
Strategies for Document Optimization in Digital Publishing∗

Felipe Rech Meneguzzi
Leonardo Luceiro Meirelles

Fernando Tarlá Martins Mano
Centro de Pesquisa em Software Embarcado

6800 Ipiranga Avenue
Porto Alegre, Brazil

{felipe,meirelles,fernando}@cpts.pucrs.br

Joao Batista de Souza Oliveira
Ana Cristina Benso da Silva

Faculdade de Informática / PUCRS
6800 Ipiranga Avenue

Porto Alegre, Brazil

{oliveira,benso}@inf.pucrs.br

ABSTRACT
Recent advances in digital press technology have enabled
the creation of high-quality personalized documents, with
the potential of generating an entire batch of one-of-a-kind
documents. Even though digital presses are capable of print-
ing such document sets as fast as they would print regular
press jobs, raster image processing might possibly be per-
formed for every different page in the job. Such process
demands a large computational effort and it is therefore in-
teresting to gather repeated images that are used through-
out all documents and rasterize them as few times as pos-
sible. Moreover, performing such process separately from
document production in the publishing workflow allows op-
timization to be performed prior to final printing, thus al-
lowing it to take press hardware specifics into account, and
reducing the time taken for it to produce the final output.
This paper describes techniques to perform this task using
PPML as the document description language, as well as the
main issues concerning this kind of document optimization.
Several gathering policies are described along with explana-
tory examples. We also provide and discuss experimental
data supporting the use of such strategies.

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in other Sys-
tems—Publishing ; I.7.2 [Computing Methodologies]: Doc-
ument and Text Processing—Document Preparation, Digital
Publishing, Variable Data Printing

General Terms
Variable Information Documents, Digital Press

Keywords
PPML, Variable Data Printing, Personalized Printing
∗This work was (partially) developed in collaboration with
HP Brazil R&D

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’04, October 28–30, 2004, Milwaukee, Wisconsin, USA.
Copyright 2004 ACM 1-58113-938-1/04/0010 ...$5.00.

1. INTRODUCTION
The advent of digital presses capable of producing high-

quality full-color printouts has made possible the personal-
ization of printed documents to a degree that has only been
previously possible in digital content [10]. In a typical press
production workflow, digital content must be transformed
into a set of master plates used by the press to generate
a large number of identical pages and such process has a
high setup cost that is justified by the number of copies pro-
duced from the set of press plates. Master “plates” on digital
presses exist only logically in the memory of the printing de-
vice, thus eliminating the costs associated with the creation
of physical plates, and potentially allowing every page in a
digital press job to be unique [1, 2]. In order to take advan-
tage of such possibility, new standards are being developed
for the definition of variable data documents intended for
high-quality printing. One such standard is the Personal-
ized Print Markup Language or PPML [2, 8], which allows
the specification of large print jobs intended to be processed
by digital presses.

Even though a digital press does not involve the creation
of physical plates, digital page descriptions must be con-
verted into high resolution raster data used to control the
placement of ink over the target media in a process called
raster image processing or RIPing. RIPing is computation-
ally expensive, and thus represents a bottleneck in person-
alized printing. Such a bottleneck exists mainly because in
a traditional print job a rasterized page can be cached and
used to produce many physical pages, whereas in personal-
ized printing every page might be unique thus reducing the
usefulness of page caching, as in this case the press needs
more time to process the raster images than to print a page.
Though entirely identical pages are not likely to occur, some
elements, like company logos or greeting texts, tend to recur
in a print job. Therefore, caching elements smaller than a
page is an approach to deal with such bottleneck.

The PPML standard provides constructs for specifying
reusable content in a document enabling the document pro-
ducer to state which elements recur within a job. It is also
up to the producer to assess the utility of specifying certain
elements as reusable, hence an efficient selection of reusable
elements is a key factor in overcoming the RIP bottleneck in
personalized documents intended for digital press publish-
ing. In this paper we propose a series of strategies for the op-
timization of personalized documents. These strategies are
based on the analysis of the document set and the selection
of reusable elements aiming at maximizing cache utilization

at the consumer press and reducing the data transfer to the
press.

This paper is organized as follows: Section 2 contains re-
lated work that sets the context for the remaining of this
paper; Section 3 details the research regarding document
optimization that underpins this work; Section 4 describes
the implementation developed to verify the feasibility of the
proposed strategies, and finally, Section 5 summarizes the
paper while pointing out future research directions.

