
Integrating Ontologies with Multi-Agent Systems
through CArtAgO Artifacts

Artur Freitas, Alison R. Panisson, Lucas Hilgert,
Felipe Meneguzzi, Renata Vieira, Rafael H. Bordini

Postgraduate Programme in Computer Science, School of Informatics (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS). Porto Alegre, RS - Brazil

{artur.freitas, alison.panisson}@acad.pucrs.br,
{lucas.hilgert, felipe.meneguzzi, renata.vieira, rafael.bordini}@pucrs.br

Abstract—Several advantages can be obtained by allowing
multi-agent systems to easily access ontologies, for example,
in scenarios where agents make their decisions based on the
knowledge provided by ontologies. Thus, this paper presents an
infrastructure to allow the use of web ontologies in different
agent-oriented platforms. The agents use this infrastructure layer
as a tool for storing, accessing and querying domain-specific
OWL ontologies. As a result, this layer allows an integration
of agent platforms with semantic web data and ontologies. We
exemplify in practice how agents, coded in one such platform, can
use the proposed access layer to ontological reasoning engines, as
well as which features can be obtained from it. The performance
of this semantic infrastructure is evaluated and compared against
usual knowledge representation in agent programming.

Keywords-Ontology, Agent-Oriented Programming Languages,
Multi-Agent Systems, CArtAgO

I. INTRODUCTION

Ontologies empower the execution of semantic reasoners,
such as Pellet [1], which provide the functionalities of consis-
tency checking, concept satisfiability, classification and reali-
sation. Ontologies also allow sharing a common understanding
of the structure of information among people and software
agents and the reuse of domain knowledge. The integration of
such semantic technologies into Multi-Agent Systems (MAS)
enhances the knowledge representation features and reasoning
capabilities of applications developed under these paradigms.
Using ontologies in MAS results in the possibility of creating
logic rules that can be applied by a semantic reasoner to infer
new knowledge. Thus, the logic is moved from the agent code
to the ontology, and the knowledge may be reused by different
applications. Moreover, each agent is allowed to include these
ontologies and specialise them with more specific and domain-
dependent knowledge.

Our approach enables the use of ontologies within MAS, by
enabling agents to reason about and query elements encoded in
ontologies, such as instances, concepts and properties. Agents
in such systems interact with ontologies by means of an
infrastructure layer coded in a CArtAgO [2] artifact (CArtAgO
offers computational abstractions and provides services that
agents can exploit to support their activities). The information
obtained from operations over this infrastructure may be used
in agent plans to achieve goals, such as in argumentation-based

negotiation/dialogue scenarios, whereupon more information
can benefit the agents engaged in such process [3]. Agents
can use the operations of our artifact to access and manipulate
information in ontologies, as we show in further sections,
using the Jason [4] agent platform to access ontologies in
OWL [5].

This paper makes the following contributions: (i). devel-
oping an infrastructure layer (artifact) coded in CArtAgO to
enable ontology reasoning and querying features in different
agent-oriented platforms; (ii). describing and implementing
scenarios in Jason agent platform using the operations pro-
vided by such infrastructure; (iii). evaluating and comparing
the performance of this new knowledge representation ap-
proach (of accessing ontologies by the infrastructure) against
representations that use the belief base of agents; (iv). dis-
cussing advantages, limitations and trends of enabling agents
to access the knowledge from ontology to support their deci-
sion making.

This paper is structured as follows. It first explains a
theoretical background on multi-agent systems and ontologies.
Then we propose an architecture, based on a CArtAgO artifact,
working as an infrastructure layer to provide ontology manip-
ulation capabilities in agent platforms. The following section
uses this artifact to access an OWL ontology in the context
of Jason agents. We explain the ontology used, reasoning ex-
amples and how it can support the decision making of agents.
Next, experiments are used to compare the performance of
our approach against an agent reasoning that uses only the
regular agent’s belief base. Finally, we discuss related work
and outline research directions.

