
HTN Planning with
Semantic Attachments

Maurício Cecílio Magnaguagno and Felipe Meneguzzi
 Pontifical Catholic University of Rio Grande do Sul (PUCRS)

 Porto Alegre - RS, Brazil

Symbolic-Geometric planning
● Usually solved by separate planners/solvers

○ One solver is the main program that is able to call other solvers
○ Constraints discovered by each solver must be transmitted to the other

■ May require replanning (costly)

● Why not solve most of the problem with one planner/solver?
○ Use external solvers not as one big black-box that returns plans
○ Use external solvers as small smart-unification engines

2

Classical vs Hierarchical Planning
Classical

● Actions
○ Easier to modify

● Goal-oriented
● Planner controls plan quality

○ Decisions are built-in
● Speed/memory is limited by planner

○ Better planners are required
● Constant set of objects

○ Easier to optimize (enumerate)

Hierarchical

● Actions + Methods
○ Easier to control

● Task-oriented
● Description controls plan quality

○ Decision are external
● Speed/memory is limited by description

○ Better methods are required
● Dynamic set of objects

○ Easier to handle continuous/external values
■ Common in motion/temporal planning

3

Hierarchical Planning
● Mostly symbolic

○ Discretization
○ User provided “recipes”
○ Support numeric operations, external calls

● Less decisions than classical planning
○ More control, easier to extend
○ Follow tasks → methods → subtasks

● Task list

(defdomain search (; This is a JSHOP description
 (:operator (!move ?agent ?from ?to)

((at ?agent ?from) (adjacent ?from ?to))
((at ?agent ?from))
((at ?agent ?to)))

 (:operator (!!visit ?agent ?pos)
()
()
((visited ?agent ?pos)))

 (:operator (!!unvisit ?agent ?pos)
()
((visited ?agent ?pos))
())

 (:method (forward ?agent ?goal)
base
((at ?agent ?goal))
()
recursion
(

 (at ?agent ?from)
 (adjacent ?from ?place)
 (not (visited ?agent ?place)))

(
 (!move ?agent ?from ?place)
 (!!visit ?agent ?from)
 (forward ?agent ?goal)
 (!!unvisit ?agent ?from))))

4

Hierarchical Planning
● Mostly symbolic

○ Discretization
○ User provided “recipes”
○ Support numeric operations, external calls

● Less decisions than classical planning
○ More control, easier to extend
○ Follow tasks → methods → subtasks

● Task list

(defproblem pb1 search
 (; initial state
 (at ag1 p0)
 (adjacent p0 p1) (adjacent p1 p0)
 (adjacent p1 p2) (adjacent p2 p1)
 (adjacent p2 p3) (adjacent p3 p2)
 (adjacent p3 p4) (adjacent p4 p3)
)
 (; task list
 (forward ag1 p2)
)
)

5

p0 p1 p2 p3 p4

Hierarchical Planning

6

(; plan
 (!move ag1 p0 p1)
 (!!visit ag1 p0)
 (!move ag1 p1 p2)
 (!!visit ag1 p1)
 (!!unvisit ag1 p1)
 (!!unvisit ag1 p0)
)

p0 p1 p2 p3 p4

(defproblem pb1 search
 (; initial state
 (at ag1 p0)
 (adjacent p0 p1) (adjacent p1 p0)
 (adjacent p1 p2) (adjacent p2 p1)
 (adjacent p2 p3) (adjacent p3 p2)
 (adjacent p3 p4) (adjacent p4 p3)
)
 (; task list
 (forward ag1 p2)
)
)

Planning Challenges
● Hard to compare numeric values

○ Discretization or limited exponent/mantissa
○ Numeric error, is 1.00001 = 1 or 100000 = 100001?

● Hard/impossible to access external functions/structures
○ Usually only literals or numeric values
○ No support for objects (OOP) such as points, lines, polygons…

● How to handle geometric/temporal definitions as symbols
○ Can we anchor symbols to external structures?

