
An Agent Architecture for Prognostic Normative Reasoning

Jean Oh and Felipe Meneguzzi and Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{jeanoh,meneguzz,katia}@cs.cmu.edu

Timothy J. Norman
Dept. of Computing Science

University of Aberdeen
Aberdeen, UK

t.j.norman@abdn.ac.uk

Abstract
In this paper we describe a software assistant agent
that can proactively assist human users situated
in a time-constrained environment to perform nor-
mative reasoning–reasoning about prohibitions and
obligations–so that the user can focus on her plan-
ning objectives. In order to provide proactive as-
sistance, the agent must be able to 1) recognize
the user’s planned activities, 2) reason about poten-
tial needs of assistance associated with those pre-
dicted activities, and 3) plan to provide appropriate
assistance suitable for newly identified user needs.
To address these specific requirements, we develop
an agent architecture that integrates user intention
recognition, normative reasoning over a user’s in-
tention, and planning, execution and replanning for
assistive actions. This paper presents the agent ar-
chitecture and discusses practical applications of
this approach.

1 Introduction
Human planners dealing with multiple objectives in a com-
plex environment are subjected to a high level of cognitive
workload, which can severely impair the quality of the plans
created. For example, military planners during peacekeeping
operations must plan to achieve their own unit’s objectives
while following standing policies (or norms) that regulate
how interaction and collaboration with Non-Governmental
Organizations (NGOs) must take place. As the planners are
cognitively overloaded with mission-specific objectives, such
normative stipulations hinder their ability to plan to both ac-
complish goals and abide by the norms. We develop an assis-
tant agent that takes a proactive stance in assisting cognitively
overloaded human users by providing prognostic reasoning
support. In this paper, we specifically aim to assist in norma-
tive reasoning–reasoning about prohibitions and obligations.

In order to provide a user with a timely support, it is cru-
cial that the agent recognizes the user’s needs in advance so
that the agent can work in parallel with the user to ensure the
assistance is ready by the time the user actually needs it. This
desideratum imposes several technical challenges to: 1) rec-
ognize the user’s planned activities, 2) reason about potential
needs of assistance for those predicted activities to comply

with norms as much as possible, and 3) plan to provide ap-
propriate assistance suitable for newly identified user needs.

Our approach to tackle these challenges is realized in a
proactive planning agent framework. As opposed to planning
for a given task, the key challenge we address here is to iden-
tify a new set of tasks for the agent–i.e., the agent needs to fig-
ure out when and what it can do for the user. After identifying
new goals, the agent plans, executes, and replans a series of
actions to accomplish them. Specifically, we employ a proba-
bilistic plan recognition technique to predict a user’s plan for
her future activities. The agent then evaluates the predicted
user plan to detect any potential norm violations, generating
a set of new tasks for the agent to prevent the occurrence of
such norm violations. As the user’s environment changes the
agent’s prediction is continuously updated, and thus agent’s
plan to accomplish its goals must be frequently revised dur-
ing execution. To enable a full cycle of autonomy, we present
an agent architecture that seamlessly integrates techniques for
plan recognition; normative reasoning over a user’s plan; and
planning, execution and replanning for assistive actions.

The main contributions of this paper are the following. We
present a principled agent architecture for prognostic reason-
ing assistance by integrating probabilistic plan recognition
with reasoning about norm compliance. We develop the no-
tion of prognostic normative reasoning to predict the user’s
likely normative violations, allowing the agent to plan and
take remedial actions before the violations actually occur.
To the best of our knowledge, our approach is the first that
manages norms in a proactive and autonomous manner. Our
framework supports interleaved planning and execution for
the assistant agent to adaptively revise its plans during ex-
ecution, taking time constraints into consideration to ensure
timely support to prevent violations. For a proof of concept
experiment, our approach has been fully implemented in the
context of a military peacekeeping scenario.

The rest of this paper is organized as follows. After re-
viewing related work in Section 2, we describe a high-level
architecture of our agent system in Section 3. The three main
components are described in detail in the following sections:
Section 4 describes the agent’s plan recognition algorithm for
predicting the user’s future plan; Section 5 describes how
the agent evaluates the norms to maintain a normative state
and to detect potential violations; and Section 6 presents how
the agent plans and executes actions to accomplish identified

goals. We present a fully implemented system in a peace-
keeping problem domain, followed by other potential appli-
cations in Section 7, and conclude the paper in Section 8.

