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Abstract
For an agent in a multi-agent environment, it is of-
ten beneficial to be able to predict what other agents
will do next when deciding how to act. Previous
work in multi-agent intention scheduling assumes
a priori knowledge of the current goals of other
agents. In this paper, we present a new approach to
multi-agent intention scheduling in which an agent
uses online goal recognition to identify the goals
currently being pursued by other agents while act-
ing in pursuit of its own goals. We show how
online goal recognition can be incorporated into
an MCTS-based intention scheduler, and evaluate
our approach in a range of scenarios. The results
demonstrate that our approach can rapidly recog-
nise the goals of other agents even when they are
pursuing multiple goals concurrently, and has sim-
ilar performance to agents which know the goals of
other agents a priori.

1 Introduction
The Belief-Desire-Intention (BDI) model [Rao and Georgeff,
1992] is a popular approach to implementing autonomous
agents that must act in complex and dynamic environments
[de Silva et al., 2020]. In the BDI approach, beliefs represent
the agent’s information about the environment and its own
state, goals (desires) represent states of the environment the
agent should achieve, and intentions represent commitments
to achieving particular goals. The program of a BDI agent
consists of a set of initial beliefs and a set of plans for achiev-
ing goals. Each plan consists of a sequence of primitive ac-
tions that change the state of the environment, and subgoals
which in turn are achieved by their own plans.

A key advantage of the BDI approach is that agents are ca-
pable of pursuing multiple goals concurrently, by interleaving
steps (actions or sub-plans) in the intentions for each goal.
For example, consider an agent in a Craft World [Andreas et
al., 2017] environment with top-level goals to craft a stick
and a plank. Both items require wood, but are crafted at dif-
ferent locations: sticks can only be crafted at a workbench
while planks are crafted at a toolshed. A BDI agent agent

may collect wood for both items before crafting either a stick
or a plank. To pursue multiple goals concurrently, at each de-
cision cycle, a BDI agent must solve the intention progression
problem (IPP) [Logan et al., 2017], i.e., which of its multiple
intentions it should progress next, and, if the next step in the
selected intention is a subgoal, which plan should be used to
achieve it. The IPP has been extensively studied in the sin-
gle agent setting, and a number of approaches have been pro-
posed in the literature, including summary-information-based
(SI) [Thangarajah et al., 2003; Thangarajah and Padgham,
2011], coverage-based (CB) [Waters et al. 2014; 2015] and
Monte-Carlo Tree Search-based (MCTS) [Yao et al., 2014;
Yao and Logan, 2016; Yao et al., 2016b].

In recent work [Dann et al., 2020; Dann et al., 2021;
Dann et al., 2022], the IPP has been extended to the multi-
agent setting. In the multi-agent setting, solutions to the IPP
must take into account the implications of action scheduling
for both the agent’s own goals and the achievement of the
goals of other agents, e.g., when the execution of a step in
a plan of one agent makes the execution of a step in a plan
of another agent impossible. This is termed intention-aware
multi-agent scheduling by Dann et al. [2020]. Work to date in
intention-aware scheduling assumes an agent knows the goals
currently being pursued by other agents a priori. For exam-
ple, the MCTS-based ‘intention-aware’ scheduler IA devel-
oped by Dann et al. [2020] assumes that agents have access
both to the current goals of other agents and the plans used to
achieve them. In [Dann et al., 2022] agents predict the actions
of other agents based on a high-level declarative specification
of the tasks performed by an agent rather than its program;
however knowledge of current goals of other agents is still
assumed.

In many cases, the assumption that the current goals of
other agents are known a priori is unrealistic. For example, in
a disaster-response scenario the possible goals of other agents
may be known (searching for survivors, providing first aid,
etc.), but their current intentions may not. In such situations,
simply ascribing all possible goals as the current goals of an
agent typically results in poor predictions of its behaviour.
In this paper, we develop a new approach to intention-aware
multi-agent scheduling in which an agent uses online goal
recognition to identify the goals currently being pursued by



other agents at runtime based on their actions in the environ-
ment. Goal recognition occurs while the agent acts in pur-
suit of its own goals, allowing agents to anticipate the future
actions of other agents in ‘one-shot’ scenarios, e.g., ad-hoc
teamwork.

We formally define the multi-goal recognition and multi-
agent intention recognition and progression problems, and
extend recent work on goal recognition as reinforcement
learning [Amado et al., 2022] to settings where agents may
have multiple concurrently active goals. This is essential
when interacting with more complex agents, e.g., when the
other agents in the environment are BDI agents. A key contri-
bution of our approach is avoiding the exponential explosion
inherent to a naive application of the techniques from Amado
et al. [2022]. We show how online goal recognition can be
incorporated into an MCTS-based intention scheduler, and
evaluate our approach in range of scenarios, including coop-
erative, neutral and adversarial settings. The results demon-
strate that our approach can rapidly recognise the goals of
other agents even when they are pursuing multiple goals con-
currently, and has similar performance to agents which know
the goals of other agents a priori.