II. ONTOLOGIES AND MULTI-AGENT SYSTEMS

Ontology is defined as an explicit specification of a con-
ceptualisation [6], where a conceptualisation is an abstract,
simplified view of the world that we wish to represent for some
purpose. Every knowledge base, knowledge-based system, or
knowledge-level agent is committed to some conceptualisa-
tion, explicitly or implicitly [6]. Some essential properties of
ontologies are [7]: (i) ontologies describe a specific domain;
(ii) ontology users agree to use the terms consistently; (iii)
ontology concepts and relations are unambiguously defined in

a formal language by axioms and definitions; (iv) relationships
between ontology concepts determine the ontology structure;
and (v) ontologies can be understood by computers. More
importantly, ontologies empower the execution of semantic
reasoners which provide functionalities such as consistency
checking, concept satisfiability, classification and realisation.

Ontologies are knowledge representation structures, usually
based on Description Logics, composed of concepts, proper-
ties, individuals, relationships and axioms [8]. A concept (or
class) is a collection of objects that share specific restrictions,
similarities or common properties; a property expresses rela-
tionships between concepts; an individual (instance, object, or
fact) is an element of a concept; a relationship instantiates a
property to relate two individuals; and an axiom (or rule) im-
poses constraints on values of concepts or individuals normally
using logic languages (that can be used to check ontological
consistency or infer new knowledge). The most prominent
ontology language is OWL (Web Ontology Language), which
is a language for processing web information and semantic
web standard formalism to explicitly represent the meaning
and relationships of terms [5].

We consider that these essential properties of ontologies
have a role to play in multi-agent systems. Agents are reactive
systems that can independently determine how to best achieve
their goals and perform their tasks while demonstrating prop-
erties such as autonomy, reactivity, pro-activeness and social
ability [4]. Although the advantages of ontologies for agents
are clear, few multi-agent system platforms currently integrate
ontology techniques. Limited ontological support is provided
by agent-oriented software engineering approaches since they
do not incorporate ontologies throughout the entire systems
development life cycle nor consider ways in which ontologies
can be used to account for interoperability and verification
during design [9]. Considering such context, this work inves-
tigates the use of ontologies in multi-agent systems.

III. ENGINEERING ONTOLOGY-BASED AGENTS

There are many agent-oriented programming platforms,
such as Jason, Jadex, Jack, AgentFactory, 2APL, GOAL,
Golog, and MetateM, as pointed out in [10]. Those lan-
guages differ in the agent architecture used, in the form
of communication/interaction between them, and also on the
programming paradigms that inspired or underlie each lan-
guage. Our proposal to interact with ontologies can be used in
any agent platform that supports CArtAgO. In this paper we
used Jason [4] to demonstrate the application of our artifact.
Jason is one of the best-known languages inspired by the
BDI (Beliefs-Desires-Intentions) architecture. Jason is open
source interpreter and offers several features such as speech-
act based agent communication, plans annotation, architecture
customisation, distributed execution and extensibility through
internal actions.

As previously explained, ontology is defined in computer
science as an explicit specification of a conceptualisation.
In other words, it means an abstract model of some world

aspect that specifies properties of important concepts and rela-
tionships. Ontologies are knowledge representation structures
composed of concepts, properties, individuals, relationships
and axioms. For example, OWL (Web Ontology Language)
is a language for processing web information defined as
a semantic web standard formalism to explicitly represent
the meaning of terms and the relationships between those
terms [5]. The use of ontology in agents is motivated by the
needs of improving knowledge representation and enabling
the execution of semantic reasoning. For example, in OWL,
a given class C can be declared with certain conditions (i.e.,
every instance of C has to satisfy these restrictions, and/or
every instance that satisfies these restrictions can be inferred
as belonging to C). OWL class restrictions [5] can be defined
by elements such as cardinality and logic restrictions (e.g.,
union, intersection, negation, the universal and the existential
quantifier). These restrictions allow to make inferences by us-
ing semantic reasoners over the ontology, which are important
features to provide to agent when building complex artificial
intelligence systems.