2 Related Work
Assistant agents are commonly modeled as planning agents
[Boger et al., 2005; Fern et al., 2007] providing maximal
help in every possible agent belief state. While these ap-
proaches combine both a user’s and an agent’s variables to
define a state space, the models include only the agent’s ac-
tions. Without an explicit model of the user’s actions, these
approaches lack the capability to predict user actions, mak-
ing them unsuitable for prognostic assistance. By contrast,
we take a modularized approach. While our plan recognition
module keeps track of a user’s state variables to predict her
current and future activities, the agent’s planning problem is
defined using only those variables whose values the agent can
directly modify. By separating the plan prediction from the
agent’s action selection, our approach not only achieves an
exponential reduction in the size of state space, but also en-
ables the agent to simultaneously assist the user with multiple
tasks handled in independent threads.

The type of prognostic assistance described in this paper
could be compared to mixed-initiative planning [Burstein and
McDermott, 1996] in a certain sense, since the user is plan-
ning with the help of the agent. However, since the agent is
working only on a subset of the domain in which the user is
planning, and we do not expect the user to interact with the
agent planning process directly, our approach is distinct from
mixed-initiative planning.

As norms are generally complex and dynamically chang-
ing, automated norm reasoning is desired in practice. Exist-
ing work on automated norm management relies on a deter-
ministic view of the planning model [Modgil et al., 2009],
where norms are specified in terms of classical logic; in this
approach, violations are detected only after they have oc-
curred, consequently assistance can only be provided after the
user has already committed actions that caused the violation
[Sycara et al., 2010]. By contrast, our agent aims to predict
potential future violations and proactively take actions to help
prevent the user from violating the norms.

3 Agent Architecture

Plan
recognizer

Norm
reasoner

Agent
planner

Agent plan
executorPresenter

Observer

Agent plan
executorAgent plan

executor

Observations:
Keyboard activities

Predicted
user plan

Goals:
user needs

Plans
Assistance

Figure 1: Overview of the proactive assistant.

Figure 1 provides a high-level overview of our agent sys-
tem for proactive yet unobtrusive assistance. The observer

module monitors the user’s current activities in the environ-
ment to identify new observations that might indicate any
changes in the user’s current and future plan. Given a new
observation, the plan recognizer module uses a probabilistic
algorithm to update its prediction for the user’s plans. From
the predicted user plan, the norm reasoner module evaluates
each plan step (actually the state resulting from these steps)
to detect any potential norm violations. For each state in
which norms are violated, the reasoner module finds the near-
est compliant state where violations do not occur. This com-
pliant state subsequently becomes a new goal for the agent to
accomplish. The agent planner module then receives the new
planning task to find a series of actions to prevent potential
norm violations. When a prognostic plan is generated, the
agent executes the plan until either the goal is reached or the
goal becomes irrelevant to the user’s planning context. The
effects of the successful plan execution can be presented to
the user, e.g., notifying which actions the agent has taken to
resolve a certain violation.

Design Assumptions: The agent models a user’s plan-
ning space in terms of a set of task-specific variables and
their domains of valid values, where a variable describes
an environment and the progress status of certain activities.
A set of norms specifies which states must be visited (or
avoided) in the user plan using a set of variables and their
relationships. In general, such norms introduce additional
variables to consider in addition to task-specific ones, adding
extra dimensions into the reasoning process. As seen in a
recent study [Sycara et al., 2010], when planning involves
complex reasoning as in military environments, human users
tend to lose track of norms, resulting in plans with signifi-
cant norm violations. By developing an assistant agent that
manages norm-related variables, our approach aims to relieve
the user from having to deal with both task-specific variables
and norm-related variables. We make a specific assumption
that task-specific user variables and norm-specific agent vari-
ables are independent and thus changing an agent variable
does not affect the values of user variables. For representa-
tion, let ((user-variables), (agent-variables)) denote a state
composed of user variables and agent variables.

Example Scenario: We use a simple example of peace-
keeping scenario to illustrate the approach throughout the pa-
per. We develop an assistant agent for a humanitarian NGO
teamed with a military coalition partner. Consider a norm
stating that an NGO must have an armed escort when oper-
ating in conflict areas. An escort can be arranged through a
well-defined communication protocol, e.g., sending an escort
request to and receiving a confirmation from a military party.
Here, a state space can be defined in terms of two variables:
area specifying the user’s geographic coordinates and escort
indicating the status of an armed escort in each region. In our
approach, a user can focus on reasoning about variable area
only since the agent manages variable escort to assure that
the user plan complies with norms. Note that variable escort
is a simplified representation as it is defined for each value of
variable area, i.e., it is a function escort(area) to be precise.