2 BDI Agents
Before we define the problems we address in this paper, we
briefly recall the key components of a BDI agent including
beliefs, goals, actions, plans, goal-plan trees and intentions.

Beliefs and goals. We assume agents encode their beliefs
and goals using a finite set of propositions P . The state space
S ⊆ ℘(P ) induced by this language consists of all truth as-
signments to propositions in P . Beliefs B = {b1, . . . , bn}
encode the agent’s information about the environment, and
consists of a finite set of ground literals defined over P . For
simplicity, we assume the environment is fully observable,
and the agent’s beliefs are updated when the state of the en-
vironment changes. The agent’s desires, or top-level goals
G = {g1, . . . , gm}, consist of a finite set of literals repre-
senting the states of the environment desired by the agent.
The agent’s goals need not be consistent, since goals g and
¬g can be achieved at different times. For simplicity, and to
allow comparison with previous work, we consider only BDI
agents with achievement goals in what follows. However, Wu
et al. [Wu et al., 2023] show how MCTS-based scheduling
can be extended to handle maintenance goals (i.e., goals to
maintain a particular condition).

Actions and plans. We define the agent’s action space as
a set Act = {α1, . . . , αk} of STRIPS-style actions. Each
action αi ∈ Act is a tuple ⟨ϕ, ψ⟩ consisting of a set of pre-
conditions ϕ = pre(αi), and effects ψ = eff (αi). These rep-
resent, respectively, literals that must be true before the agent
can execute αi (i.e., it must be the case that B |= ϕ), and the
literals that are true after the agent executes αi. For simplic-
ity, we assume that actions are deterministic: if B |= ϕ, then
ψ holds after the agent executes the action.1 The set of fluents

1Yao et al. (2016) present an MCTS-based scheduling approach
which is able to handle nondeterministic actions. It would be
straightforward to integrate their approach into IGR.

F ⊆ P are the propositions whose truth value may change as
the result of an action. A BDI agent achieves its goals by em-
ploying a set of hierarchical plans H = {p1, . . . , pn}. Each
goal g is associated with one or more plans pi ∈ H of the
form g : χ ← s1; . . . ; sm, where χ = con(pi) is the context
condition (i.e., a set of literals which must be true for pi to
be applicable), and s1; . . . ; sm is a sequence of steps which
are either actions or subgoals. A plan can be executed if its
context condition holds, the precondition of each of its action
steps holds when the step is reached, and each of its subgoal
steps has an executable plan when the subgoal is reached. We
assume that successful execution of any plan for g achieves g.

Goal-plan trees and intentions. We represent the relation-
ship between the plans, actions, and subgoals that can be used
to achieve a goal by a hierarchical structure termed a goal-
plan tree (GPT) [Thangarajah et al., 2003; Thangarajah and
Padgham, 2011; Yao et al., 2016a]. Each top-level goal is
represented by a goal-node that forms the root of a goal-plan
tree representing a state of the environment an agent may try
to bring about. Its children are plan nodes representing the
plans associated with the top-level goal. As only one plan
needs to be executed to achieve the goal, goal nodes can be
viewed as or-nodes. In contrast, the children of a plan node
are the action and subgoal nodes corresponding to the steps
in the plan body. As these must be executed sequentially,
plan nodes can be viewed as (ordered) and-nodes. Each sub-
goal node has its associated plans as children, giving rise to
a hierarchical tree structure representing all possible ways
an agent can achieve the top-level goal. The intentions of
an agent at each deliberation cycle are represented by a pair
⟨T,C⟩ where T = {t1, ..., tn} is a set of goal-plan trees and
C = {c1, ..., cn} are indexes to the current step of each ti.

3 Multi-Agent Intention Recognition and
Progression

In this section, we formally define the problems we address
in this paper. Previous work on goal recognition focuses on
single goals. In single goal recognition the task is to infer
the current goal of an agent, given observations of the agent’s
behaviour in the environment,2 the dynamics of the environ-
ment, and possibly information about the agent’s preferences
over goals [Meneguzzi and Pereira, 2021].3 However, agents,
e.g., BDI agents, may pursue multiple goals concurrently. We
therefore generalise the single-goal recognition problem to
the multi-goal recognition problem, which is defined as:

Definition 1 (Multi-Goal Recognition). A multi-goal recog-
nition problem PMG is a tuple ⟨Ξ, s0, G,Ω⟩, where: Ξ =
⟨F,Act⟩ is the planning domain, F is a set of fluents, and
Act is a set of actions; s0 is the initial state; G is the set of

2We focus on keyhole goal recognition, that is, where the agent
being observed is not aware of the observing agent.

3Some approaches compute a probability distribution over an
agent’s possible goals, e.g., [Ramı́rez and Geffner, 2010; Sohrabi
et al., 2016; Masters and Vered, 2021], and assume the goal with the
highest probability is the agent’s current goal.



possible goals,4 Ω = [s0, a0, s1, a1, . . . , sn, an] is a sequence
of observations where si ∈ S and ai ∈ Act .