2. BACKGROUND
This section contains a summary of the most important

material related to the work developed in this article. Sec-
tion 2.1 briefly describes the concept of variable data docu-
ments and printing, whereas Section 2.2 describes the parts
of the PPML standard specification that are relevant for this
work.

2.1 Variable Data Documents
Document sets containing elements that are common

across multiple document as well as elements containing
variable information are called Variable Data/Information
Documents, which are also known as Personalized Docu-
ments [10]. Examples of such documents are phone bills,
bank statements or directed marketing catalogs, which con-
tain individualized information like the customer’s name,
address, a list of transactions or a list of individual product
offers. A concrete example of variable data document usage
was the 2000 Olympic games in Sydney, where the compe-
tition results were published using such technology [4].

In the case of bills and statements, which usually are
graphically simple, a variable data document is composed
of static text and variable “fields” are laid out to hold cus-
tomer specific information extracted from a database. These
documents are usually generated based on a template de-
signed by a document expert resulting in documents with
a nearly identical layout with very well defined static and
dynamic areas. More complex documents such as person-
alized product catalogs or reports containing variable-sized
high-quality pictures require different processes to be gener-
ated [5, 6] and thus have static and dynamic areas that are
harder to recognize.

2.2 Personalized Printing Markup Language
The Personalized Print Markup Language (PPML) [8] was

defined by the Printing On Demand Initiative (PODI) in
order to provide the means to enable variable data printing
for high quality documents. PPML defines a number of print
job optimization features, such as reuse of printing objects
and job ticketing.

To describe a set of dynamic documents in PPML, usu-
ally a database containing the data for different instances
of documents is used in conjunction with some kind of tem-
plate language describing how the document should look and
where the different data instances should be placed inside
it. There are PPML producers that handle this process.

It is interesting to notice that the PPML producer may or
may not declare as reusable elements (text blocks, images,
or other graphical constructs) that are repeated throughout
the document set, although PPML provides such facilities.
Thus, it is reasonable to propose a smaller, less complex
and independent process that takes a PPML document and
analyzes it, rearranging elements and declaring as reusable

the ones with the higher processing requirements, ultimately
producing a functionally equivalent PPML output that has
a smaller rasterization time on the press. By doing so, it will
be able to optimize documents produced by any PPML gen-
erator, as a preprocessing step before each document reaches
the printer. As a side effect, PPML producers can be made
simpler because they may be oblivious to the specifics of the
consumers and in turn to document optimization, because
this will be made at a later stage. In any case, PPML pro-
ducers have greater difficulties when optimizing documents,
as they would need to have all the document structure in
memory to achieve full optimization, and use more memory
still to produce the actual PPML.

To decide which elements should be declared reusable and
which ones should be used only once, several policies can be
proposed. Some of these policies will be described in the
next section.

A PPML document is composed of several elements, some
of which are shown in Figure 1 with the basic tags required
in the definition of a simple document. The root XML ele-
ment is the PPML tag. It encompasses all elements contained
within a PPML data set. The PPML tag contains one or
more Document_Set tags [8].

A Document_Set is a group of Document tags that are to
be treated as a unit, or processed in a single printing job.
It is merely a grouping mechanism used to hold multiple in-
stances of similar documents or a set of documents intended
for a single person. The Document_Set tag is optional within
a PPML document and is a synonym for Job [8].

The Document element represents the binding of layout
information (a template) and a record of data from some
data set (a database). The Document element occurs only
within a Document_Set element. Page elements delimit the
content of individual pages in a Document. They appear only
within Document elements [8].

PPML

Document_Set

Document

Reusable_Object

Reusable_Object

Mark

Reusable_Object

Page_Design

Page

Reusable_Object

Mark

Reusable_Object

Page_Design

Page

Figure 1: General organization of a PPML docu-
ment.

PPML does not provide any constructs for describing ac-

tual graphic content, it instead adopts a series of pre-existing
standards such as PostScript and Scalable Vector Graph-
ics [9, 7]. The actual graphic descriptions are organized
within Object elements, which contain Source elements to
specify the type of content being used in Internal_Data or
External_Data elements. Conversely, a Mark may refer to
content declared in a Reusable_Object (Figure 2). Reusable
Objects represent pieces of content that the consumer is in-
structed to store once processed in order to optimize the
printing process by caching recurrent elements in a job.