7

8

Symbolic

Literal values

Set operations

(over all (at robot pos1))

Geometric

Continuous values

OOP/Procedural

robot = {pose, battery, …}
pos1 = {x, y, w, h}

Temporal

Continuous values

Constraints

from T0 to Tf keep robot
in a pose within an area

anchors

anchors anchors

Question: is it possible to perform symbolic-geometric planning efficiently by
dynamically generating symbolic anchors to external objects?

Goal: Our main goal is to obtain a symbolic-geometric planning approach that is
both competitive and easier to describe domains when compared with other
approaches, that either precompute a lot of data or are limited by a fixed number
of anchors between the symbolic and geometric layers.

9

Symbolic ⇐ anchors ⇒ Geometric/Temporal/Object

Symbolic-Geometric Planning
● Extend HTN planning and descriptions

○ More procedural than classical planning/PDDL
○ Better control over which decisions/outside calls are made during planning

● Generate anchors during planning
○ position1 = (x, y)
○ polygon2 = (p1, p2, ..., pn)
○ robot = (pose, speed, battery, parts, ...)

● Support external calls with anchors instead of numeric constructions
○ (call < (call distance 0 0 10 4) 3)
○ (call = (call distance p1 p2) near) ⇐ More readable

● Break problem in layers

10

Layers

11

Symbolic layer

Declarative state

External calls

Ground semantic attachments

Lifted semantic attachments

 Intermediate layer

Functions

Coroutines

External layer

Procedural state

External library/simulator

S
ym

bo
l-o

bj
ec

t t
ab

le

Layers

12

Symbolic layer

Declarative state

External calls

Ground semantic attachments

Lifted semantic attachments

 Intermediate layer

Functions

Coroutines

Geometric layer

Procedural state

External library/simulator

Temporal Layer - Constraints
maintain

protect/unprotect

S
ym

bo
l-o

bj
ec

t t
ab

le

Coroutines / Semi-coroutines / Generators
● Subroutines for non-preemptive multitasking
● Execution can be suspended and resumed
● Able to implement

○ Cooperative tasks
○ Iterators
○ Infinite lists

● Semi-coroutines = weaker co-routines
○ Main routine has control
○ Coroutine can save state and resume main

routine

define consecutive ⟨from, n)
 for i ← from to from + n
 yield i, i+1

for ⟨a, b⟩ in consecutive(5, 3)
 print ⟨a, b, a+b⟩

⟨5, 6, 11⟩
⟨6, 7, 13⟩
⟨7, 8, 15⟩
⟨8, 9, 17⟩

13

Framework

14

Reorder preconditions during compilation phase
(:attachments (sa1 ?a ?b) (sa2 ?a ?b))
(:method (m ?t1 ?t2)
 label
 (; preconditions
 (call != ?t1 ?t2) ; no dependencies
 (call != ?fv1 ?fv2) ; ?fv1 and ?fv2 dependencies
 (sa1 ?t1 ?fv1) ; no dependencies, ground ?fv1
 (pre1 ?t1 ?t2) ; no dependencies
 (sa2 ?fv1 ?fv2) ; ?fv1 dependency, ground ?fv2
 (pre2 ?fv3 ?fv1) ; ?fv1 dependency, ground ?fv3
)
 (; subtasks
 (subtask ?t1 ?t2 ?fv1 ?fv2)
)
)

define m(t1, t2)
 if t1 ≠ t2
 for each fv1,fv3; state ⊂ {⟨pre1,t1,t2⟩, ⟨pre2,fv3,fv1⟩}
 for each sa1(t1, fv1)
 free variable fv2
 for each sa2(fv1, fv2)
 if fv1 ≠ fv2
 decompose([⟨subtask, t1, t2, fv1, fv2⟩])

15

● Convert a symbol to an object and vice-versa
○ position1 ⇒ (x: 20, y: 18)