A solution to a multi-goal recognition problem PMG is a
set of goals G′ ⊆ G. A solution is correct if G′ = G∗ where
G∗ is the set of current goals of the agent that generated the
observations.

It is important to note that, for intention-aware multi-agent
scheduling, in many cases goal recognition does not have to
be perfectly correct in this sense. The agent is not trying to
identify the goals of the other agent per se, but to allow it to
choose its own actions based on predictions of what the other
agent will do next. Ascribing an incorrect set of goals G′ is
acceptable if the actions chosen by the agent are the same as
the actions it would have chosen had G∗ been ascribed to the
other agent. In many cases, it is sufficient to correctly pre-
dict only the next k actions of the other agent; for example
when agents may interact only briefly; the other agent’s goals
change at runtime, e.g., due to changes in the environment
or the agent being asked to do something else, reducing the
value of predictions more than a few steps ahead. Moreover,
goal recognition is an ongoing process, and future observa-
tions may be used to discriminate between “similar” goals.

Finally, we extend the definition of the single agent inten-
tion progression problem given in [Logan et al., 2017] to in-
clude multi-goal recognition. Below we state the problem
of multi-agent intention recognition and progression for the
general case where there is a set of m ≥ 1 ‘other agents’ Agt
in the environment, each having multiple concurrent goals.
However, in the rest of this paper, to simplify the presenta-
tion and analysis of the experimental results, m = 1 (there is
only one ‘other agent’).
Definition 2 (Multi-Agent Intention Recognition
and Progression). A multi-agent intention recogni-
tion and progression problem is a tuple PRP =
⟨{PMGi | i ∈ Agt} , B, T, C⟩, where PMGi follows
Definition 1, B are the agent’s current beliefs, and T,C are
the agent’s intentions.

A solution to a multi-agent intention recognition and pro-
gression problem PRP is a policy Π(PRP ), that, at each de-
liberation cycle, selects a current step ci ∈ C to progress so
as to maximise some overall utility function UΠ(PRP ):

Π(PRP ) = ci and ∄ Π′ s.t. UΠ′
(PRP ) > UΠ(PRP ).

In general, solving a multi-agent intention recognition and
progression problem requires solving the multi-goal recogni-
tion problems PMGi for each of the other agents in the en-
vironment, using the inferred goals to predict their likely ac-
tions, and then deciding how to act to maximise UΠ. For ex-
ample, if UΠ would be increased if another agent i achieves a
particular goal g, then the agent should choose actions that (at
a minimum) do not prevent i achieving g while still achieving
its own goals. Conversely, if i achieving g reduces UΠ, then
the agent may act to prevent the achievement of g, e.g., by
denying i some resource necessary to achieve g.

4To allow comparison with previous work, we focus on recog-
nising the achievement goals of the other agent(s). However, our ap-
proach requires only the rewards of the other agent and is insensitive
to whether the reward results from achieving a goal or maintaining
a condition.

4 Recognising Multiple Goals
In this section we present our approach to the multi-
goal recognition problem. Our approach extends recent
work on Goal Recognition as Reinforcement Learning
(GRAQL) [Amado et al., 2022] for the single goal recogni-
tion task. GRAQL represents the possible goals G in a single
goal recognition problem by a set of Q-functions {Qg}g∈G.5
Given a sequence of observations Ω of an agent’s behaviour,
the Q-functions are used to infer which reward function (i.e.,
implicit goal in the MDP formalisation) the agent is likely
to be following. Inference is based on a distance measure,
DISTANCE(Ω, Qg), to determine the degree of divergence be-
tween the observation sequence, Ω = ⟨s0, a0, s1, a1, . . .⟩,
and the behaviour expected from an agent pursuing goal g.
The inferred goal g∗, then, is the one with the smallest dis-
tance:

g∗ = argmin
g∈G

DISTANCE(Ω, Qg) (1)

In what follows, we use KL divergence as the distance mea-
sure, as this was found to give good performance in [Amado
et al., 2022]. KL divergence is defined as:

KL(Ω, Qg) =
∑
i∈|Ω|

πΩ(ai | si) log
πΩ(ai | si)
πg(ai | si)

(2)

where πΩ is a pseudo-policy where πΩ(ai | si) = 1 for each
⟨si, ai⟩ ∈ Ω, and πg is a softmax policy derived from the
Q-values Qg .