A comparison about the integration of ontologies within
MAS is discussed with more detail in the Related Work
section. In short, AgentSpeak-DL [11] is a language which
appears in a paper that does not implement it in any agent
platform; JASDL [12] is an AgentSpeak-DL implementation
directly in Jason; and CooL-AgentSpeak [13] is implemented
in a way that each agent ontology is private. Our approach
differs in the sense that ontologies can be shared among more
than one agent and the ontologies can be used in several
agent platforms. These features are obtained based on the
architecture we designed that is implemented in CArtAgO
[2]. CArtAgO is a platform to support the artifact notion in
MAS. Artifacts are function-oriented computational abstrac-
tions which provide services that agents can exploit to support
their activities. As design and implementation decision, each
instance of our artifact can load and encapsulate exactly
one OWL ontology. However, each workspace can have any
number of instances of this artifact, where each instance
references an ontology, and the agents in the same workspace
of the artifacts can observe and manipulate any number of
them. Thus, MAS using our approach can handle multiple
ontologies.

The approach proposed in this paper is an alternative to
agents in which the knowledge is represented and manipulated
by means of ontologies, instead of using a platform-specific
mechanism (such as a belief base). However, an agent may
still use its regular knowledge representation approach simul-
taneous with the new approach proposed here (or completely
replace the old approach). As this paper demonstrates, using
our approach provides advantages in terms of expressiveness,
interoperability, and performance. Our infrastructure layer
implemented in CArtAgO provides ontology features to agents
by using the OWL API [14], which allows to create, ma-
nipulate and serialise OWL ontologies. An artifact makes its
functionalities available and exploitable by agents through
a set of operations and a set of observable properties [2].

Fig. 1. Example of agents using the proposed approach (Workspace 1 and 2) versus usual multi-agent systems (Workspace 3).

Operations represent computational processes executed inside
artifacts, that may be triggered by agents or other artifacts.

An example of our approach is showed in Figure 1, where
we have 3 workspaces with different configurations. As de-
scribed, each workspace can have any number of instances of
CArtAgO artifacts, and each artifact loads and encapsulates
an OWL ontology. The agents can observe and manipulate
the correspondent ontologies depending on artifacts available
to them in the workspace. Further, as described, the agents can
still use their regular knowledge representation approach (e.g.,
belief base) simultaneous with the new approach proposed
here, e.g., Workspace 1 in Figure 1, or completely replace
the old approach, e.g., Workspace 2 in Figure 1. The usual
approach, without using our proposed artifact to interact with
ontologies, is shown in Workspace 3 of Figure 1.

Figure 1 clearly demonstrates that our approach allows
agents to share the same ontology, including agents from
different workspaces (e.g., the agents on Workspace 1 and 2
are sharing the Ontology 2), as well as it allows the agents to
use information from specific ontologies, based on their role
in the multi-agent system. Figure 1 shows just one possible
multi-agent system configuration, we emphasise that different
configurations are possible, depending on resources provided
by the multi-agent platform. In other words, our approach
requires that the platform used supports CArtAgO artifacts.

Our artifact provides the following operations:

• addInstance(instance) : adds the new instance in the
ontology;

• isInstanceOf(instance, concept) : verifies if the instance
belongs to the given concept, returning a boolean value;

• getInstances(concept) : retrieves a set of instances
classified in a specific concept, returning a
Set<OWLNamedIndividual>;

• addProperty(domain, property, range) : adds a relation-
ship among the specified instances;

• isRelated(domain, property, range) : verifies if there is
a specific kind of property among the given instances,
returning a boolean value;

• getInstances(domain, property) : retrieves the instances
that are targeted by the given domain and property,
returning a Set<OWLNamedIndividual>;

• addConcept(concept) : adds the new concept in the
ontology;

• isSubConceptOf(subConcept, superConcept) : verifies if
the first concept is subclass of the second one, returning
a boolean value; and

• getConcepts(instance) : retrieves a set of concepts for the
given instance, returning a Set<OWLClass>.

IV. USAGE EXAMPLES OF THE ONTOLOGY ARTIFACT

We explain the use of our approach with a scenario com-
monly used in the agent literature: suppose a MAS which
represents a soccer team and that each role is represented
by concepts in an ontology. For example, a soccer team has
players who can be right midfielders, which specialises the
concept of midfield, which is a subclass of player, and so on.
In certain moments the coach agent of a team needs to choose
a player to replace other. To make its decision the coach agent
just needs to look for the corresponding ontology concept and
choose a player among the individuals of that concept.

