
Imperfect norm enforcement in stochastic environments:
an analysis of efficiency and cost tradeoffs

Moser Silva Fagundes1, Sascha Ossowski2, and Felipe Meneguzzi3

1 Federal Institute of Education, Science and Technology
Sul-Rio-Grandense (IFSul), Charqueadas, RS, Brazil

moserfagundes@charqueadas.ifsul.edu.br
2 Centre for Intelligent Information Technologies (CETINIA),
University Rey Juan Carlos (URJC), Móstoles, Madrid, Spain
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Abstract. In heterogeneous multiagent systems, agents might interfere with each
other either intentionally or unintentionally, as a side-effect of their activities. One
approach to coordinating these agents is to restrict their activities by means of so-
cial norms whose compliance ensures certain system properties, or otherwise re-
sults in sanctions to violating agents. While most research on normative systems
assumes a deterministic environment and norm enforcement mechanism, we for-
malize a normative system within an environment whereby agent actions have
stochastic outcomes and norm enforcement follows a stochastic model in which
stricter enforcement entails higher cost. Within this type of system, we analyze
the tradeoff between norm enforcement efficiency (measured in number of norm
violations) and its cost considering a population of norm-aware self-interested
agents capable of building plans to maximize their expected utilities. Finally, we
validate our analysis empirically through simulations in a representative scenario.

Keywords: NMDP, MDP, Stochastic, Norm, Enforcement.

1 INTRODUCTION

Autonomous selfish agents in heterogenous societies must act in order to accomplish
their individual objectives while taking into account potential disruption caused by other
members of the society. The key challenge in designing these open societies is in en-
suring that the agents are able to achieve their own goals while minimizing the impact
of negative interference between their actions. When dealing with a small number of
agents this problem is typically modeled using game theory, with algorithms designed
to find strategies in some kind of equilibrium. However, finding a Nash equilibrium
[11] with a lower bound on the expected payoff within a stochastic multiplayer game
is undecidable in general, and typically contained in the PSPACE complexity class even
with simplifications on the types of acceptable strategy in the equilibrium [16].
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An alternative approach to achieve desirable properties within a multiagent society
is to define societal norms [9] that regulate agent behavior. Norms use deontic con-
cepts of obligations and prohibitions in the specification of soft-constraints on agent
behavior, with failure to comply with the norms resulting in sanctions designed to re-
store a society to a desirable state. To ensure that a norm-regulated society operates
as expected, it must provide enforcement mechanisms that monitor agent behavior and
apply sanctions when transgressions are detected. As stated in [10], most existing work
on norm-regulated agent societies assume a deterministic environment and disregard
the norm enforcement cost, which limits the applicability of these techniques.

In this paper, we define the dynamics of the world and the norm enforcement mecha-
nism in Section 2 without the assumption of determinism, and we formalize the decision
making process of our agents with Normative Markov Decision Processes (NMDPs) [6,
7, 5] in Section 3. We consider a stochastic norm-based coordination mechanism aim-
ing at ensuring that the multiagent system as a whole runs according to the properties
specified in a set of social norms. Thus, agents are subjected to social norms, and failure
to comply with these norms brings about some kind of sanction. Norms are enforced
on the basis of the observation of the current world-state by a mechanism that detects
violations with a certain probability. Within this model, we associate a cost such that
stricter enforcement mechanisms incur a higher cost to the enforcement authority. Such
an enforcement costing model mirrors the real world, where mechanisms with a higher
probability of detecting (and sanctioning) violations are more expensive. We develop a
simulation-based method to calculate this tradeoff (norm enforcement efficiency mea-
sured in number of norm violations and its cost), and show results for a representative
scenario in Section 4. Finally, we conclude the paper pointing towards future devel-
opments in Section 5. In summary, this paper makes two major contributions. First,
we define a rich stochastic norm enforcement mechanism in stochastic environments
populated with self-interested rational agents, and second, we provide insights into the
tradeoffs involved in norm enforcement.