Mark

Reusable_Object

Mark Occurrence_Ref

Object

Object

Source

View

Occurrence

Occurrence_List

View

Internal_Data

External_Data

Figure 2: General organization of PPML Marks and
Reusable Objects.

One of the main utilities of the PPML format lies in the
context of digital printing presses, where large scale printing
jobs must be handled by the printing hardware.

3. DOCUMENT OPTIMIZATION
Considering the goals set forth in the introduction, we

propose in this section a series of steps used to transform a
valid PPML document into an equivalent PPML document
with a different organization. The transformed document
should produce the same graphical output when processed
by a consumer, but its internal organization is optimized
to maximize processing speed and throughput in a digital
press. In order to define the transformation process we
propose a simple problem model, which includes practical
considerations regarding cache size, object types, sizes and
relative processing effort. Such a model should be flexible
enough to be changed according to different needs or print-
ing environments.

3.1 Situation Model and Problem Statement
A PPML document is composed of several logical subdi-

visions like Document_Set, Document and Page, which ulti-
mately encapsulate Marks that contain the actual content
defined within Objects or Occurrence_Refs to Reusable
_Objects. Therefore, a PPML-consuming press produces
the raster image of a page through the composition of raster
images generated from the content-holding elements in the
marks of a given PPML Page. When one such element is
a regular Object, the corresponding raster image must be

generated, whereas when the element is a Reusable_Object,
the corresponding raster image is recovered from a raster
image cache, thus avoiding the overhead of reprocessing a
recurring element. The size of the raster image cache is
naturally limited, and in order to take full advantage of
caching, all the reusable objects used in every scope of a
PPML Document_Set should fit into the available cache size.

Ultimately, the process of converting a PPML document
into graphical output can be described in terms of process-
ing a sequence of content elements, each of which will either
be processed by a raster image processor or be taken directly
from a limited-capacity cache repository, thus requiring con-
siderably less computational effort than rasterizing the ele-
ment anew. Moreover, such a process will be most efficient
when the distribution of reusable and non-reusable objects
in the document results in minimum processing time by the
consumer, in this case a digital printing press.

Therefore, we assume a generic consumer with an amount
M of cache memory that can be used to hold reusable ob-
jects, and M is known in advance by the optimization algo-
rithm. An object is an individual file included as external
data into the document or the raw data declared within
a document prior to any PPML transformation operations
(e.g. Rotation, Translation, . . .). In addition, a PPML doc-
ument set can be seen as a sequence of objects A1, . . . , An

with possibly repeated objects, that is, Ai = Aj for i �= j. In
fact, the repetition of objects is a condition for their reuse,
because if no objects are repeated there is no need for them
to be cached. An important aspect of the caching strate-
gies defined in our proposal is that, unlike caching strate-
gies used in Operating Systems [12], the processing tool has
prior knowledge of all the occurrences of a given object, thus
our strategies can actually aim at achieving optimum cache
use. Moreover, we assume that the information about the
amount Size(Ai) of memory used to store object Ai in the
cache after any preprocessing due to its format (EPS, GIF,
etc.) is also available. One might argue that this process
would ultimately require an entire document to be loaded
into memory in order for any optimization to take place,
thus barring optimization for very large transactional print
jobs. On the other hand, this process can be used in a finer
level of granularity with regard to the PPML document hi-
erarchy, i.e. optimization might be performed over a fixed
set of pages or documents within a job. This process could
then be used to attain locally optimized pieces of a job.

The need for keeping objects in the cache changes over
time as the document is processed. For example, if an ob-
ject is used in the first ten pages of a 300-page high-quality
personalized report, there is no need for keeping it in mem-
ory after page 10 is processed. Therefore, it is necessary
to describe different instants in time when the document is
being processed. Considering that a PPML document is a
sequence of objects A1, . . . , An, it is natural to define in-
stant t as immediately after object At has been processed.
Conversely, the instant before processing starts is instant 0
and the instant after all processing is done is instant n. The
contents of the cache memory also change over time, thus we
may define the cache at an instant t as a set Ct containing
objects. Clearly, at instant 0 the cache C0 is empty.