In the following sections, we detail the three main compo-
nents within the agent, namely: plan recognizer, norm rea-
soner, and agent planner and executor. Due to space con-

straints, we omit the description for the observer and presen-
ter modules.

4 Probabilistic Plan Recognition
We leverage plan recognition from previous work [Oh et al.,
2011] and assume that a user’s planning problem is given as
an MDP. Based on the assumption that a human user gener-
ally reasons about consequences and makes decisions to max-
imize her long-term rewards, we utilize an optimal stochastic
policy of the MDP to predict a user’s future activities.

We compute an optimal stochastic policy as follows. Let
G denote a set of possible goal states. For each potential goal
g ∈ G, we compute policy πg to achieve goal g. Instead of a
deterministic policy that specifies only the optimal action, we
compute a stochastic policy such that probability p(a|s, g) of
taking action a given state s when pursuing goal g is propor-
tional to its long-term expected value v(s, a, g) such that:

p(a|s, g) ∝ β v(s, a, g),
where β is a normalizing constant. The intuition for using
a stochastic policy is to allow the agent to explore multiple
likely plan paths in parallel, relaxing the assumption that a
human user always acts to maximize her expected reward.

The plan recognition algorithm is a two-step process. In
the first step, the algorithm estimates a probability distribu-
tion over a set of possible goals. We use a Bayesian approach
that assigns a probability mass to each goal according to how
well a series of observed user actions is matched with the
optimal plan toward the goal. We assume that the agent can
observe a user’s current state and action. This assumption can
be relaxed such that a sequence of user states and actions can
be derived from primitive observations, but the detail is omit-
ted here. Let Ot = s1, a1, s2, a2, ..., st, at denote a sequence
of observed states and actions from time steps 1 through t
where st and at denote the user state and action, respectively,
at time step t. When a new observation is made, the assistant
agent updates, for each goal g in G, the conditional probabil-
ity p(g|Ot) that the user is pursuing goal g given the sequence
of observations Ot. The conditional probability p(g|Ot) can
be rewritten using Bayes’ rule as:

p(g|Ot) =
p(s1, a1, ..., st, at|g)p(g)∑

g′∈G p(s1, a1, ..., st, at|g′)p(g′)
. (1)

By applying the chain rule, we can write the conditional prob-
ability of observing the sequence of states and actions given
a goal as:
p(s1, a1, ..., st, at|g) = p(s1|g)p(a1|s1, g)p(s2|s1, a1, g)

... p(st|st−1, at−1, ..., g).
We replace the probability p(a|s, g) with the user’s stochas-
tic policy πg(s, a) for selecting action a from state s given
goal g. By the MDP problem definition, the state transition
probability is independent of the goals. Due to the Markov
assumption, the state transition probability depends only on
the current state, and the user’s action selection on the cur-
rent state and the specific goal. By using these conditional
independence relationships, we get:
p(s1, a1, ..., st, at|g) = p(s1)πg(s1, a1)p(s2|s1, a1)

... p(st|st−1, at−1). (2)

By combining Equations 1 and 2, the conditional probability
of a goal given a series of observations can be obtained.

In the second step, we sample likely user actions in the
current state according to a stochastic policy of each goal
weighted by the conditional probability from the previous
step. Subsequently, the next states after taking each action
are sampled using the MDP’s state transition function. From
the sampled next states, user actions are recursively sam-
pled, generating a tree of user actions known here as a plan-
tree. The algorithm prunes the nodes with probabilities below
some threshold. A node in a plan-tree can be represented in a
tuple 〈t, s, l〉 representing the depth of node (i.e., the number
of time steps away from the current state), a predicted user
state, and an estimated probability of the state visited by the
user, respectively. Example 1 shows a segment of plan-tree
indicating that the user is likely be in area 16 with probability
.8 or in area 15 with probability .17 at time step t1.