A. Agent Decision Making using Ontology Information

Decision making is a process where an agent looks for the
information available to it to decide which course of action to
follow. This information generally comes from its environment
perceptions, its initial beliefs, or from the communication with
others agent, (i.e., beliefs from different sources). This work
proposes an infrastructure layer in the form of a CArtAgO
artifact to access domain specific knowledge provided by
ontologies in a way that agents can use such information to
make their decisions. Decision making is one example of how
our approach may be employed, however it can be used in
other domains where information and reasoning provided by
ontologies is necessary or useful. In our example, the coach
agent uses an ontology describing the team members and the
roles of each agent/player in several situations (e.g., to retrieve
information, reason and make its decisions).

This section shows examples of plans in Jason, which have
the following format1: triggering event : context <- body,
where the triggering event represents a new agent goal (or
belief), and has a format such as !goal(Parameter), the
context which defines the required preconditions to perform
that plan, and the body that is a sequence of actions and sub-
goals to fulfil that plan.

According to the soccer team scenario, the ontology con-
cepts model soccer roles, such as Player, Midfield and Right
Midfield (represented as concepts such as C1, C2 and C3).
The instances may represent Players, e.g., i1 can be a player
whose role is Right Midfield (concept C3). The instance i1
can be related with i2 through r1 (e.g., r1 can be defined as
“is a player less defensive than”). Suppose an agent that needs
to make a decision about which course of action to follow
considering its context that is represented in an ontology.
This decision can be guided, for example, by checking if a
particular individual belongs to a particular concept. Using
operations provided in the CArtAgO artifact presented in this
paper to access the ontology, the agent can obtain the required
information by executing the operation isInstanceOf, as
shown in Figure 2. This operation returns a boolean, which is
true if the individual queried, i1, belongs to a given concept
C3, or false in the other case. The return unifies with the last
parameter of the operation (R), which the agent uses to decide

1We refer the reader to [4] for more details about the syntax and semantics
of the language.

between executing action_a1 or action_a2. Suppose a
coach that needs to choose a player in some position, which is
done by querying player agents that belongs to the desired role
encoded as concepts in the ontology. For example, if in a given
moment a player is injured, then the coach agent needs to scale
another player in that position. To make this, the coach checks
if a player agent belongs to the right midfield role. In this
scenario, the coach has perceived that the injured player plays
in front, but it does not remember its exact role (right midfield
or left midfield). After checking this information, which is
encoded as concepts in the ontology, the coach can make the
decision of scaling a new player.

Fig. 2. Jason plan using ontological knowledge (isInstanceOf operation).

Now, suppose that an agent needs to recover all individuals
who participate in a particular relationship. The agent can use
this information to make a decision about the existence of
an individual in the returned set, or to select one of these
individuals for a particular need. In this case, the operation
getInstances can be used, as presented in Figure 3. The return
of this operation is a set of individuals which have that
relationship (r1) with the given instance (i2). Then, this
plan tests if the set returned is empty, which leads to the
execution of action_03 if true, or in the other case the
agent will pursue a goal involving a new decision making
which uses the set of individuals returned (goal3). In our
example, suppose that the coach wants to scale more defensive
players to replace a particular player (i2) using the relation
defensive substitution (r1) which returns the list of defensive
substitutions available for that player. If the list is empty,
the coach may decide to reposition the players to have a
more defensive team (action_03). In other case, where
there is at least one player more defensive to substitute i2,
the coach may choose one player of this set to be scaled
(!goal3(Set)).

Fig. 3. Jason plan using ontological knowledge (getInstances operation).

V. COMPARING ONTOLOGY AND AGENT APPROACHES

An agent can represent its knowledge within its internal
structures (e.g., its belief base), or in external structures (e.g.,
an ontology). This paper shows an artifact for agents to work
with knowledge represented in ontologies, and such approach
offers advantages in terms of expressiveness and reusability.

More expressiveness is obtained by the execution of semantic
reasoners over the ontology; and more reusability comes from
the possibility of different platforms updating and querying the
same repository and formalism. Despite these improvements,
programmers would be interested to known which approach is
the fastest. So, we conducted an experiment to verify which
approach presents better performance in terms of execution
time.