One possible way of extending GRAQL to multi-goal
recognition is to generate a set of Q-functions {QM}M∈℘(G)

for all possible sets of current goals, and then find the multi-
goal Q-function that minimises the distance measure from
the observations. However, such a naive approach requires
2|G| Q-functions to be trained, and rapidly becomes imprac-
tical as the set of possible goals grows. Moreover, even small
changes in the set of possible goals requires the regeneration
of many Q-functions. We therefore adopt a heuristic approach
that requires only single-goal Q-functions, in which we take
the set of inferred current goals, G′, to be those goals whose
KL divergence is within some threshold, δ, of the goal with
the minimum KL divergence:

G′ = {g ∈ G | KL(Ω, Qg) ≤ min
ĝ∈G

KL(Ω, Qĝ) + δ} (3)

In effect, all the goals for which the sequence of observations
are within δ of being optimal are inferred to be the current
goals of the agent. A potential weakness of this approach is
that, when the current goals of an agent must be pursued se-
quentially (e.g., because they must be achieved in different
parts of the environment), some of the agent’s actual current
goals may not be recognised initially. In general, the extent
to which later goals can be recognised depends on the num-
ber of actions “characteristic” of the goal in the sequence of
actions observed so far. However, as noted above, in many
cases even inaccurate goal recognition that allows the correct

5The Q-functions can, for example, be learned from the goal
and the environment dynamics, or from previous traces of agent be-
haviour where the goal is known.



prediction of the next few actions is sufficient for effective
intention progression.

Our aim is therefore to infer the goal(s) an agent may be
actively pursuing (i.e., that may give rise to the next few ac-
tions), and we rely on MCTS (see Section 5) to determine
which actions (and hence which goal(s)) the agent is likely
to pursue next, given the inferred goals. Thus, rather than
using the definition of KL divergence given in Equation 2
(where KL divergence is summed over the entire observation
sequence), we use an exponential moving average of the KL
divergence which is more sensitive to recent observations.

Let KL(at, st, Qg) denote the KL divergence for a single
state-action observation ⟨st, at⟩ under goal g:

KL(at, st, Qg) = πΩ(at | st) log
πΩ(at | st)
πg(at | st)

(4)

Let η ∈ (0, 1), and define the sequence kt(Ω, Qg) as:

kt(Ω, Qg) = ηkt−1(Ω, Qg) + (1− η)KL(at, st, Qg) (5)

If kt is initially set to zero for all goals, then this gives a zero-
biased moving average. To debias it, we need to divide by
(1− ηt), as in the Adam optimiser [Kingma and Ba, 2015]:

KL(Ω, Qg) = kt(Ω, Qg)/(1− ηt) (6)

We use this as the KL divergence in Equation 3.

5 Intention Scheduling with Goal Recognition
In this section, we explain how we incorporate our multi-goal
recognition approach into a multi-agent intention scheduler.
The new scheduler, which we call IGR, is based on the state
of the art intention-aware multi-agent scheduler IRM [Dann
et al., 2022].

Much of the recent work on multi-agent intention pro-
gression [Dann et al., 2020; Dann et al., 2021; Dann et al.,
2022] is based on the MCTS algorithm [Browne et al., 2012].
Briefly, MCTS works by iteratively building a search tree.
Each node in the tree is evaluated by averaging the outcomes
of stochastic rollouts (i.e., possible future executions). Nodes
which have been visited less often and which have better aver-
age outcomes are favoured for expansion, yielding an asym-
metric tree where promising action sequences are analysed in
greater depth. In order to predict the behaviour of other agents
in rollouts, previous multi-agent intention schedulers based
on MCTS require a priori knowledge of the current goals of
other agents. For example, IRM uses the current goals of the
other agents to calculate a tactic set for each agent, which is
essentially a multi-goal policy for achieving all of the other
agent’s goals as quickly as possible.

In contrast, IGR uses the multi-goal recognition approach
described in Section 4 to infer the current goals of other
agents. However, using the inferred goals to predict the be-
haviour of other agents in rollouts is non-trivial. IRM only
has to calculate each agent’s tactic set once, as the agent’s
goals are known initially and assumed not to change during
execution (except through achievement). Calculating each
agent’s tactic set online based on inferred goals is potentially
much more computationally demanding, since the inferred
goals of other agents may change frequently.

Algorithm 1 Rollout phase for IGR (one other agent).
1: function ROLLOUT(s)
2: // Determine single goal rollout policy for other agent, πo

3: πsingle ← {πg | g ∈ G′}
4: πo ← argmaxπ∈πsingle

maxa∈Act Q
π(s, a)

5: while s is not terminal do
6: if other agent’s turn to act then
7: if maxa∈A Qπo(s, a) < Qmin then
8: πo ← argmaxπ∈πsingle

maxa∈Act Q
π(s, a)

9: if maxa∈A Qπo(s, a) < Qmin then
10: Select a uniformly at random from Act
11: else
12: a ∼ πo

13: else
14: // IGR’s own turn to act
15: Select a based on IGR’s rollout policy
16: s.step(a)

return s

To address this, we use an alternative rollout approach (see
Algorithm 1), in which the single-goal policies used by the
goal recogniser are also used to predict the actions of other
agents. The rollout model assumes that the other agent will
pursue the inferred goal with the greatest Q-value, and com-
mits to that goal until its Q-values drop below a certain thresh-
old, Qmin (indicating that the goal has either been achieved
or is no longer achievable). The agent then switches to pursu-
ing the goal that currently has the greatest Q-value, and so on.
This process repeats until there are no goals with Q-values ex-
ceeding Qmin, at which point the other agent is assumed to
pick actions uniformly at random.