Example 1 〈〈t1, (area = 16), .8〉, 〈t1, (area = 15), .17〉〉

5 Norm Reasoner
In this section we specify the component responsible for eval-
uating, using normative reasoning, predicted user plans to
generate new goals for the agent. Norms generally define
constraints that should be followed by the members in a soci-
ety at particular points in time to ensure certain system-wide
properties. We specify our norm representation format, fol-
lowed by two algorithms for 1) predicting violations and 2)
finding the nearest complying state–i.e.the agent’s new goal
state–towards which we can steer the user.

5.1 Norm Representation
Inspired by the representation in [Garcı́a-Camino et al.,
2009], we define a norm in terms of its deontic modality,
a formula specifying when the norm is relevant to a state
(which we call the context condition), and a formula spec-
ifying the constraints imposed on an agent when the norm
is relevant (which we call the normative condition). We re-
strict the deontic modalities to those of obligations (denoted
O) and prohibitions (denoted F); and use these modalities to
specify, respectively, whether the normative condition must
be true or false in a relevant state. The conditions used in a
norm are specified in terms of state variables and their rela-
tionships such as an equality constraint. Formally,

Definition 1 (Norm) A norm is a tuple 〈ν, α, µ〉 where ν is
the deontic modality; α, the context condition; and µ, the
normative condition.

Definition 2 (Satisfaction) Let ϕ be the set of state vari-
ables; α, a context (or normative) condition containing m
variables ϕα ⊆ ϕ and their valid domain D of m-tuples.
We say that condition α is satisfied in state s (written s |=
α) if there exists a tuple in the valid domain that is con-
sistent with the variable assignment in state s; such that
∃d ∈ D ∧ ∀v ∈ ϕα, d(v) = s(v) where d(v) and s(v)
denote the value assignments for variable v in tuple d and
state s, respectively.

Example 2 Norms, denoted by ιescort, that an NGO is
obliged to have an armed escort when entering unsafe regions
can be expressed as:

ιescort = 〈O, area ∈ {16, 21}, escort ∈ {granted}〉.

Thus, the example above denotes that regions 16 and 21
should not be entered without an escort (as they are unsafe).
Then, the context condition is satisfied when variable area
(indicating the user’s location) has the value of 16 or 21.

5.2 Detecting Violations
We say that a state is relevant to a norm if the norm’s context
condition is satisfied in the state. When a state is relevant to
a norm, a normative condition is evaluated to determine the
state’s compliance, which depends on the deontic modality of
the norm. Specifically, an obligation is violated if the norma-
tive condition µ is not satisfied in state s; i.e., s 6|= µ. Con-
versely, as prohibitions specify properties that should not be
realized, a prohibition is violated if the normative condition
is satisfied in state s such that s |= µ. Formally,

Definition 3 (Violating State) Given state s and norm ι =
〈ν, α, µ〉, a function determining the violation of norm ι in
state s is defined as:

violating(s, ι) =

1 if (s |= α) ∧ (s 6|= µ) ∧ (ν = O)

1 if (s |= α) ∧ (s |= µ) ∧ (ν = F)

0 otherwise.

For instance, considering norm ιescort in Example 2, given
state s = {(area = 16), (escort = init)} the violation
detection function violation(s, ιescort) would return 1, de-
noting that norm ιescort is violated in state s.

Given a predicted user plan in a plan-tree, the norm rea-
soner traverses each node in the plan-tree and evaluates the
associated user state for any norm violations. Recall from
Section 4 that each node in a predicted plan-tree is associated
with a user state and an estimated probability of the user vis-
iting the node in the future. Using the estimated probability,
the agent selects a set of high-risk norm violations to manage
them proactively.

5.3 Finding the Nearest Compliant State
Our assistant agent aims at not only alerting the user of active
violations but also proactively steering the user away from
those violations that are likely to happen in the future. In or-
der to accomplish this, for each state that violates a norm the
agent needs to find a state that is compliant with all norms.
That is, for each state s where violating(s, ·) = 1, the agent
is to find the nearest state g that satisfies violating(g, ∗) = 0,
where · and ∗ are regular expressions denoting any and all, re-
spectively. Here, the distance between two states is measured
by the number of variables whose values are different.

Norm violations occur as the result of certain variables in
the state space being in particular configurations. Thus, find-
ing compliant states can be intuitively described as a search
for alternative value assignments for the variables in the nor-
mative condition such that norms are no longer violated. This
is analogous to search in constraint satisfaction problems.