● Equivalent objects in the geometric layer ⇒ same symbol
○ Easier to compare (table already did the comparison when computed)
○ Easier to debug (user control generated literal names)

define distance(p1, p2)
 o1 = object(p1)
 o2 = object(p2)
 return symbol(hypot(x(o1) - x(o2), y(o1) - y(o2))

Symbol-object table

16

s1 o1

s2 o2

sn on

...

p1

p2
distance

symbol

object

near

1.41

object

Semantic attachments
● Avoid complex preconditions and effect descriptions (update state)
● Easier to be computed in a lazy way (iterative)
● Describe them externally to the planner

○ (:attachments (my-attachment ?param1 ?param2))
○ Replace by other implementations if necessary
○ Minimal modification over original language (easily reproducible)

● Usage is the same as common predicates
○ Easily replace declarative aspects with procedures

17

Function

Semantic
Attachment

HTN External

constant WIDTH = 5, HEIGHT = 5
constant DIRECTIONS = {⟨-1,-1⟩, ⟨0,-1⟩, ⟨1,-1⟩, ⟨-1,0⟩, ⟨1,0⟩, ⟨-1,1⟩, ⟨0,1⟩, ⟨1,1⟩}

define adjacent(pos1, pos2)
 pos1 ← object(pos1)
 if pos2 is ground
 pos2 ← object(pos2)
 if |x(pos1) - x(pos2)| ≤ 1 ∧ |y(pos1) - y(pos2)| ≤ 1
 yield
 else if pos2 is free
 for each ⟨x, y⟩ ∈ DIRECTIONS
 nx ← x + x(pos1)
 ny ← y + y(pos1)
 if 0 ≤ nx < WIDTH ∧ 0 ≤ ny < HEIGHT
 pos2 ← symbol(⟨nx, ny⟩)
 yield

Example - adjacent

18

pos1

Ground - test and resume

Lifted - unify and resume

Domains and Experiments - Plant Watering / Gardening

define adjacent(x, y, nx, ny, gx, gy)
 x ← numeric(x)
 y ← numeric(y)
 gx ← numeric(gx)
 gy ← numeric(gy)
 ; compare returns -1, 0, 1 for <, =, >, respectively
 nx ← symbol(x + compare(gx, x))
 ny ← symbol(y + compare(gy, y))
 yield

19

(:attachments (adjacent ?x ?y ?nx ?ny ?gx ?gy))
(:method (travel ?a ?gx ?gy)
 base
 (; preconditions
 (call = (call function (x ?a)) ?gx)
 (call = (call function (y ?a)) ?gy)
)
 () ; empty subtasks
 keep_moving
 (; preconditions
 (adjacent
 (call function (x ?a))
 (call function (y ?a))
 ?nx ?ny
 ?gx ?gy)
)
 (; subtasks
 (!move ?a ?nx ?ny)
 (travel ?a ?gx ?gy)
)
)

⊔ ⊔

Domains and Experiments - Plant Watering / Gardening
(:attachments (adjacent ?x ?y ?nx ?ny ?gx ?gy))
(:method (travel ?a ?gx ?gy)
 base
 (; preconditions
 (call = (call function (x ?a)) ?gx)
 (call = (call function (y ?a)) ?gy)
)
 () ; empty subtasks
 keep_moving
 (; preconditions
 (adjacent
 (call function (x ?a))
 (call function (y ?a))
 ?nx ?ny
 ?gx ?gy)
)
 (; subtasks
 (!move ?a ?nx ?ny)
 (travel ?a ?gx ?gy)
)

20

define travel(a, gx, gy)
 if x(a) = gx ∧ y(a) = gy
 decompose([])
 free variables nx, ny
 for each adjacent(x(a), y(a), nx, ny, gx, gy)
 decompose([
 ⟨move, a, nx, ny⟩,
 ⟨travel, a, gx, gy⟩
])