In addition, IGR generalises how an agent interleaves its
intentions. Previous approaches either interleave intentions
at the plan level, e.g., [Thangarajah et al., 2003; Yao et al.,
2014], or at the action level e.g., [Yao and Logan, 2016;
Dann et al., 2022]. Which approach is better depends on the
structure of the agent’s plans and the application. For ex-
ample, for goals that require moving to a particular location
in the environment, action-level interleaving is often subopti-
mal. Conversely, when actions can be interleaved effectively,
plan-level interleaving may delay or even prevent the achieve-
ment of goals. IGR can therefore be configured to interleave
an agent’s intentions at both the plan and action level. For
action-level interleaving, in the rollout phase, IGR randomly
chooses an action from one of its progressible intentions (line
15 in Algorithm 1). For plan-level interleaving, line 15 ran-
domly chooses an available plan and selects actions from that
plan until the plan is complete or no longer progressible. Im-
plementing plan-level interleaving for the tree policy phase
is more challenging, as the multi-player variant of MCTS
used by IRM assumes a turn-based environment. With plan-
level interleaving, each step in the search tree is temporally-
extended, so the agents no longer take “turns” but act concur-
rently in the environment. We therefore use the single-player
version of MCTS for plan-level interleaving (as in [Yao et
al., 2014]), treating other agents as if they are part of the en-
vironment. During the tree policy phase, instead of following
a UCT-based policy [Browne et al., 2012], the other agents’
behaviour is simulated in the same manner as in the rollouts.



Goal Item Ingredients Tools Needed Craft Location

Axe Iron, stick — Toolshed
Bed Grass, plank — Workbench
Bridge Iron, wood — Factory
Cloth Grass Factory
Gem — Axe —
Gold — Bridge —
Plank Wood — Toolshed
Rope Grass — Toolshed
Stick Wood — Workbench

Table 1: Item recipes in Craft World.

6 Evaluation
We evaluate our approach in the two-agent version of the
well-known Craft World [Andreas et al., 2017] environment
developed by Dann et al. (2022) to evaluate IRM .

In Craft World, agents must craft or gather certain goal
items. The rules for acquiring items are summarised in Table
1. For example, to mine a gem, an agent must first acquire
an axe, which can be crafted from iron and a stick at a tool-
shed. Raw ingredients (grass, iron and wood) can be collected
directly from squares containing those resources. The start-
ing locations of all objects in the environment, including the
agents, are randomised at the start of each episode.

Agents have six possible actions: movement in the four car-
dinal directions, plus collect and craft. Actions that are cur-
rently inapplicable have no effect on the environment, e.g.,
performing collect at an empty square. We assume that ac-
tions are fully observable, i.e., agents can see the actions of
all other agents. Goal-plan trees were generated algorithmi-
cally for each goal item.

We consider 10 scenarios, listed in Table 2. As in previous
work [Dann et al., 2020; Dann et al., 2021], these are of three
types: selfish, allied and adversarial. In selfish scenarios,
agents seek to maximise achievement of their own goals. In
allied scenarios, they seek to maximise the achievement of
both agents’ goals. In adversarial scenarios, they maximise
own goals − other agent goals. Goal items can be crafted
multiple times, and each successful craft is worth 1 point.

The specific set of goal items for each agent depends on
the scenario. In Table 2, the column “evaluation agent goals”
shows the set of goal items for the agent under evaluation,
“paired agent true goals” are the actual goals of the paired
agent, i.e., the other agent in the environment, and “paired
agent possible goals” are the set of possible goals given to
IGR. Note that in two of the scenarios (Selfish 3 and Self-
ish 4) there is a true goal that is not included in the possible
set (indicated by an asterisk). This was done to evaluate the
performance of IGR when the assumed set of possible goals
does not include all of the paired agent’s actual goals.

We designed the goal sets and resource counts to yield in-
teractions between the agents’ plans. For example, in Selfish
1, there is insufficient iron and wood for the evaluation agent
to craft both an axe and a bridge (assuming that the paired
agent will craft an axe to mine a gem). Thus, it cannot mine
both gems and gold and must decide which to pursue.

IGR configuration. Since Craft World requires taking
many movement actions, we configured IGR to use plan-level
interleaving. Unlike Amado et al. (2022), who use tabular Q-

functions for goal recognition, we use deep function approx-
imation. To obtain generalising Q-functions that do not need
to be trained separately for each scenario, we apply the DQN
algorithm [Mnih et al., 2015] across randomly generated lev-
els. For the goal recogniser, we set δ = 2.5 and η = 0.95.
The Qmin parameter of the rollouts (see Algorithm 1) is set
to 0.5. For MCTS, we use α = 100, β = 10, c = 2.5.6

Baselines. We compare IGR against three baselines:

• Q-learn: A DQN agent [Mnih et al., 2015], trained in a
single-agent version of the environment.