When a norm-violating state is detected, the norm reasoner
searches the nearby state space by trying out different value
assignment combinations for the agent-variables. For each
such state, the norm reasoner evaluates the state for norm
compliance. The current algorithm is not exhaustive, and
only continues the search until a certain number of compli-
ant states are found.

When compliant state g is found for violating state s, state
g becomes a new goal state for the agent, generating a plan-
ning problem for the agent such that the agent needs to find
a series of actions to move from initial state s to goal state
g. The goals that fully comply with norms are assigned with
compliance level 1. When a search for compliant states fails,
the agent must proactively decide on remedial actions aimed
at either preventing the user from going to a violating state,
or mitigating the effects of a violation. In the norm litera-
ture these are called contrary-to-duty obligations [Prakken
and Sergot, 1996]. For instance, a contrary-to-duty obliga-
tion in the escort scenario can be defined such that if a user
is about to enter a conflict area without an escort, the agent
must alert the user of the escort requirement. For such partial
compliance cases, we assign compliance level 2.

A planning problem can be expressed as a pair of an initial
state s and a set of goal states gi annotated with their compli-
ance levels ci, such that 〈s, {(g1, c1)..., (gm, cm)}〉.
Example 3 (Norm Reasoning) Given a predicted plan-tree
in Example 1, if variable escort for area 16 has value init
indicating an escort has not been arranged, the agent detects
a norm violation and thus searches for a compliant state as
follows. Let us define the domain of agent-variable escort
to be: {init , requested , granted , denied , alerted}. By alter-
nating values, we get the following two compliant states:

{(granted , 1), (alerted , 2)},
where state granted is fully compliant while state alerted is
partially compliant from the agent’s perspective, as it com-
plies with the contrary-to-duty obligation to warn the user.
As a result, a newly generated planning problem is passed to
the planner module as follows:

〈init , {(granted , 1), (alerted , 2)}〉.

6 Planner and Executor
As opposed to precomputing a policy for every possible case,
we propose a scalable model where the assistant agent dy-
namically plans and executes a series of actions to solve
smaller problems as they arise. Note that the issues regarding
adjustable autonomy are outside the scope of this paper. In-
stead, we use a cost-based autonomy model where the agent
is allowed to execute those actions that do not incur any cost,
but is required to get the user’s permission to execute costly
(or critical) actions.

6.1 Planning
The agent has a set of executable actions, which in the peace-
keeping scenario are the following: { send-request,
receive-reply, alert-user }. Given a planning
problem–i.e., an initial and goal states–from the norm rea-
soner, the planner module is responsible for finding a series of

actions to accomplish these goals. In Example 3, two goal (or
absorbing) states have been assigned by the norm reasoner:
an escort is granted or the user is alerted of the need for an
escort. Thus, the agent must plan to change the value of es-
cort variable from init to either granted or alerted .

Since our representation of planning problems is generic,
one may use classical planners in the implementation. In-
stead, we use an MDP to develop a planner in order to respect
uncertainty involved in agent actions, e.g., sending a request
may fail due to a communication network failure.

Recall that a predicted user plan from the plan recognizer
imposes deadline constraints (specified as the depth of node)
to the agent’s planning. Specifically, if the user is likely to
commit a violation at a certain time step ahead, the agent must
take actions to resolve the violation before the time step. In
the planner, a deadline constraint is utilized to determine the
horizon for an MDP plan solver, such that the agent planner
needs to find an optimal policy given the time that the agent
has until the predicted violation time.

In Example 3, when the violation is predicted far in ad-
vance, an optimal policy prescribes the agent to always re-
quest an escort from the other party, except if an escort re-
quest has been denied by the other party then the agent should
alert the user of the denied request. Note that an optimal pol-
icy can change as time elapses, e.g., the user is better off by
being warned when there is not enough time left for the agent
to arrange an escort. We compare the number of sequential
actions in a plan with the depth of node (or the goal’s dead-
line) to determine the plan’s feasibility.

The planning problem formulated by the reasoner may not
always be solvable; that is, a compliant state can only be ac-
complished by modifying those variables that the agent does
not have access to, or none of the agent’s actions has effects
that result in the specified goal state. In this case, the agent
notifies the user immediately so that the user can take appro-
priate actions on her own. Otherwise, the agent starts execut-
ing its actions according to the optimal policy until it reaches
a goal state.