To compare the ontology reasoning with the reasoning
executed only in the agents, we defined ways to convert on-
tology statements to agent code, as depicted in Table I. These
equivalences allow us to execute both approaches (which will
return the same result) to compare their performance (i.e., the
performance of reasoning with the ontology against simulating
the same reasoning inside agents). Thus, the proposed artifact
offers a new way to represent knowledge and new operations
compared when using Jason alone and the proposed CArtAgO
artifact to integrate agents with ontologies. For simplicity
reason, Table I shows only the main statements which were
used to test our approach of reasoning with the ontology in
order to compare it with simulating the same reasoning only
inside agents.

TABLE I
STATEMENTS IN ONTOLOGIES AND IN JASON CODE.

Statement Ontology Jason
x is instance of A x : A A(x)

x has property P targeting y (x,y) : P P(x,y)
B is subclass of A B v A A(x) :- B(x)

If B then A (B implies A) B ⇒ A A :- B

A. Experiment Description

Our experiment compares the performance of executing
agent plans that follow one of these two approaches for
handling knowledge (internal or external structures). One
approach uses our CArtAgO artifact to query information
from ontologies; and the other approach queries the knowledge
stored in the agent belief base. To access the corresponding
performance impact, when using ontologies the number of
individuals is increased, and when using the belief base the
ontologies were converted to beliefs and rules in Jason. In
both approaches we measured and compared the execution
time for an agent to retrieve its information (from queries in
an ontology or from its belief base).

The ontology used has 3 concepts (e.g., C1, C2 and C3)
defined such as C3 is subclass of C2, and C2 is subclass of
C1. The number of individuals ranges from 100 to 100.000,
which are asserted to the most specific concept, in this case
C3. The executed queries verify if an individual is an instance
of the most specific (C3) and the most generic concept (C1).
These queries were performed and compared both in ontology
reasoning, and in Jason, and these queries return true, since an
instance of C3 is inferred as C1 and the queried individuals
were asserted as C3. All tests were executed in the same

computer, which is a Mac Pro Server (OS X 10.9.4) with two
6-core Intel Xeon (2.4 GHz) CPU, 32 GB of RAM (DDR3
1333MHz) and 2 TB of disk storage. Regarding software, we
used Java SDK 1.7 (build 1.7.0 65-b17), Jason 1.3.9, OWL
API 2 version 3.50 and HermiT reasoner version 1.3.8.

The experiments measure the execution time of a Jason plan
which uses an operation of our CArtAgO artifact (e.g., isIn-
stanceOf). The time was measured for a hundred operations,
and the sum of these values was divided by one hundred
to obtain the average time of a single operation. We used
this approach to obtain more accurate results by calculating
an average that avoids spikes (too low or high values). This
process was repeated ten times, and the final result is an
average of these ten executions, each one executing a hundred
of operations. The instances queried are selected based in the
calculation of an interval (interval = NumberOfInstances

NumberOfQueries),
where it is ensured that it will be selected members of all
set, and not only members at the start or at the end of the set
(uniformity).

B. Experiment Results

The results demonstrate that Jason performance can be
improved by using this new approach instead of querying and
reasoning with only the regular belief base. The execution time
was measured to retrieve the same information, however in one
case it is represented and retrieved from the ontology using
our artifact, and in the other case it is stored and queried
in the regular Jason belief base. When using ontologies, we
tested two alternatives: with or without the execution of a
semantic reasoner (respectively, Hermit and Structural). We
queried for asserted, inferred and nonexistent knowledge. Our
experiments demonstrate that the proposed approach enhance
Jason performance, and also offers advantages of reuse and
expressiveness. In applications with a low number of instances
(Figure 4) we see a minor loss in performance, however if we
consider instance rich ontologies and applications the proposed
approach shows improvement (Figure 5). We would like to
highlight that these two approaches are not mutually exclusive,
which means that the agent programmer can choose to use

 0

 1

 2

 3

 4

 5

 6

 7

 100 200 300 400 500 600 700 800 900 1000

Q
u
e
ry

 t
im

e
 (

m
s
)

Number of instances

Query time for asserted facts

 Structural

 Jason

 Hermit

Fig. 4. Performance to retrieve asserted knowledge from a small number of
individuals (instance of C3 axiom).