• SP : Yao et al.’s (2016b) scheduler, based on single-
player Monte Carlo Tree Search.

• IRM : A reimplementation of Dann et al.’s (2022) state-
of-the-art multi-agent scheduler that assumes a priori
knowledge of the paired agent’s goals. We made some
small changes to the implementation to facilitate a fair
comparison with the other schedulers: the main differ-
ence is that we use deep function approximation to esti-
mate IRM ’s heuristic values.

To ensure a fair comparison with IGR, we configured IRM

and SP to use plan-level interleaving. These schedulers can
be thought of roughly as best-case and worst-case baselines
for our approach. Since IRM has a priori knowledge of the
paired agent’s goals, we would expect it to exceed IGR’s per-
formance on average. On the other hand, since SP is com-
pletely unaware of the other agent, IGR ought to be able to
outperform it, provided that IGR’s goal recognition is suf-
ficiently accurate to predict some interactions between the
agents.

Paired agents. Ideally, a multi-agent scheduling approach
ought to perform well when paired with a variety of agents.
Therefore, we consider two different classes of paired agent:

• Intention-unaware: Q-learn and SP . These agents sim-
ply pursue their own goals, ignoring potential interac-
tions with other agents in the environment.

• Intention-aware: IRM and IGR. These agents are aware
of other agents in the environment, and thus, when
paired, both agents in the environment (the evaluation
agent and the paired agent) are attempting to predict the
other agent’s behaviour.

All paired agents are configured to pursue the “paired agent
true goals” in Table 2.

Results. The experiment results are summarised in Tables
3, 4 and 5. All results are averaged over 500 randomly gener-
ated task instances, with the best results highlighted in bold.

As expected, IGR outperformed the intention-unaware SP ,
but performed less well than IRM , which has a priori knowl-
edge of the paired agent’s goals. Across all 40 combinations
of scenario and paired agent, IGR outperformed SP in all
cases. This clearly shows IGR was able to predict some in-
teractions with the paired agent, despite only being provided
with the set of the paired agent’s possible goals. As expected,

6Code is available at https://github.com/mchldann/IJCAI GR.

https://github.com/mchldann/IJCAI_GR


Scenario Evaluation agent goals Paired agent possible goals Paired agent true goals Grass Iron Wood Gem Gold

Selfish 1 Gem, gold Gem, gold Gem 2 2 2 5 4
Selfish 2 Bridge, gold, rope Cloth, plank, rope, stick Plank, stick 1 2 2 0 3
Selfish 3 Bridge, gold, rope Cloth, plank Plank, stick* 1 2 2 0 3
Selfish 4 Bridge, gold, rope Cloth, plank Stick* 1 2 2 0 3

Allied 1 Axe, bed Cloth, bed, gold Bed, gold 1 1 1 3 3
Allied 2 Cloth, gold, stick Cloth, gem, gold, stick Cloth, gold 1 2 2 2 2
Allied 3 Axe, bed Axe, bridge, cloth, plank Bridge, cloth, rope 2 2 2 3 3

rope, stick

Adv. 1 Axe, bed, gold Axe, bridge, rope Rope 4 4 4 1 1
Adv. 2 Axe, bridge, cloth, rope Cloth, gem, gold, rope Gem, gold 2 4 1 2 2
Adv. 3 Cloth, plank, rope, stick Axe, bed, bridge, cloth, rope Axe, bed, bridge 3 6 3 2 2

Table 2: The 10 scenarios considered in Craft World.

IGR performed less well than IRM overall, although the dif-
ference in performance is fairly small. While there is vari-
ation across the individual results, on average, IGR scored
0.79 points more than SP , but only 0.20 points less than IRM .
In other words, IGR achieved most of the advantages of full
intention-awareness by inferring the goals of the paired agent.

Interestingly, IGR actually outperformed IRM in 8 cases
(3 cases in each of Selfish 2, Selfish 3 and Allied 1). Given
IRM ’s complete knowledge of the other agent’s goals, this
may seem surprising. However, recall that, in the MCTS roll-
outs, IRM assumes that the paired agent will follow a policy
based on the conjunction of its goals, whereas IGR assumes
that the paired agent will follow the single-goal policy with
the largest Q-value. When paired with the Q-learn agent,
which actually does follow a policy based on the conjunction
of its goals, IRM therefore performs very well: in all 10 sce-
narios, it achieved the highest score of any agent paired with
Q-learn. However, when IRM is paired with agents that do
not conform as well to its rollout model, it performed less
well. The results suggest that IGR’s rollout model, based on
Q-values for individual goals, is better at predicting the paired
agent’s behaviour in some settings.