6.2 Execution
Execution of an agent action may change one or more vari-
ables. For each newly generated plan (or a policy) from the
planner module, an executor is created as a new thread. An
executor waits on a signal from the variable observer that
monitors the changes in the environment variables to deter-
mine the agent’s current state. When a new state is observed
the variable observer notifies the plan executor to wake up.
The plan executor then selects an optimal action in the cur-
rent state according to the policy and executes the action. Af-
ter taking an action, the plan executor is resumed to wait on
a new signal from the variable observer. If the observed state
is an absorbing state, then the plan execution is terminated,
otherwise an optimal action is executed from the new state.

The agent’s plan can be updated during execution as more
recent assessments of rewards arrives from the norm reasoner,
forcing the agent to replan. For instance, after the agent re-
quested an escort from the other party, the other party may not
reply immediately causing the agent to wait on the request. In
the meantime, the user can proceed to make steps towards the

• Time step T1
•User at area 6.
• Norm violation at area 16 in predicted plan.
• Agent arranges an escort: Escort Granted.

User’s real plan
Predicted user plan

Escort Granted

• Time step T2
• User at area 16.
• Norm violation at area 21 still active;

Party Bravo has not responded.
• Agent alerts the user: Escort Required!

Escort Required!

6

16

21

Figure 2: An annotated (and cropped) screenshot of a human-
itarian party’s planning interface

unsafe region, imposing a tighter deadline constraint. When
the new deadline constraint is propagated to the planner, an
optimal policy is updated for the executor, triggering a new
action, e.g., to alert the user of the potential violation (instead
of trying to arrange an escort).

7 Applications
Through this research, we aim to make not only scientific
contributions but also practical impact on real-life applica-
tions. The autonomous assistant agent framework that has
been presented can be applied to various problem domains.
Here, we include some examples of potential applications.

7.1 Military escort planning in peacekeeping
We have implemented our approach as a proof of concept pro-
totype in the context of planning for peacekeeping operations,
in a scenario adapted from [Sycara et al., 2010], where two
coalition partners (a humanitarian party–Alpha–and a mili-
tary party–Bravo) plan to operate in the same region accord-
ing to each party’s individual objectives and regulations.

Figure 2 shows the planning interface of a humanitarian
party (Alpha), annotated with labels for illustration. At time
step T1, the agent identifies a norm violation at area 16 in the
predicted user plan, for which the agent sends an escort re-
quest to Bravo. When the agent receives a reply from Bravo
granting a permission the escort status is displayed in the in-
terface. Similarly, the agent sends an escort request for area
21 for another norm violation, but Bravo does not respond. At
time step T2, an updated policy prescribes the agent to alert
the user, and a warning is displayed in the interface.

We have used a simplified military escort planning sce-
nario throughout this paper to illustrate our approach. In
practice, the planning and scheduling of escort services in
military peacekeeping operations involve complex norm rea-
soning due to diverse stakeholders. By meeting with the US
military and various NGO representatives, we have identified

a significant amount of interest in developing software assis-
tant for this problem domain, and we are currently working
on scaling up the system to deal with more realistic settings.

7.2 Potential applications
It is important to note that the goal of this research is not
to guide the user in finding optimal planning solutions, but
instead, to provide support to the user’s planning by identify-
ing and making amends for weaknesses in current plans. As
opposed to directing the user to make optimal decisions with
respect to a certain objective (as in decision-support systems),
we aim to design an agent that can maximize the support to
help the user in making decisions based on her own criteria
and judgement. Critically, the research presented in this paper
is intended to help unburden a user from having to deal with
a large number of dynamically changing norms. For instance,
in military-civilian collaboration planning, each planner is ex-
pected to remember and take into account a large number of
directives that change dynamically as the security situation
evolves in a war zone. From the user’s perspective, indepen-
dent decision making is crucial, as many rules guiding this
kind of collaboration might not necessarily be formalized, so
a fully automated planning system would not be suitable.

Furthermore, our research can be applied in many other
problem domains such as assistive living technologies for the
disabled and the elderly. In this domain, the norms can be
defined to specify a set of prohibitions for unsafe activities.
When the agent predicts any potential dangers, the agent’s
new goal becomes restoring a safe state. For instance, if the
safe state can be accomplished by taking the agent’s available
actions, e.g., moving certain objects on the floor, the agent
can resolve the issue. When the agent cannot accomplish the
goal using its own capabilities, the agent can instead alert the
human assistant before an accident happens.