2 NORMATIVE STOCHASTIC ENVIRONMENT

2.1 World model and norms

Let G = {a1, . . . , an} be the set of agents operating in the multiagent system. The
state space of an agent ai ∈ G is defined as follows. Let F be the set of features that
characterize different aspects of the states of the world. A feature fj ∈ F can take on
a finite number of values and Vfj corresponds to the finite set of possible values of fj .
The state of an agent is a complete assignment of values to its features, and the state
space S is the cross product of the value spaces for the features, i.e.: S = ×|F|i=1Vfj . The
current state of the agents determines the system’s current state and it is represented
as a vector {s1, . . . , sn} in which si is the current state of the agent ai ∈ G. In our
environment, the outcome of the actions is stochastic, that is, the intended resulting
state of executing an action occurs with a given probability. For each state-transition,
an agent receives an immediate reward and the sum of rewards received by this agent
determines its utility. The current utility of the agents in G is represented as a vector
U = {u1, . . . , un} in which ui is the utility of ai∈G.
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Although the various efforts to develop normative multiagent systems proposed
in the literature differ on technical details, they all share the intuition that norms are
constraints on the behaviour of agents, by means of which some global goals can be
achieved [1]. Our approach is related to strands of research on governing environments
[14] and coordination infrastructures [12], in that we assume the existence of coherent
set of norms, allowing the agents to be fully compliant with the norms if they decide to
do so. We assume that the norms are expressed in a sufficiently expressive language, but
with associated mechanisms which are tractable, regulating the behavior of autonomous
agents in an otherwise open multiagent system. In what follows, we formalize the key
notions that characterize our model of norms.

Definition 1 (Norm). A norm is a tuple 〈δ,X,E,σ〉where: δ ∈ {OBLIGATION,PROHI-
BITION} is the deontic modality; X ⊆ S is the set of states (normative context) in which
the norm applies; E ⊆ X is the subset of states in the normative context which are
obliged or prohibited (target states); and σ is a sanction represented by a tuple 〈ρ,φ〉:

– ρ : S 7→ R is a function that gives the penalty for violating this norm in a given
state (ρ(s) yields the penalty to be paid in s);

– φ : S 7→ S is a function that calculates the state resulting from an enforced state-
transition in response to the violation of this norm (φ(s) yields the outcome of an
enforced state-transition in s).

Broadly speaking, the intended semantics of a norm is as follows: if the norm is a
prohibition, in the set of states X where the norm applies, the agents are prohibited to
be in any state in E; if it is an obligation, in the set of states X where the norm applies,
the agents are obliged to be in some state in E. A sanction consists of a penalty and an
enforced state-transition aimed at updating the current state of agents that have trans-
gressed a norm. The underlying intent of the sanctions is to punish the transgressors
by decreasing their utility, and moving them from violating states to states where the
norms are obeyed and/or their capabilities are limited. A set of states is relevant to a
norm 〈δ,X,E,σ〉 if this set of states is a subset of X, which indicates the context where
the norm applies. Given a set of states that are relevant to a norm, we can determine
which of them violate it. In Definition 2 we formalize the norm violating states.

Definition 2 (Violating states). Let q be a norm 〈δ,X,E,σ〉, the set of states that vio-
late q, denoted as SOq , is defined as:

SOq =

{
E if (δ =PROHIBITION)

X \ E if (δ =OBLIGATION).

Previous research [3] has shown that factored representations can be used to design
efficient MDP solution algorithms that exploit structures in the state space. Using this
factored representation, the norm in Definition 1 can be expressed in a compact way as
in [7] (an example is given in Section 4.1). In the systems that we envision, norms are
assumed to be common knowledge, represented as the following set.

Definition 3 (Set of norms). A set of norms N is a totally ordered set {q1, q2, . . . qm}
where each norm qk ∈ N is defined according to Definition 1.
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2.2 Norm enforcement mechanism

The model of norm enforcement mechanism developed in this paper is based on the
detection of violating states in terms of observations of the agents’ current state in the
world. Such observations are assumed to be imperfect4, so that the mechanism only
detects violations with a certain probability, as stated in Definition 4.

Definition 4 (Detection model). Let N be the set of norms and S be the state space. A
probabilistic detection model consists of a function D :N × S→[0,1] such that D(q, s)
returns the detection probability of the violation of the norm q ∈ N in the state s ∈ S.

Besides being imperfect, the enforcement mechanism is resource-bounded so that
monitoring the environment has an associated cost. This cost is a function of the accu-
racy of observations and the size of the population of agents. We formalize this function
as MK(D,µ), which returns the cost per time step of detecting norm violations accord-
ing to the model D in a multiagent system with population size µ. Note that at this point
we do not provide a specific formulation for this function since the degree in which pa-
rameters affect the costs depends on the environment to be created or simulated.

If a norm violation is detected by the norm enforcement mechanism, the respective
sanction is applied immediately. According to Definition 5, which formalizes the ap-
plication of a single sanction, the mechanism has the power to change the current state
si (enforced state-transition) and the utility ui (penalization) of an agent ai. Multiple
sanctions can be applied where multiple norms have been violated – one sanction per
norm violation that has been detected. This is formalized in Definition 6.