0

1

2

3

4

5

6

7

1.000 2.000 3.000 4.000 5.000 6.000 7.000 8.000 9.000 10.000

Q
u
e
ry

 t
im

e
 (

m
s
)

Number of instances

Query time for asserted facts

Structural

Jason

Hermit

0

5

10

15

20

25

30

35

40

10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000

Q
u
e
ry

 t
im

e
 (

m
s
)

Number of instances

Query time for asserted facts

Structural

Jason

Hermit

0

5

10

15

20

25

30

35

40

10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000

Q
u
e
ry

 t
im

e
 (

m
s
)

Number of instances

Query time for inferred facts

Structural

Jason

Hermit

0

10

20

30

40

50

60

10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000 100.000

Q
u
e
ry

 t
im

e
 (

m
s
)

Number of instances

Query time for nonexistent facts

Structural

Jason

Hermit

Fig. 5. Performance to retrieve asserted, inferred and nonexistent knowledge using ontology versus agent approaches.

them together, or just one if desired.
The experiments consider different sizes of ontologies, for

example, Figure 4 shows our results with instances ranging
from 100 to 1.000 instances. The results using ontologies
with more instances (until 100.000 instances) are depicted in
Figure 5. All tests demonstrate that the best performance is
obtained when using our artifact with the Structural approach.
When considering a large number of instances, the worst
performance obtained comes from using Jason regular belief
base. When retrieving inferred information (i.e., it is not
explicit asserted), the performance of ontological approaches
is similar for asserted facts. However, the regular belief base
of Jason takes more time to apply the rules and return the
result. When retrieving nonexistent information (which is not
explicit asserted and cannot be inferred), the performance of
ontological approaches is similar to previous ones. However,
the regular belief base of Jason takes even more time than the
previous cases.

VI. RELATED WORK: AGENTS & ONTOLOGIES

AgentSpeak-DL [11] is an agent-oriented programming
language that extends agents’ belief base with Description
Logic. The advantages of integrating ontologies with agents
are: (i) more expressive queries in the belief base, since
its results can be inferred from the ontology and thus are
not limited to explicit knowledge; (ii) refined belief update
given that ontological consistency of a belief addition can be

checked; (iii) the search for a plan to deal with an event is
more flexible (not limited to unification), i.e., subsumption
relationships between concepts can be considered; and (iv)
agents can share knowledge using ontology languages, such
as OWL. AgentSpeak-DL extends agents’ belief base with
Description Logic in which the belief base includes: (i) one
immutable TBox (terminological box, or conceptualisation)
that characterises the domain concepts and properties; and
(ii) one ABox (assertion box, or instantiation) with dynamic
factual knowledge that changes according to the results of
environment perception, plan execution and agent communica-
tion. AgentSpeak-DL approach enriches the agent belief base
with the definition of complex concepts that can go beyond
factual knowledge [11].

JASDL [12] implements AgentSpeak-DL in Jason to merge
the agent belief base with ontological reasoning. It provides
ontology manipulation capabilities to agents, (i.e., it is a
practical approach for using ontologies and semantic reasoning
in Jason agents). Agent programmers benefit from features
such as plan trigger generalisation based on ontologies and
the use of such knowledge in belief base querying. Jason
modules were altered to implement JASDL, such as the
belief base (that was extended to partly resides within an
ontology ABox and a DL reasoner), the plan library and
the agent architecture. JASDL provides reuse of ontological
knowledge, new inferences that an agent can make based on

TABLE II
COMPARING RELATED WORK IN THE AREAS OF ONTOLOGIES AND MULTI-AGENT SYSTEMS.