Considering the situation thus described, we propose the
following problem:

(Reusable Object Optimization). Let J be a print job
containing a sequence A1, . . . , An of content-bearing objects,

M

M

M

M

A1

A1 A2

A1 A2 A3

 A1

 A2

 A3

 A4

 C0 = { }

C1 = {A1}

C2 = {A1, A2}

C3 = {A1, A2, A3}

Figure 3: Evolution of a reusable object cache over
time.

such that repeated objects may exist, that is, it is possible
that Ai = Aj for i �= j, and let PM be a process capable
of caching reusable objects in a cache of size M . The cost
of processing object Ai is Raster(Ai), and let Raster(J) be
the total cost of processing J . The problem of Reusable Ob-
ject Optimization consists in redefining J as a new job J ′

containing reusable objects R1, . . . , Rm and a sequence of
objects A′

1, . . . , A
′
n such that A′

i is either a regular content
object with its normal processing cost or a reference to a
reusable object Rj with negligible processing cost, and such
that Raster(J ′) is as low as possible.

3.2 Optimization Strategies
Considering the problem defined in Section 3.1, we pro-

pose an optimization process based on the transformation of
an existing PPML structure into a functionally equivalent
one that declares some of its content in reusable objects.
Reusable objects are selected according to a simplified sim-
ulation of the consumer process. Such simulation aims at
selecting a set of cache objects resulting in the least possible
net processing effort by the consumer while not exceeding
the total amount of physical memory in the press and thus
not incurring in performance losses due to memory swapping
in the press. We define the strategy for selecting reusable
objects according to Algorithm 1.

Algorithm 1 implicitly uses two auxiliary functions, a pri-
ority evaluation function that measures the importance of
keeping an object in cache at any given time (to help decide
what can be thrown away from the cache to make room for
another object) and a cache replacement policy that selects
objects in the cache for replacement, making decisions based
on these priorities. These functions will be detailed further
in the following sections.

3.2.1 Priority Evaluation
To select the most useful candidates for reusability, it is

necessary to assign some kind of priority to every object
within a PPML document set. Such a priority should com-
pute the payoff of keeping an object in cache with respect
to other objects in the same document set. The main com-
ponents that define such payoff are the size of the resulting
raster image, as well as the frequency with which this raster

Algorithm 1 Reusable object selector.
Require: Cache is empty

for all objects Ai in the document set do
if Ai is already in the cache then

if Ai was used only once before then
Declare Ai reusable {It appears at least twice}

else if Ai is already declared as reusable then
Ai was already declared reusable, so refer to it.

end if
end if
if Ai is not in the cache then

if there is no room for Ai then
Find objects to be removed

end if
Load Ai and use it

end if
if Ai is not used later then

Remove Ai from the cache
end if
Re-evaluate priorities in the cache {An instant has
elapsed}

end for

image is used in the document set. Therefore we define
a function Prit(Ai) that expresses the priority for holding
object Ai in the cache at instant t. Function Prit(Ai) is
non-negative and changes value as time elapses, describing
the importance of keeping object Ai in the cache at a given
instant t. The definition of Prit(Ai) is affected by the fol-
lowing considerations:

1. If object Ai is in the cache at instant t but is not used
afterwards, it is clear that Prit′(Ai) = 0 for t′ ≥ t;

2. If object Ai is in the cache at instant t and is also the
next object to be used, it should have Prit(Ai) as high
as possible, in order not to leave the cache at that
instant. That is, the next object to be used should
never be removed from the cache;

3. If two equal-sized objects Ai and Aj are in the cache
at a given instant t and Ai is used sooner than Aj ,
then we should have Prit(Ai) > Prit(Aj);

4. If objects Ai and Aj have different sizes and are both
in the cache at a given instant t, it is necessary to
look further ahead in the document to check when one
of them will be used again and adjust the priorities
accordingly. For example, if Ai is a 10 MB image and
Aj is a 1 MB image, there are several situations to be
handled:

(a) If there are fewer than 10 occurrences of Aj before
the next occurrence of Ai, then it is better if Aj

leaves the cache as reloading it less than ten times
requires less effort than reloading Ai once;

(b) If there are exactly 10 occurrences of Aj before
the next occurrence of Ai, then both objects are
equivalent with respect to data transfer from aux-
iliary memory;

(c) If there are more than 10 occurrences of Aj before
the next occurrence of Ai, then it is better if Ai

is removed from the cache to be reloaded later,
when needed;

5. If two objects Ai and Aj are of different types (e.g.
TIFF and SVG files) and are in the cache at a given
instant t, priority should be higher for the file that
needs more preprocessing when being reloaded into the
cache;

To provide a priority function Pri() that satisfies those
requirements, we propose

Prit(Ai) =
Weight(Ai) ∗ Size(Ai)

Distance(Ai, t)

where

• Size(Ai) returns the amount of memory needed to store
object Ai after any preprocessing. As a first approxi-
mation, it can be obtained from the PPML CLIP_RECT
directive, that contains information about the total
area used by the element.