Other results further support this analysis. For example,
Q-learn performs broadly the worst, but achieves the best
score in Allied 3 when paired with IRM . The most likely
explanation for this is not that Q-learn behaved particularly

Paired agent
Q-learn SP IRM IGR

Q-learn 2.59 2.25 2.18 2.23
SP 3.52 2.33 2.36 2.42

Se
lfi

sh
1

IRM 4.41 3.96 3.96 3.97
IGR 4.17 3.44 3.43 3.52

Q-learn 2.47 1.88 1.81 1.86
SP 3.97 2.08 2.10 2.15

Se
lfi

sh
2

IRM 4.98 3.25 3.24 3.30
IGR 4.68 4.08 4.06 4.17

Q-learn 2.44 1.83 1.80 1.85
SP 4.07 2.08 2.16 2.21

Se
lfi

sh
3

IRM 4.98 3.10 3.22 3.21
IGR 4.44 3.29 3.28 3.36

Q-learn 2.39 2.10 2.09 2.10
SP 3.49 2.32 2.32 2.32

Se
lfi

sh
4

IRM 5.06 4.37 4.33 4.39
IGR 3.94 3.04 3.11 2.96

Table 3: Results for the selfish scenarios (own score).

intelligently, but rather that it behaved predictably for IRM ,
allowing IRM to assist it better. Conversely, Q-learn per-
formed very poorly against IRM in the adversarial scenarios
(especially in Adv. 3), probably because IRM could anticipate
its behaviour and so obstruct it effectively.

The performance of IGR in scenarios Selfish 2 – Selfish
4 illustrates the impact of incorrect assumptions about the
paired agent’s possible goals. In Selfish 2, the assumed possi-
ble goals (cloth, plank, rope, stick) include the paired agent’s
true goals (plank, stick). In Selfish 3, however, one of the true
goals (stick) is not included in the possible goal set. IGR still
performed well here, surpassing IRM , but by a much smaller
margin than in Selfish 2. In Selfish 4, the assumed possible

Paired agent
Q-learn SP IRM IGR

Q-learn 0.98 1.34 2.15 1.98
SP 1.26 1.08 1.58 2.00

A
lli

ed
1

IRM 1.95 2.33 2.45 2.65
IGR 1.81 2.38 2.54 2.66

Q-learn 2.64 3.27 3.65 3.30
SP 3.26 3.29 3.40 3.43

A
lli

ed
2

IRM 3.89 3.92 3.92 3.90
IGR 3.42 3.71 3.79 3.79

Q-learn 3.38 3.64 3.94 3.58
SP 3.20 3.17 3.18 3.14

A
lli

ed
3

IRM 3.91 3.91 3.87 3.83
IGR 3.61 3.63 3.50 3.43

Table 4: Results for the allied scenarios. The score reported is
own score + other agent score.

Paired agent
Q-learn SP IRM IGR

Q-learn -0.99 -1.52 -1.49 -1.49
SP 0.23 -0.22 -0.22 -0.22

A
dv

.1

IRM 1.14 0.53 0.57 0.56
IGR 1.04 0.51 0.51 0.50

Q-learn 0.97 0.58 0.32 0.46
SP 1.33 0.91 0.77 0.59

A
dv

.2

IRM 2.09 1.83 1.62 1.29
IGR 2.00 1.81 1.59 1.23

Q-learn 2.30 1.57 -0.09 1.25
SP 2.69 2.05 1.70 1.92

A
dv

.3

IRM 3.97 2.92 1.93 2.44
IGR 3.77 2.88 1.82 2.26

Table 5: Results for the adversarial scenarios. The score reported is
own score − other agent score.



Figure 1: A partial trajectory from the Adv. 3 scenario, showing how the KL divergences from IGR’s goal recogniser evolved over time.
Some details of the Craft World states (such as the position of the evaluation agent) have been omitted to aid readability.

goals no longer include any of the true goals. Unsurprisingly,
IGR performs less well than IRM in this case, although it still
outperforms the intention-unaware SP . This is likely because
one of the possible goals (plank) has a similar plan to the true
goal (stick). IGR could therefore anticipate that the paired
agent was competing for wood, but could not predict all of its
movements accurately.

Lastly, note that IGR performed well in scenarios with≥ 4
possible goals and ≥ 2 true goals, indicating that its goal
recogniser is capable of handling multiple goals.

Goal Recognition Example. To illustrate the operation of
IGR’s goal recogniser, we provide a partial trajectory in
Figure 1, showing how the KL divergences evolve over time.
The paired agent (black sprite, initially located near the
bottom-left of the world) moves upwards, stopping to col-
lect a piece of iron at step 2, then later collecting a piece of
wood at step 7. Out of the set of possible goals (axe, bed,
bridge, cloth, rope), iron is only required for axes and bridges,
so when the agent collects iron, the goal recogniser becomes
confident that it is not pursuing beds, cloth or rope. The di-
vergences for cloth and rope reduce over steps 3 and 4, as the
agent moves closer to a piece of grass (which these items re-
quire), but increase again when the agent skips over the grass
at step 5. While beds also require grass, they require wood
too, and it is plausible from the trajectory that the agent has
decided to collect wood before grass; hence the bed diver-
gence continues to decline. The small increase in divergence
for axe at step 1 is more difficult to explain (as the agent has
moved to a piece of iron, which axes require), and may reflect
a quirk in the deep RL policy that the goal recogniser uses for
axes. This illustrates the usefulness of the threshold, δ, in
our goal recognition approach: for δ = 2.5 (as in the experi-
ments), the axe divergence remains just within the threshold,
so the goal recogniser still considers it to be an inferred goal
at step 1.