Research Overview of the work Ontologies included MAS platforms used
AgentSpeak-DL [11] An approach for using on-

tologies during agent reason-
ing to extend agents’ belief
base with DL

It is a way for agents to
represent knowledge and
interact with ontologies

AgentSpeak

JASDL [12] An implementation of
AgentSpeak-DL in the Jason
platform

Jason agents can repre-
sent knowledge and inter-
act with ontologies

Jason

CooL-AgentSpeak [13] An extension of AgentSpeak-
DL with plan exchange and
ontology services

Each agent has access only
to its private ontologies

Jason

Our approach A CArtAgO infrastructure
to integrate multi-agent plat-
forms with ontologies

Agents can access and ma-
nipulate shared ontologies
using our artifact

Any platform support-
ing CArtAgO artifacts
(e.g., Jason)

its beliefs, knowledge consistency, enhanced plan searching;
and improved message processing with semantically-enriched
inter-agent communication.

CooL-AgentSpeak [13] is an extension of AgentSpeak-DL
with plan exchange and ontology services. It implements a
CArtAgO artifact functioning as ontology repository which
stores a possibly dynamic set of ontologies and offers ontology
matching/alignment features. It searches for ontologically rel-
evant plans not only in the agent’s local plan library, but in the
other agents’ libraries too, according to a cooperation strategy
(that is not based solely on unification and on the subsumption
relation between concepts, but also on ontology matching). In
short, CooL-AgentSpeak performs cross ontological unifica-
tion for agents that do not disclose their ontologies to each
other (that cooperate while preserving their privacy).

Our approach differs in some points. First, we implement
an infrastructure layer which works as an interface between
ontologies and MAS using a CArtAgO artifact that can
be reused in several MAS platforms. On the other hand,
AgentSpeak-DL [11] targets AgentSpeak, and JASDL [12]
addresses Jason. CooL-AgentSpeak [13] also uses CArtAgO
as a mean to integrate ontologies and agents, but our work
differs from this one since we assume that agents may share
their ontologies, while in CooL-AgentSpeak the agents do not
share their ontologies. A comparison among such related work
is depicted in Table II.

We have done previous work towards combining ontology
and multi-agent technologies, whereby we developed tools
to model multi-agent systems using an ontology as a meta-
model [15]. That work extends our initial ideas towards
models of multi-agent systems represented as abstractions in
ontologies [16], [17]. We also developed an approach [18]
for using an ontology to represent planning domains in HTN
(Hierarchical Task Network). That approach can be used in
developing plans for the Jason platform, given the similarity
of HTN and Jason plans. However, our previous work does
not address the use of ontologies as sources of information to
be explored by agents.

VII. FINAL REMARKS

The integration of agent platforms with ontologies enables
agents the ability to operate in a Semantic Web context. This
work investigates how to enable current agent-oriented devel-
opment platforms to transparently merge with such semantic
technologies. As result, developers may obtain new features
for developing complex software systems with a semantic
infrastructure that applies software and knowledge engineering
principles. The development of applications that integrate
semantic and agent technologies is still an open challenge.
To address this issue, we pointed out that ontology languages
offering semantic querying and reasoning should be suitably
integrated into agent development frameworks.

Our implementation to integrate ontologies within agents
uses an artifact implemented in CArtAgO [2] that provides
agents the ability to reason and manipulate ontologies. Our
infrastructure is applicable to several agent-oriented platforms
to engineer ontology-based AI applications, and we demon-
strate how we use it in Jason [4] to access ontologies in
OWL [5]. We measured the performance of our approach
and compared with an alternative one which stores all the
knowledge inside the agent, which demonstrated that the
technology being proposed enable the development of new and
more powerful AI applications. However, these approaches can
be used together, in other words, an agent can represent part
of its knowledge in its own belief base and part in ontologies
to be accessed using the proposed artifact. As future work,
we plan to carry out experiments to compare the use of our
approach together with and against other agent platforms.

ACKNOWLEDGMENTS

Part of the results presented in this paper were obtained
through research on a project titled “Semantic and Multi-Agent
Technologies for Group Interaction”, sponsored by Samsung
Eletrônica da Amazônia Ltda. under the terms of Brazilian
federal law No. 8.248/91.

REFERENCES

[1] E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: a
practical OWL-DL reasoner,” Web Semant., vol. 5, no. 2, pp. 51–53,
Jun. 2007.