• Distance(Ai, t) returns how many objects different from
Ai are used from instant t to the next occurrence of
Ai. Thus, this is a measure of how far ahead the ob-
ject will be necessary, and as this distance increases,
keeping it in the cache becomes less desirable.
This represents a clear advantage of the PPML proces-
sor over the press, as the press makes decisions about
moving objects to and from memory without knowl-
edge of what will come next. Considering that the al-
gorithm has information available about the complete
document, it can make better decisions.

• Weight(Ai) is a weighting factor that describes how
much effort is required to rasterize file Ai, depending
on its type. By changing the values for different files,
one can increase the priority of files whose rasteriza-
tion requires more effort. As a first approximation
Weight(Ai) can be taken as 1 for all file types, though
in a real situation these values must be tuned accord-
ingly.

Unlike traditional caching algorithms, which put signifi-
cant importance in the access frequency of cached elements,
the proposed priority function emphasizes the adjustment
of a weight value associated with format of such an ob-
ject. This shift in prioritization reflects the multiplicity of
graphic formats currently processed by printing hardware
as well as the capabilities of specific platforms to deal with
such formats. For instance, even though Postscript and SVG
are similar formats in terms of capabilities and associated
processing cost, many press platforms have dedicated hard-
ware to interpret Postscript, resulting in significantly differ-
ent processing times between these formats.

3.2.2 Caching Policies
The second main component of the optimization strategy

described in this work is a cache replacement policy that
determines which objects are to be discarded from cache in
order to allow new ones to be used in the printing process.

An important aspect of our use of cache replacement poli-
cies is that, unlike the caching strategies used in Operating
Systems or Memory Architectures [12], complete informa-
tion regarding future usage of cached elements is available.
Such information is incorporated into the priority function
of Section 3.2.1 and is taken into account in the three poli-
cies defined below, used to decide which objects are to be
taken out of the cache to provide room for a new object Ai.

First fit: simply searches the current cache objects from
lowest priority to highest, and the first one whose size
allows Ai to fit in is taken out. If no one is found, the
object with smallest priority is deleted and the process
is repeated;

Sum fit: starts by removing objects from lowest priority to
highest until there is enough memory to hold Ai;

Sum fit with recovery: analyzes objects from lowest pri-
ority to highest, marking them for removal until there
is enough memory to hold Ai. After enough objects
are selected, the list of marked objects is checked for
objects that may remain in the cache;

As an example, suppose that we need 40 MB from the
cache, but only 5 MB are free. When trying to find
another 35 MB, we mark objects with lowest priority
and sizes 10 (adding to 15 MB), 20 (adding to 35 MB)
and 40 MB (adding to 75 MB) to leave the cache. By
doing so we would have 75 MB free to store the 40 MB
object, which is too much as there will still be 35 MB
free. We then go backwards in the list (this assures
that objects with higher priority will be considered
first) and determine which objects can be kept. In
this case, the objects with 10 and 20 MB will be kept
and only the 40 MB object will leave the cache.

As there are several policies that may be used to decide
what to take out of the cache, the proposal is very simple:
to read in the entire document and simulate the effect of
all proposals, measuring the amount of data moved into the
cache by each one of them. The one that moves less data
is used to generate the final PPML output. Moreover, as
we simply have to simulate the different policies and decide
which one is the best, additional policies can be easily in-
corporated into this model.

3.3 Dealing with PPML constraints
One of the problems that had to be solved in this approach

was the fact that to ensure proper cache utilization it is
sometimes necessary for objects to be explicitly deallocated.
Unfortunately PPML does not provide such an instruction,
and objects can only be loaded into the cache, but not taken
out. Though these objects may have scopes associated to
them, PPML provides only a limited range of scopes and
their granularity is not fine enough for our intended usage
model. Therefore, without an explicit deallocation opera-
tor we are only able to load new objects, while the press
handles older objects with its own algorithms, writing them
to auxiliary memory and possibly making worse decisions
concerning the use of memory.

It is interesting to point out that reusable objects can
have an associated weight attribute, so that the PPML pro-
ducer can give a hint about what objects should be kept in
the cache and which ones have less priority. However, the
press might not take into account such information, which is
provided merely as a hint.