Domains and Experiments - Plant Watering / Gardening

21

Domains and Experiments - Car Linear

(:- (speed_limit ?time)
 (and
 (assign ?vt (call function v ?time))
 (assign ?max (call function max_speed))
 (call >= ?vt (call - 0 ?max))
 (call <= ?vt ?max)
)
)

22

(:attachments (step ?t ?min ?max ?step))
(:method (forward ?min_dest ?max_dest)
 base
 ()
 ((!!test_destination ?min_dest ?max_dest 0))
 keep_moving
 ((step ?deadline 1))
 (
 (!start_car 0 ?deadline)
 (!accelerate 0)
 (!decelerate 1)
 (!decelerate (call - ?deadline 1))
 (!accelerate ?deadline)
 (!stop_car ?deadline)
 (!!test_destination ?min_dest ?max_dest ?deadline)
)
)

1
dd - 1

step

Processes: acceleration ⇒ speed ⇒ position

Domains and Experiments - Car Linear

23

Problem 1 2 3 4 5 6 7 8 9

ENHSP(aibr) 0.461 0.462 0.427 0.461 0.475 0.474 0.443 0.466 58.256

HTN with SA 0.015 0.015 0.015 0.015 0.015 0.015 0.015 0.015 03.920

Domains and Experiments - Bitangent movement
● Use external motion planner vs calculate

continuous path during planning
● Bitangent search / Dubins path

○ ACG, ADH, BEG, BFH

24

Domains and Experiments - Bitangent movement

25

Domains and Experiments - Bitangent movement
(:method (forward ?agent ?goal)
 base
 ((at ?agent ?goal)) ; preconditions
 () ; empty subtasks
 search
 (; preconditions
 (at ?agent ?start)
 (call search-circular ?agent ?start ?goal)
)
 ; subtasks
 ((apply-plan ?agent ?start 0 (call plan-size)))
)

26

(:method (apply-plan ?agent ?from ?index ?size)
 index-equals-size
 ((call = ?index ?size)) ; preconditions
 () ; empty subtasks
 get-next-action
 ; preconditions
 ((assign ?to (call plan-position ?index)))
 (; subtasks
 (!move ?agent ?from ?to)
 (apply-plan ?agent ?to (call + ?index 1) ?size)
)
)

First option: call external motion planner and consume steps

Domains and Experiments - Bitangent movement
(:attachments (closest ?circle ?to ?outcircle
?indir ?outdir ?goal))

(:method (forward-attachments ?agent ?goal)
 clockwise
 ((at ?agent ?start)) ; preconditions
 (; subtasks
 (loop ?agent ?start ?start clock ?goal)
)
 counter-clockwise
 ((at ?agent ?start)) ; preconditions
 (; subtasks
 (loop ?agent ?start ?start counter ?goal)
)
)

27

(:method (loop ?agent ?from ?circle ?indir ?goal)
 base
 ((call visible ?from ?circle ?goal)) ; preconditions
 ((!move ?agent ?from ?goal)) ; subtasks
 recursion
 (; preconditions
 (closest ?circle ?to ?outcircle ?indir ?outdir ?goal)
 (not (visited ?agent ?to))
)
 (; subtasks
 (!move ?agent ?from ?to)
 (!!visit ?agent ?from)
 (loop ?agent ?to ?outcircle ?outdir ?goal)
 (!!unvisit ?agent ?from)
)
)

Second option: implement motion planner as part of symbolic description

Conclusions
● HTN Planning with Semantic Attachments

○ Flexibility
■ No preprocessing
■ No limited amount of anchors (symbols)
■ Able to describe more problems (realistically)

○ External elements expand possibilities
■ Debug with readable object names
■ Geometry/physics libraries

○ Future work
■ Formalization of semantic attachments
■ Support non DFS-based HTN planners

● Available at https://github.com/Maumagnaguagno/HyperTensioN_U

28

https://github.com/Maumagnaguagno/HyperTensioN_U