Definition 5 (Application of sanction). Let q∈N be a norm violated by a given agent
in a state s∈S, and let σ= 〈ρ,φ〉 be the sanction of q to be applied in this state. Then
the application of σ in the state s results in a state-transition of the agent to the state
φ(s) and a penalty of ρ(s) utility units.

Definition 6 (Application of sanctions). Let {q1, q2, . . . qm}⊆N be an ordered set of
norms which violation has been detected in a given state s ∈ S. Let {σ1,σ2, . . .σm}
be the sanctions to be applied in this state, such that σk = 〈ρk,φk〉 corresponds to the
sanction of the norm qk. The application of {σ1,σ2, . . .σm} in s results in a transition
to φ1(φ2(. . . (φm(s)))) and a penalization of ρ1(s)+ρ2(s)+ . . .+ρm(s) utility units.

Our approach consists of merging multiple state-transitions into one in which the
initial state is the violating state, and the outcome state is calculated by applying the
function φ of the sanctions sequentially. Similarly to detecting norm violations, the
application of sanctions implies costs for the norm enforcement mechanism. Thus, the
sanctioning cost SK(t) for a given time step t, is:

SK(t) =

|N|∑
k=1

I(σk, t) SSK(σk)

4 Given the number of state features of some complex domains (large state spaces), it can be
computationally costly for the norm enforcer to keep track of all potentially relevant features.
It happens in real life situations as well. For example, when a police district has to distribute
a limited number of officers in a region. Some norm violations may not be detected given that
the police cannot cover all public spaces of the region.
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where the function I(σk, t) gives the number of times that the sanction σk has been
applied in the time step t, and the function SSK(σk) returns the cost of applying the
sanction σk. In summary, the total norm enforcement cost at a given time step t, denoted
as K(t), is determined as follows:

K(t) = MK(D,µ) + SK(t) (1)

where MK(D,µ) is detection cost per time step employing the detection model D in a
population µ, and SK(t) is the sanctioning cost in the time step t.

3 NORMATIVE AGENT REASONING

We use Normative Markov Decision Processes (NMDPs) to generate the policies fol-
lowed by our selfish agents operating under the norm enforcement mechanism. An
NMDP is a formal model that integrates the normative framework detailed in Section 2
with the widely known MDPs [2]. The result of such an integration is a framework to
develop rational agents that comply with a norm only if the expected utility of doing
so exceeds the expected utility of violating this norm (for details about NMDPs and a
comparison with related work, including normative multi-agent systems and electronic
institutions, see Fagundes [5]).

Definition 7 (Normative Markov Decision Process). An NMDP is a tuple 〈S,A,C,T,
R,N,D〉 where: S is the finite set of states of the world; A is a finite set of actions; C :
S→ A is a capability function that denotes the set of admissible actions in a given state
(C(s) corresponds to the set of admissible actions in the state s); T : S× A× S → R

is a state-transition function (T(s, a, s′) indicates the probability of executing a at s
and ending at s′); R : S × A × S → R is a reward function that determines the
reward (R(s, a, s′) corresponds to the one gained by the agent for executing a at s and
ending at the state s′), N is a set of norms specified according to Definition 3; and
D : N × S→ R is a detection function specified according to Definition 4.

In order to generate a behavior policy for an NDMP, agents use the control flow of
Figure 1. In this model, agents perform normative reasoning to identify which states
violate which norms and represent the respective sanctions within the violating states.
The outcome of this process is a standard MDP, which can be solved by well known
algorithms [2, 8, 13]. Finally, the agent executes the resulting policy π.

Hardwiring normative constraints into agent behavior [15] can be problematic since
it constrains the agent’s ability to adapt to changes in the system’s norms [4]. In con-
sequence, we develop a technique to generate an MDP at runtime that incorporates
sanctions from an NMDP. This technique consists of identifying, for all states, which
norms they violate (if any), following Definition 2. Then, for each violating state s∈SOq ,
the sanction of the norm q is represented with s by modifying the transition probabili-
ties T and rewards R based on the norms N and detection probabilities D. The result of
the normative reasoning, as shown in Figure 1, is a standard MDP 〈S,A,C,T′,R′〉 in
which T′ is the new state-transition function and R′ is the new reward function. In what
follows, we describe how T′ and R′ are computed.
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Let Qs be the set of norms violated in a given state s ∈ S. The combinations of
sanctions in s are provided by the power set of Qs denoted as P(Qs). For instance, if
Qs = {q1, q2} then P(Qs) = {∅, {q1}, {q2}, {q1, q2}}. The outcome resulting from a
combination of sanctions B ∈ P(Qs) in s is computed by the function below5:

Out(s,B) =

{
Head(B).σ.φ(Out(s,B \ Head(B))) if |B |>1

Head(B).σ.φ(s) if |B |=1

where Head(B) is a function that returns the first element in B and Head(B).σ.φ refers
to the function φ of the sanction σ of the norm Head(B). Note that function Out(s,B)
computes the outcome state resulting from a combination of sanctions B according to
Definition 6, ensuring that norm enforcement mechanism and agents calculate the same
outcome state for any combination of sanctions.

In order to represent the effect of sanctions in the transition and reward functions of
the new MDP, we determine the set of all combinations of sanctioned norm violations
W(s, s′)⊆P(Qs) which, if executed in s ∈ S, bring about s′ ∈ S:

W(s, s′) = {B ∈ P(Qs) | (B 6= ∅) ∧ Out(s,B) = s′}.

Using the detection probabilities from function D, we compute the probability that
a combination B∈P(Qs) occurs in s∈S as follows:

Pro(B, s) =
∏
q∈B

D(q, s)
∏

q∈Qs\B

(1−D(q, s)).

Bringing it all together, Formula (2) calculates T′(s, a, s′): the probability of exe-
cuting action a at s and ending up at s′ taking into account the sanctions to be applied
in the initial state s. First, take the probability of a transition if no sanction takes place.
This is determined by multiplying the transition probability T(s, a, s′) by the probabil-
ity Pro(∅, s) that no sanctioning happens. Then, we take the probability of occurrence
for each combination of sanctions B ∈W(s, s′), which if executed in s ends in s′.

T′(s, a, s′) = T(s, a, s′)Pro(∅, s) +
∑

B∈W(s,s′)

Pro(B, s) (2)

5 In an abuse of notation, we refer to sub-components of tuples using an object-oriented pro-
gramming idiom, so that σ.φ refers to the component φ of tuple σ.
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Finally, Formula (3) describes how to calculate R′(s, a, s′), the immediate reward
of executing action a at the origin state s and ending at s′ taking into account the
sanctions to be applied at s. To calculate R′(s, a, s′) we use R(s, a, s′), the immediate
reward for this state-transition if no sanction is applied, and Pen(B, s), the penalty of
a combination of sanctions B ∈W(s, s′) at s. As these combinations of sanctions are
mutually exclusive and happen with different probabilities, we calculate R′(s, a, s′) as
a weighted average reward on which the probabilities are the weights, where the penalty
of B ∈ P(Qs) is : Pen(B, s) =

∑
q∈B

q.σ.ρ(s).

R′(s, a, s′) =

Pro(∅, s)T(s, a, s′)R(s, a, s′) +
∑

B∈W(s,s′)

Pro(B, s)Pen(B, s)

T′(s, a, s′)
(3)

4 EXPERIMENTS

We now turn our attention to evaluating stochastic norm-enforcement mechanisms. The
goal of our evaluation is to determine effective norm enforcement intensities that bal-
ance the ability of the mechanism to self-support itself and at the same time to ensure
that coordination problems do not exceed a maximum acceptable level.

4.1 Motion environment

The motion environment, shown in Figure 2, is a stochastic environment as defined
in Section 2.1, made up of discrete cells, where the agents (depicted as triangles indi-
cating their moving direction) are able to move one cell at a time. There are 8 lanes
and each lane contains 24 contiguous cells. There are also 8 gateways through which
the agents enter and leave the environment. The position of each agent is determined
by features LANE and CELL, its orientation is defined by DIRECTION, and STATUS
indicates whether it is holding a position or moving through the cells.

Each norm-aware agent ai ∈ G operating in the motion environment is modeled as
an NMDP that computes its policy following the reasoning process described in Section
3. The agents’ current state (c.f. Section 3) determines the system’s current state and it
is represented as a vector {s1, . . . , sn} in which si, the current state of the agent ai∈G,
is a complete assignment of values to its features.