An alternate approach to deal with this issue would be the
creation of a separate PPML job containing only reusable
objects. This document would be sent to the press to al-
low it to rasterize the reusable objects prior to the process-
ing of the actual printable document. Using this approach,
when the actual document intended for printing is sent to

Size Distribution
1-10 MB 5%
11-30 MB 10%
31-50 MB 20%
51-100 MB 30%
101-150 MB 20%
151-200 MB 15%

Table 1: Distribution of object sizes in the test

the press, the objects sent beforehand would already be
processed, thus speeding up the printing process.

Although the proposed strategy can be considered com-
plete from a theoretical point of view, there is still room for
improvement: the current model does not consider the pre-
cise preprocessing effort required for a given object. If such
information was available, the PPML processor would be
able to identify when an object having a very expensive pre-
processing will be disposed of and preserve it for later use.
This would allow the press to store such an object in some
kind of secondary storage if the cost of writing it and read-
ing it anew is less than the cost of reading it and rasterizing
it again. Furthermore, the cost of rendering an object de-
pends not only on its format but also on its content, so that
it is common to find objects described in the same format
but having drastically different rendering times depending
on the kind of instructions contained in the file as is the case
with PDF, SVG and PS. Thus, a more precise estimation of
the rendering time would require the analysis of the content
of each object, which is a clearly hopeless task, and exam-
ining the size of the object would not be more effective. For
example, a PS file with just a few hundred bytes might put
a printer into an infinite loop.

Nevertheless, a limited but straightforward estimation of
rendering times may be made by timing the rendering of
the objects themselves, so that we have approximate data
on the rendering times and may assume that these times will
be repeated when an object is rendered again. By doing so,
relative rendering costs can be approximated.

4. IMPLEMENTATION
The optimization strategies described in Section 3 were

used in a series of prototype implementations aimed at veri-
fying the characteristics of such strategies. Initially the pro-
posed model was tested in a simulated environment, whose
results are summarized in Section 4.1, and later the entire
model was used in the implementation of a PPML process-
ing tool, described in Section 4.2.

4.1 Caching Strategies Simulation
To verify the viability of implementing a preprocessor us-

ing the model described in Section 3 and to benchmark its
advantages with respect to the suggested optimization ap-
proaches, a number of experiments were performed. Such
experiments were conducted using a simplified representa-
tion of a PPML document on which the proposed optimiza-
tion model operated. The cache utilization policies were
implemented within the evaluation tool.

The experiments were made with documents consisting of
300 instances of 50 randomly chosen objects, each requir-
ing the same amount of rendering effort. Object sizes were
distributed according to the classes of Table 1.

Policy Avg. Transfer Amount of reuse
No Cache 24227MB 0%
First Fit 18036MB 25.55%
Sum Fit 15685MB 35.26%
Sum Fit w/ Rec. 15410MB 36.39%
Infinite Cache 4158MB 82.84%

Table 2: Average data transfer and amount of reuse.

We begin by taking into account two extreme situations
regarding cache size (Figure 4 shows the amount of data
read in and rendered for each situation):

• Infinite Cache Size: considers a press where mem-
ory allocation in the cache is always successful. There-
fore, whenever an object is needed, it is taken from
disk, rendered and stored for further use.

• No Cache: considers a press model in which every
object required for printing must be transferred from
disk and rasterized again. This situation is equivalent
to a document with no reusable objects at all.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300

D
at

a
(M

B
)

Objects

Data Transferred

Infinite memory
No Cache

Figure 4: Data transfer extremes.

These situations represent the boundaries beyond which
no reusability policy can possibly be situated. Considering
the upper extreme, no reusability policy will perform worse
than the No Cache curve. Conversely, no reusability policy
can perform better than the Infinity curve. A clear conclu-
sion that can be reached considering these situations is that
the closer a policy is to the Infinity curve, the better it is.

The evaluation data was used to test the proposed poli-
cies in a simulated consumer press incorporating a 600 MB
cache, the results being shown in Table 2 and the amount of
data transferred for each policy in Figure 5. One sees that
there is a reduction of at least 2 GB in transferred data when
the cache is used. Thus, evaluation of the proposed cache
utilization policies has shown that a PPML document opti-
mized using the First Fit policy would require significantly
less effort by the press than the same document without
reusable objects. Also considering the proposed test data,
the Sum Fit policy performed better than First Fit with its
reconsidering variation performing slightly better.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 50 100 150 200 250 300

D
at

a
(M

B
)

Objects

Data Transferred

Infinite Cache
No Cache

First Fit
Sum Fit

Sum Fit w/ Recovery

Figure 5: Data transfer for the replacement policies.

