from the reachable
primitive actions induced my HTN methods



C Fully Expanded HTN

tG T(london)

,OT(plane ) tOT(ship) tMT(Iandon) tMT(Iondan) tMT(Iondon)

amv(harbor,so(on,ship) amv(so(on,london,ship)

aMv(home,airport,car) amv(home, harbor,car) L9v(ship) amv(airport,nyc,plane) amv(nye.london,plane)

amv(harbor,lpool.ship) am\/(lpoa\,Iondon,ship)
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C Reachable States

tG T(london)

(OT(plane) tOT(ship) tMT(Iandon) tMT(Iondan) tMT(Iondon )
aMV(home,harbor,car) 49v(ship) gMV(airport,nyc,plane) aMmv(nyc,london,plane) amv(harbor.sotonship)
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p" Generating States

* Primitive tasks in the fully expanded graph
induce a state:

— Disjunction of all possible states given previous
decompositions

— In most domains tasks will induce overlapping
states
e Algorithm must keep track of overlapping
states (for the transition functions)



ﬁv Generating Actions

* This page intentionally left blank
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p" Generating Transition Functions

 Formally, an HTN is a graph defined by tasks
(vertices) and ordering constraints (edges)

* Each primitive task ti corresponds to both an
action name and a possible state

— If there is a constraint between tj and ti, then
there is a non-zero probability of a transition

* Probabilities are uniformly distributed over a
planner’s choice



r‘i Generating a Reward Function

e States in the last tasks in the HTN are the
implicit objective

* Thus, for each possible path through the
HTN’s primitive actions, there is a gradient of
utility

 Reward for each state then is proportional to
the index of the task in a given path



r‘i Improving Performance

e Algorithm analysis and profiling has shown

that most time is spent computing possible
states

— Results of action execution on disjunctive
formulas

— Support for precondition from a disjunction of
possible states

 BDDs provide polynomial time operations



Experiments and Results

~ EXPERIMENTS
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r‘i Experiment Domain

* Military planning scenario
— Allocation of vehicles to routes and targets

— 7 to 11 different vehicles attacking 1 to 3 targets
over multiple possible route combinations

— Herbrand base with 15 to 25 thousand predicates
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Conclusions and Future Work

~ FUTURE WORK

) {
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r‘i Future Work

* Using a BDD-based state and operator
representation

— Challenges: enumeration of reachable state-space

— Encoding planning operators using the least amount
of BDD variables

— Proper variable ordering
* Applications
— Domain modeling in probabilistic planning

— Probabilistic planning in agent programming
languages