Computational Cost. At each deliberation cycle, the time
that IGR spends on goal recogition is negligible (less than
a millisecond) compared to the time spent on MCTS roll-
outs (around 4.5 seconds on a Ryzen 9 5900X, with α =
100, β = 10). The most expensive operation, by far, is the
neural network forward pass in the computation of the roll-

out policy, meaning that the complexity of the algorithm is
O(αβ). Since IGR and the reimplemented IRM both use
deep learned rollout policies, their computational costs are
near-identical.

7 Related Work
The problems we address in this paper overlap with three key
areas of research on agent behaviour: Ad Hoc teamwork, goal
recognition, and counterplanning.

In Ad Hoc teamwork, agents try to collaborate efficiently
and robustly with unknown agents without any explicit com-
munication protocol [Stone et al., 2013]. Research on in this
area has yielded a number of techniques, some of which also
include inferring the task or goal currently being pursued by
other agents [Mirsky et al., 2022]. Unlike our work, these
techniques all assume that agents are either wholly cooper-
ative, or have no conflicting objectives. However, we make
no such assumptions, and our experiments show that our ap-
proach performs well, even when the agents involved are ad-
versarial.

In goal recognition, the agent’s behaviour consists of a se-
quence of actions performed by the agent or snapshots of the
current environment state or both. The sequence may be in-
complete (e.g., observations may not include some actions,
or state descriptions may be only partial) and/or noisy (e.g.,
incorrect action labels or fluents in the state descriptions).
Goal recognition approaches often encode the agent prefer-
ences in an exhaustive enumeration of the potential goals an
agent can be pursuing, or as a plan library/goal-plan tree. The
former representation is common in goal recognition as plan-
ning [Ramı́rez and Geffner, 2009; Meneguzzi and Pereira,
2021], whereas the latter is common in plan library-based
approaches to goal recognition [Avrahami-Zilberbrand and
Kaminka, 2005; Mirsky et al., 2019]. In contrast, in IGR the
preferences of the observed agent are encoded as Q-functions
rather than explicit goals or GPTs. This can be seen as closer
to the GPT approach, but with potentially greater coverage of
the action space. While we have not evaluated IGR in sce-
narios with partial observability or noisy observations, goal
recognition as reinforcement learning has been shown to be
robust to partial and noisy observation sequences [Amado



et al., 2022], which suggests IGR may be similarly robust.
However, evaluating this is future work.

Some approaches to activity and plan recognition based
on hierarchical plan libraries have considered the problem
of agents with multiple goals. For example, approaches
to mixed activity and plan recognition directly from sen-
sor data [Hu and Yang, 2008; Hu et al., 2008] have used
skip-chain conditional random fields to successfully deal with
agents executing plans in parallel towards different goals.
These approaches rely on learning not only the likelihood
of observations, but also the way in which goals may inter-
act. In contrast, IGR learns policies associated with each goal
through a reward function. It is not clear how we could con-
vert between the two formalisms to allow a direct compari-
son. Similarly, approaches based on grammar parsing [Geib
and Goldman, 2009] developed to recognise multiple con-
current goals require a precondition-free goal-plan tree rep-
resentation of each goal, augmented with probabilities about
agent choices. This is significantly more information than
our approach requires for each potential goal of an agent,
which makes a direct comparison difficult. However, more
recent approaches to learn agent preferences over specific
plans [Amado et al., 2023] may allow such a comparison in
the future.

Finally, the adversarial setting, in which an agent tries to
prevent another agent achieve its goals, overlaps with recent
work in counterplanning [Pozanco et al., 2018]. Applying
such techniques directly in our scheduler would be a non-
trivial extension, and we leave this for future work.

8 Discussion and Conclusion

In this paper, we introduced the multi-agent intention recog-
nition and progression problem, that is, the problem of iden-
tifying the goals currently being pursued by other agents at
runtime to allow the more effective scheduling of an agent’s
intentions. Our key contributions are threefold. First, we for-
mally define the multi-agent intention recognition and pro-
gression problem, connecting the intention scheduling prob-
lem with that of goal recognition. As part of our formalisa-
tion, we expand the definition of goal recognition problems
to situations in which an agent may pursue multiple goals
rather than a single goal. Second, we extend reinforcement
learning-based goal recognition techniques to the multi-goal
recognition problem. Third, we present IGR, an approach to
intention scheduling that uses the output of a goal recogniser
to predict the actions that may be taken by other agents, al-
lowing an IGR agent to choose its own actions so as to max-
imise its utility. We show experimentally that IGR agents per-
form as well (and sometimes better) as agents which know the
goals of other agents a priori.
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