4.2 The Cruncher: A PPML processing tool
Once the optimization hypothesis was verified in the pre-

liminary experiments, a tool was designed intended to per-
form the proposed processes on actual PPML documents.
Such tool was dubbed the PPML Cruncher and its initial
goal was to analyze PPML input, identify reusable objects
and rearrange its content so that potentially reusable objects
would be declared as such whenever such re-declaration was
appropriate.

4.2.1 Plug-in Architecture
The Cruncher architecture was designed to allow the

incorporation of new plug-in modules intended to execute
arbitrary algorithms upon PPML files. Such architecture
is centered around an abstract model of PPML elements
designed using the Composite Pattern [3]. The classes that
comprise this model, in turn, are designed to accept Visitor
classes [3, 11] that implement the pluggable algorithms.

Using the proposed architecture, the analysis of a PPML
document according to the policies defined in this work
would be implemented as a plug-in within the main pro-
gram. The reorganization of the PPML tree would be a
separate plug-in, thus allowing different usage possibilities
for the reusable object elements of the PPML standards.

4.2.2 Cruncher Implementation
From an implementation point of view, a parser module

based on Apache Commons Digester has been put together
in order to parse a subset of the PPML specification. More-
over, the plug-ins responsible for analyzing a PPML doc-
ument set according to the First Fit and Sum Fit policies
have been implemented, and evaluated using real PPML
documents.

The current implementation of the Cruncher architecture
is capable of a series of additional pre-processing refinements
during the optimization process, such as:

1. Using a pre-processing plug-in Cruncher is able to
recognize repeated objects and mark them as such for
the reuse policies to consider. It is also possible to
use a pre-processing module capable of identifying spe-
cific reuse instructions provided by other tools, such

Policy RO RO Data
Decls. Refs. Transf.

No Cache 0 0 5432.58MB
Best Fit 1369 4578 4922.15MB
Sum Fit 1600 5383 4573.68MB
Sum Fit w Rec. 2047 6867 4553.98MB

Table 3: Total data transfer, Reusable Object (RO)
declarations and references.

as an XSL-FO-driven producer [5, 6], which can use
some kind of markup to identify static and dynamic
elements gathered while processing the stylesheet and
data. In such setting, a Cruncher plug-in is be able
to take advantage of application-dependent informa-
tion to identify reusable objects;

2. If an input file already contains reusable objects, a
pre-processing module “expands” the file so that the
reusability features can deal with a uniform document
representation, not having to cope with already exist-
ing reusable object details and scopes;

3. Considering its architecture, the Cruncher is able to
use different strategies and methods for PPML docu-
ment manipulation, as well as being able to consider
press implementation particularities.

4.3 Results and Evaluation
An implementation of the Cruncher was used in the eval-

uation of the proposed algorithms, as well as the scalabil-
ity of our optimization strategy. The documents used for
the evaluated benchmarks contained approximately 48000
graphical objects comprising a mixture of vector graphics
(SVG), and bitmaps (JPEG and PNG), 30% of which were
potentially reusable, i.e. objects occurring more than once
within the job. After being processed by the Cruncher for
a cache size of 500MB the data transfer statistics of Figure 6
were obtained.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
em

or
y

(M
B

)

Objects

Data Transferred

Original Document
Best Fit

Sum Fit w/ Recovery
Sum Fit

Figure 6: Data transfer for the implemented algo-
rithms.

An analysis of Figure 6 reveals that most of the prelimi-
nary suspicions regarding document performance were cor-

roborated by the evaluation data. More specifically, that
optimization using a simple reuse policy such as Best Fit is
significantly better than no optimization at all. Moreover
the two more advanced policies offer significant improve-
ments over Best Fit. Nevertheless, the performance gap be-
tween Sum Fit and Sum Fit with Recovery for actual PPML
documents has proven to be narrower than for toy examples.
The performance deviation between these two algorithms is
so slight as to be imperceptible in the curves of Figure 6,
while the data in which these curves are based (shown in
Table 3) shows that the concrete difference is approximately
20MB for a 5.3GB-large job (approximately 0.4%). Such a
small performance difference in this situation is attributed
to the small size of the objects whose priority value allows
them to be retained in cache during the recovery step of
the third policy. More precisely, the recovery step allows
a very large number of additional objects, that would oth-
erwise be disposed by the Sum Fit policy, to be kept in
memory by “squeezing” back into the cache, as evidenced
by Table 3. Even though approximately 400 additional ob-
jects are declared as reusable, resulting in more than 1500
further disposable objects being replaced in the document,
these objects are very small in comparison to others that
remain longer in the cache.