8 Conclusion and Future Work
In this paper, we presented an assistant agent approach to pro-
vide prognostic reasoning support for cognitively overloaded
human users. We designed the proactive agent architecture by
seamlessly integrating several intelligent agent technologies:
probabilistic plan recognition, prognostic normative reason-
ing, and planning and execution techniques. Our approach
presents a generic assistant agent framework with which var-
ious applications can be built as discussed in Section 7. As
a proof of concept application, we implemented a coalition
planning assistant agent in a peacekeeping problem domain.

Our approach has several advantages over existing assis-
tant agent approaches. When compared to other decision-
theoretic models, our approach is significantly more scalable
because of the exponential state space reduction discussed in
Section 2. As opposed to assistant agent models where an
agent takes turns with the user, our agent has more flexibility
in its decision making because the agent can execute multiple
plans asynchronously. More importantly, our agent is proac-
tive in that the agent plans ahead of time to satisfy the user’s
forthcoming needs without a delay. Such proactive assistance
is especially an important requirement in time-constrained
real-life environments.

We made a specific assumption that agent variables are
independent from user variables. We will investigate ap-
proaches to relax this assumption. We will also refine the
algorithm for determining a plan’s feasibility in Section 6.1
by estimating expected time required for each action. Further-
more, we plan to extend our approach to work in a multi-user,
multi-agent setting where resolving a norm violation may in-
volve multi-party negotiations. In addition, when there are
more than one assistant agents, newly generated goals can be
shared or traded among the agents. We will address these spe-
cial issues raised in multi-agent settings in our future work.

Acknowledgments Research was sponsored by the Army Re-
search Laboratory and was accomplished under Cooperative Agree-
ment Number W911NF-09-2-0053. The views and conclusions con-
tained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the Army Research Laboratory or the U.S. Govern-
ment. The U.S. Government is authorized to reproduce and dis-
tribute reprints for Government purposes notwithstanding any copy-
right notation hereon.

References
[Boger et al., 2005] J. Boger, P. Poupart, J. Hoey,

C. Boutilier, G. Fernie, and A. Mihailidis. A decision-
theoretic approach to task assistance for persons with
dementia. In Proc. IJCAI, pages 1293–1299, 2005.

[Burstein and McDermott, 1996] Mark H. Burstein and
Drew V. McDermott. Chapter 17 issues in the devel-
opment of human-computer mixed-initiative planning.
In Barbara Gorayska and Jacob L. Mey, editors, Cog-
nitive Technology - In Search of a Humane Interface,
volume 113 of Advances in Psychology, pages 285 – 303.
North-Holland, 1996.

[Fern et al., 2007] A. Fern, S. Natarajan, K. Judah, and
P. Tadepalli. A decision-theoretic model of assistance. In
Proc. of AAAI, 2007.

[Garcı́a-Camino et al., 2009] A. Garcı́a-Camino, J.-A.
Rodrı́guez-Aguilar, C. Sierra, and W. W. Vasconcelos.
Constraint Rule-Based Programming of Norms for Elec-
tronic Institutions. Journal of Autonomous Agents &
Multiagent Systems, 18(1):186–217, February 2009.

[Modgil et al., 2009] Sanjay Modgil, Noura Faci, Felipe
Meneguzzi, Nir Oren, Simon Miles, and Michael Luck. A
framework for monitoring agent-based normative systems.
In Proc. of AAMAS, pages 153–160, 2009.

[Oh et al., 2011] Jean Oh, Felipe Meneguzzi, and Katia
Sycara. Probabilistic plan recognition for intelligent in-
formation assistants. In ICAART, 2011.

[Prakken and Sergot, 1996] Henry Prakken and Marek J.
Sergot. Contrary-to-duty obligations. Studia Logica,
57(1):91–115, 1996.

[Sycara et al., 2010] K. Sycara, T.J. Norman, J.A. Gi-
ampapa, M.J. Kollingbaum, C. Burnett, D. Masato,
M. McCallum, and M.H. Strub. Agent support for policy-
driven collaborative mission planning. The Computer
Journal, 53(5):528–540, 2010.

	Introduction
	Related Work
	Agent Architecture
	Probabilistic Plan Recognition
	Norm Reasoner
	Norm Representation
	Detecting Violations
	Finding the Nearest Compliant State

	Planner and Executor
	Planning
	Execution

	Applications
	Military escort planning in peacekeeping
	Potential applications

	Conclusion and Future Work