[2] A. Ricci, M. Piunti, and M. Viroli, “Environment programming in multi-
agent systems: An artifact-based perspective,” Autonomous Agents and
Multi-Agent Systems, vol. 23, no. 2, pp. 158–192, Sep. 2011.

[3] A. R. Panisson, A. Freitas, D. Schmidt, L. Hilgert, F. Meneguzzi,
R. Vieira, and R. H. Bordini, “Arguing About Task Reallocation Using
Ontological Information in Multi-Agent Systems,” in 12th International
Workshop on Argumentation in Multiagent Systems, 2015.

[4] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming Multi-
Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

[5] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein, “OWL Web
Ontology Language Reference,” W3C, Tech. Rep., February 2004.
[Online]. Available: http://www.w3.org/TR/owl-ref/

[6] T. R. Gruber, “A translation approach to portable ontology specifica-
tions,” Knowl. Acquis., vol. 5, no. 2, pp. 199–220, Jun. 1993.

[7] M. Hadzic, P. Wongthongtham, T. Dillon, and E. Chang, Ontology-
based multi-agent systems, ser. Studies in Computational Intelligence.
Springer, 2009.

[8] F. Baader, I. Horrocks, and U. Sattler, “Description logics,” in Handbook
on Ontologies, S. Staab and R. Studer, Eds. Springer, 2009, pp. 3–28.

[9] Q.-N. N. Tran and G. Low, “MOBMAS: a methodology for ontology-
based multi-agent systems development,” Inf. Softw. Technol., vol. 50,
no. 7-8, pp. 697–722, Jun. 2008.

[10] R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni, Multi-Agent
Programming: Languages, Tools and Applications, 1st ed. Springer
Publishing Company, Incorporated, 2009.

[11] A. F. Moreira, R. Vieira, R. H. Bordini, and J. F. Hübner, “Agent-oriented
programming with underlying ontological reasoning,” in Proceedings of
the 3rd international workshop on Declarative Agent Languages and
Technologies, ser. DALT’05. Springer-Verlag, 2006, pp. 155–170.

[12] T. Klapiscak and R. H. Bordini, “JASDL: a practical programming
approach combining agent and semantic web technologies,” in The 6th
international workshop on Declarative Agent Languages and Technolo-
gies, vol. 5397. Springer, 2008, pp. 91–110.

[13] V. Mascardi, D. Ancona, M. Barbieri, R. H. Bordini, and A. Ricci,
“CooL-AgentSpeak: Endowing AgentSpeak-DL agents with plan ex-
change and ontology services,” Web Intelligence and Agent Systems,
vol. 12, no. 1, pp. 83–107, 2014.

[14] M. Horridge and S. Bechhofer, “The OWL API: A Java API for OWL
ontologies,” Semant. web, vol. 2, no. 1, pp. 11–21, Jan. 2011.

[15] A. Freitas, L. Hilgert, S. Marczak, F. Meneguzzi, R. H. Bordini, and
R. Vieira, “A multi-agent systems engineering tool based on ontologies,”
in 34th International Conference on Conceptual Modeling, Stockholm,
Sweden, ser. Lecture Notes in Computer Science. Springer, 2015.

[16] A. Freitas, R. H. Bordini, F. Meneguzzi, and R. Vieira, “Towards
integrating ontologies in multi-agent programming platforms,” in 2013
IEEE/WIC/ACM International Conference on Intelligent Agent Technol-
ogy, IAT 2013, Atlanta, Georgia, USA, 2013.

[17] A. Freitas, D. Schmidt, A. Panisson, F. Meneguzzi, R. Vieira, and
R. H. Bordini, “Applying ontologies and agent technologies to generate
ambient intelligence applications,” in Joint Proceedings Collaborative
Agents – Research & Development, CARE for Intelligent Mobile Services
& Agents, Virtual Societies and Analytics, 2014, pp. 22–33.

[18] ——, “Semantic representations of agent plans and planning problem
domains,” in Engineering Multi-Agent Systems, ser. Lecture Notes in
Computer Science, F. Dalpiaz, J. Dix, and M. van Riemsdijk, Eds., vol.
8758. Springer International Publishing, 2014, pp. 351–366.