5. CONCLUDING REMARKS
Considering the work developed so far, it seems clear that

the rational use of the reusability features of any variable
data document standard is of paramount importance to the
performance of large-scale high-quality personalized print-
ing. In this paper we have outlined the basic aspects of an
optimization strategy based on a simulation of the process-
ing of a job within a digital press. Nevertheless, there is
still room for improvements in terms of other optimization
strategies. Such improvements may come as refinements in
our simulation-based optimization or as novel optimization
strategies. An example of an alternate strategy for optimiz-
ing personalized documents would be the usage of genetic
algorithms [10] as a means to iteratively refine the usage of
reusable objects within the document.

The detection and organization of repeated elements out-
lined in this paper can also be useful for archiving purposes.
In this type of application the strategies described for print-
ing optimization would be analogous to compression algo-
rithms in the sense that they identify recurring patterns
within documents and index them for usage throughout the
document instead of the actual content, ultimately reducing
storage requirements for a given document. Such an archiv-
ing solution could be integrated into the digital publishing
workflow using the Cruncher architecture, which would de-
clare as reusable every object which appears multiple times
when a document is archived. Later in the production flow,
when such a document is retrieved from storage, Cruncher
would re-expand the reusable objects prior to its optimiza-
tion process targeting the document for a specific press hard-
ware.

Work in the implementation of our basic Cruncher archi-
tecture is concluded, and future developments of such ar-
chitecture will point out alternative investigation paths to
our research. As of the submission of this paper, the au-
thors were working on algorithms to automatically decide
the equality of complex elements within a document set.

Acknowledgments
This work was (partially) developed in collaboration with
HP Brazil R&D. The authors would like to thank Fabio
Giannetti and Antony Wiley, our research partners from
Hewlett-Packard Laboratories Bristol, whose ideas and par-
ticipation were invaluable for this research to take place.

6. REFERENCES
[1] D. D. Bosschere. Book ticket files & imposition

templates for variable data printing fundamentals for
PPML. In XML Europe 2000, Paris, France, 2000.
International Digital Enterprise Alliance.

[2] D. DeBronkart and P. Davis. PPML (personalized
print markup language): A new XML-based industry
standard print language. In XML Europe 2000, Paris,
France, 2000. International Digital Enterprise Alliance.

[3] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns: Elements of Reusable Object
Oriented Software. Addison-Wesley, 1994.

[4] T. Goodman. Case Study: Digital Publishing at the
Olympic Games. In Open Publish 2001, 2001.

[5] W. E. Kimber. Using XSL Formatting Objects for
Production-Quality Internationalized Document
Printing. In XML Europe 2003, pages 1–20, London,
England, 2003. International Digital Enterprise
Alliance.

[6] K. Kreulich. Publishing Workflows with XSL-FO. In
XML Europe 2003, pages 1–6, London, England, 2003.
International Digital Enterprise Alliance.

[7] J. C. Mong and D. F. Brailsford. Using svg as the
rendering model for structured and graphically
complex Web material. In Proceedings of the 2003
ACM symposium on Document engineering, pages
88–91. ACM Press, 2003.

[8] P. PODI. Print markup language functional
specification version 2.1, 2002. Extracted from
http://www.podi.org/ at June 20th, 2003.

[9] S. Probets, J. Mong, D. Evans, and D. Brailsford.
Vector graphics: from PostScript and Flash to SVG.
In Proceedings of the 2001 ACM Symposium on
Document engineering, pages 135–143. ACM Press,
2001.

[10] L. Purvis, S. Harrington, B. O’Sullivan, and E. C.
Freuder. Creating personalized documents: an
optimization approach. In Proceedings of the 2003
ACM symposium on Document engineering, pages
68–77. ACM Press, 2003.

[11] A. Shalloway and T. James R. Design Patterms
Explained: A New Perspective on Object-Oriented
Design. Addison Wesley, 2001.

[12] A. Tanenbaum. Modern Operating Systems. Prentice
Hall, 2nd edition, 2001.