Once released in a gateway, an agent can choose between two adjoining lanes. Non-
determinism is modeled by the fact the move action is “unreliable”: its intended out-
come occurs with probability 0.99, but with probability 0.01 the agent remains in the
same position. With this we intend to model the fact that the “engine” of our agent
can fail (i.e. out of gas, mechanical problems). The agents’ actions are executed syn-
chronously within the motion environment, that is, each agent executes one action per
time-step. For every state-transition implied by an action, the agent receives a reward,
which may be positive or negative. For this environment, the reward is −0.01RN for all
transitions (RN is the reward unit), except when the agent reaches the assigned desti-
nation gateway, which results in a reward of +0.4RN (an incentive to reach this gate-
way quickly). Note that leaving the environment via any other gateway gives−0.01RN.
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These state-transition probabilities and rewards have been arbitrarily chosen. In this
section, we focus on the experimental analysis in simulated environments, and our tech-
nique can be applied with different probabilities and reward levels.

In our experiments, the agents know the norms and the detection probabilities. That
is, although they do not know whether individual norm violations will be detected,
they are aware of the probability of violations being detected in general. The agents’
perception is incomplete, so while traveling across the environment, the agents always
know their own position, but not the position of other agents. This assumption about
the agents’ perception may cause coordination problems: two agents that come from
opposite directions crash into each other if they try to occupy the same cell or try to
cross each other (two examples of imminent crashes are highlighted in Figure 2 with
circles). When agents crash, they are removed from the environment. To cope with these
coordination problems, we introduce a set of norms to regulate the traveling direction
in each lane (see the arrows in Figure 2). If a violation is detected, the agent is driven
to the obliged direction and loses 0.1RN. These norms are specified using the following
template, where X is a particular lane and Y is the obliged moving direction:

〈OBLIGATION, (LANE=X), (DIRECTION=Y),
〈 { > → −1.0RN },{ >→ {(DIRECTION=Y)} } 〉〉

The main purpose of this environment is to serve as a testbed for studying the trade-
off between norm enforcement efficiency and its cost, taking into account a population
of norm-aware self-interested agents capable of complex planning to maximize their
expected utilities. Origin and destination gateways of each agent were randomly as-
signed using a uniform distribution. Each simulation ran for 106 time steps, resulting in
a 95% confidence interval for the results shown in this section, allowing us to identify
the parameters and value ranges in which the societal behavior changes significantly:

– β is the detection probability of violations. In our simulations, D(q, s) = β for all
norms and all states, and β ranges from 0.01 to 0.13 in intervals of 0.01.

– µ is the population setting, corresponding to the number of agents in the environ-
ment at any given time throughout the entire simulation. In our simulations µ = 10.

LANE=00

LANE=02

LANE=07

LANE=01

LANE=03

LANE=06

LANE=05

LANE=04

N
W

N
E

S
W S
E

WN EN

WS ES

Fig. 2. Motion environment. Circles indicate imminent crashes.
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The norm enforcement cost is computed using Formula 1 where MK(D,µ) is the cost
of monitoring violations, and SK(t) is the sanctioning cost. Here, the cost of monitoring
norm violations is a function of the accuracy of observations and the number of agents.
Monitoring and sanctioning cost in this environment are defined, respectively, as:

MK(D,µ) = MK(β,µ) = 1.110µβ × 10−3RN

SK(t) =

8∑
k=1

I(σk, t) 0.05RN

where I(σk, t) yields the number of times that the sanction σk has been imposed in the
time step t, and 0.05RN is the cost of applying any sanction in the motion environment.
There are 8 norms in our normative system: one obligation per lane and the cost of sanc-
tioning in each of them is the same. Using these functions, we can calculate the average
norm enforcement cost per time step, denoted as K, in 106 time steps of simulation:

K =
1

106

106∑
t=1

K(t).

Note that each cost function is specific to the domain being simulated. For example,
in simulated environment used in this paper, the monitoring cost increases exponen-
tially with the detection probability β and the size of the population µ, and the cost of
applying a sanction is fixed.

4.2 Results

In the absence of norms regulating the motion environment, the optimal choice would be
taking the shortest path from the origin gateway to the destination gateway. However, in
a norm regulated setting, agents adapt their behavior taking the sanctions into account.
As the detection probability β rises, the agents tend to commit fewer violations. When
β>0.09, the agents start to comply with the norms because the expected utility gain of
compliance outweighs that of violating them.

From the macro perspective, we estimate the effectiveness of various detection prob-
abilities of norm violations β using the sum of penalties paid by the agents that violate
norms (i.e. norm enforcement income). As we shall see, this income is used to fund the
norm enforcement costs. For each β, Figure 3 shows the average norm enforcement in-
come per time step (dotted line, left y-axis). We can see that high detection probabilities
(β>0.09) result in no income as these settings inhibit any violation of norms (starving
the enforcement mechanism of funds). As the detection probability β decreases, the
number of norm violations increases monotonically (solid line, right y-axis), whereas
the enforcement income varies non-monotonically. This happens because the norm en-
forcement income is determined not only by β, but also by the number of norm viola-
tions, which in turn, is determined by the agents’ policies.

We now look at an example of calculation of the norm enforcement income. Our ex-
periments have shown that under detection probabilities {0.02, 0.03, 0.04}, agents stay
on average 30.8%, 30.1% and 13.9% of their lifetime in violating states, respectively.
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Fig. 3. Average norm enforcement income and percentage of time spent in violating states.

By multiplying these percentages by their respective β we find how many times, on
average, the violations are detected: {0.00616, 0.00903, 0.00556}. Finally, if we mul-
tiply these values by the penalty value (0.1RN) and by the number of agents running
simultaneously in the multiagent system (µ = 10), we obtain the respective average
enforcement income values shown in Figure 3:

(β = 0.02, 6.16× 10−3RN), (β = 0.03, 9.03× 10−3RN), (β = 0.04, 5.56× 10−3RN).

If we increase the detection probability β from 0.02 to 0.03, the average income per
time step increases from 6.16× 10−3RN to 9.03× 10−3RN. However, if we increase β
from 0.03 to 0.04, the agents change their policies (they perform less norm violations)
and the income decreases to 5.56× 10−3RN.

The norm enforcement cost per time step K is drawn in Figure 4 as a solid line with
circles. If we subtract this cost from the average enforcement income (dotted line), we
have the average profit (solid line with triangles). In our experiments, the system profits
when β / 0.09. Notice that the enforcement income increases as µ (number of agents
simultaneously running in the environment) increases. Assuming that the detection cost
does not depend on the value of µ, certain normative solutions may become profitable
if we allow more agents to join the system.

Although Figure 4 shows that the highest profit occurs when β=0.03, in multiagent
systems with self-interested agents, such a low detection probability of norm violations
may entail a significant amount of coordination problems, nullifying the effectiveness
of the norms as a multiagent coordination device. For each detection probability β,
Figure 5 shows the average percentage of agents that crash (dotted line, right y-axis)
and the average profit of enforcing norms (solid line with triangles, left y-axis) when
µ = 10. In a system in which crashes (coordination problems) must not occur, any
β ≥ 0.10 can be employed, and β = 0.10 achieves norm compliance with the lowest
cost (i.e. a larger enforcement intensity wastes resources).

If some coordination problems are acceptable, then the norm enforcement mecha-
nism can consider a wider range of settings. For instance, any β≥0.05 can be used if a
20% maximum average percentage of crashes is acceptable, with the best option being
β=0.09 since it results in the highest income with a crash rate lower than 20%.



Imperfect norm enforcement in stochastic environments 11

-3×10-3
-2×10-3
-1×10-3
0×10-3
1×10-3
2×10-3
3×10-3
4×10-3
5×10-3
6×10-3
7×10-3
8×10-3
9×10-3

10×10-3

 0.01  0.03  0.05  0.07  0.09  0.11  0.13

A
m

ou
nt

 p
er

 ti
m

e 
ste

p 
in

 R
N

 u
ni

ts

` (detection probability)

Population setting µ = 10
Norm enforcement cost per time step

Average norm enforcement income per time step
Average profit per time step = Income - Cost
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5 CONCLUSION AND FUTURE WORK

In this paper we have defined a stochastic norm enforcement mechanism for agents op-
erating in stochastic environments extending our earlier work and evaluated the trade-
offs involved when the effectiveness of the norm enforcement mechanism incurs a cost.
Our evaluation led to a number of insights. From the agent’s perspective, our exper-
iments show that adequate norms can help shape the behavior of rational normative
agents with an MDP-based world model, fostering coordination in a multiagent setting.
From a macro perspective, we empirically show how our approach can estimate the
global benefits of norms together with their enforcement cost in order to design econom-
ically viable norm enforcement mechanisms for systems populated by self-interested
rational agents. In complex stochastic environments, our approach can be used to iden-
tify settings that make monitoring independent external funding (self-supporting).

We aim to extend this research in several promising ways. First, we can extend the
agent model to account for the behavior of other agents or construct policies when the
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detection probabilities are unknown. Finally, although we have discussed insights in the
context of one specific scenario, we aim to study ways to generalize the estimation of
norm enforcement intensities.
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