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Av. Ipiranga, 6681, 90619-900, Porto Alegre, RS, Brazil
∗ Email: {juarez.santos, joao.aires.001, roger.granada}@acad.pucrs.br

† Email: {rodrigo.barros, felipe.meneguzzi}@pucrs.br

Abstract—Activity recognition applications is growing in im-
portance due to two key factors: first there is increased need for
more human assistance and surveillance; and second, increased
availability of datasets and improved image recognition algo-
rithms have allowed effective recognition of more sophisticated
activities. In this paper we develop an activity recognition
approach to support visually impaired people that leverages these
advances. Specifically, our approach uses a dataset of videos taken
from the point of view of a guide-dog to train a convolutional
neural-network to recognize the activities taking place around
the camera and provide feedback to a visually impaired human
user. Our experiments show that our trained models surpass the
current state-of-the-art for identifying activities in the doc-centric
activity dataset.

I. INTRODUCTION

Animals use many different senses to orientate themselves,
but humans use primarily vision for ambient orientation. Part
of the process of orientation in humans involve memory used
in the construction of what specialists call mental maps [1].
Mental mapping of spaces is essential for the development of
efficient orientation and mobility. Blind and visually impaired
people lack an important source of information (vision) to
build such mental maps and have to adapt themselves to build
their mental maps using alternative sources of information.
Such alternative sources primarily involve sound and tactile
feedback, which are often used in assistive aids such as tactile
pavements and audible pedestrian crossing [2]. Blind naviga-
tion is a cognitively demanding and often requires conscious
moment-to-moment problem solving [3], and, in environments
where such aids are lacking or non-existent, blind and visually
impaired people have substantial difficulty navigating. One of
the earliest mobile navigation aid used by visually impaired
people is the guide dog [4], however, although guide dogs
help navigate obstacles safely, there are limitations to what a
dog can perceive and communicate to its owner. In this paper,
we develop an approach to use video data from dog-mounted
cameras to provide additional feedback for visually impaired
people, with the ultimate aim of providing a richer source of
information for the construction of mental maps.

With the growth of video content produced by mobile cam-
eras and surveillance systems, an increasing amount of data
is now available and can be used for a variety of applications
besides the application responsible for the original data col-
lection. Specifically, we found a video dataset collected from
dog-mounted cameras originally collected to recognize the
activities being performed by the camera-carrying dog [5]. Our
approach uses this data to recognize the activities performed
by the guide dog as a proxy for aiding the visually impaired
owner and providing audible cues describing the environment
surrounding the guide dog. Activity recognition from video
is a particularly challenging task and state of the art methods
have poor performance with specific data, e.g. videos that have
dynamic background [6]. Since effective aid relies on accu-
rately recognizing the dog’s activity in order to provide correct
feedback for the user, we leverage advances on deep learning
algorithms in general, and Convolutional Neural Networks
(CNNs) [7], [8] in particular, to consistently improve on the
state-of-the-art. Our contribution is twofold. First, we develop
an aid architecture for visually impaired people that translates
recognized activities into audible feedback, enhancing the
amount of information a guide dog can provide. Second, we
train a deep-learning model for activity recognition using dog-
centric data that surpasses the state-of-the-art and obviates the
need for manual feature construction. We empirically evaluate
the resulting model using the DogCentric Activity dataset [5],
and we show that our proposed approach outperforms the
current state-of-the-art method [9] for this particular dataset.

This paper is organized as follows. Section II details our
deep neural models and the implemented support vector
machine for action recognition. Section III describes the
experimental set up including the dataset, its preprocessing and
how we trained the machine-learning algorithms. Section IV
presents a thorough analysis of the experiments assessing
the performance of our proposed approach, and Section V
focuses on the overall architecture of the aid application
we developed using the activity recognition model. Finally,
Section VI compares our work to the state-of-the-art and other
related work, and Section VII finishes the paper with our



conclusions and future work directions.

II. METHOD

Conventional machine-learning techniques are often limited
in their ability to process natural data in their raw form [10].
For decades, constructing machine-learning systems required
considerable domain expertise to create an internal represen-
tation (feature construction [11]) from which the learning
subsystem could detect or classify patterns in the input. Deep
learning techniques such as Convolutional Neural Networks
mitigate this problem by automatically learning complex rep-
resentations from unstructured data such as images, videos and
audio. In recent years, CNNs have been shown to accurately
classify images [12], [13] and videos [14], [15], [16] and a
number of architectures have been proposed [12], [13], [17],
[18].

Since many architectures have been proposed, we believe
that different architectures may identify different features in
images, helping to improve the classification task. In this pa-
per, we use two different architectures in parallel and combine
their output by late fusion of the different networks. Specifi-
cally, we employ the AlexNet and GoogLeNet networks in the
pipeline illustrated by Figure 1. In this pipeline, both networks
receive the same pixel data from an input image and each CNN
extracts features in parallel independently. The architecture
of our approach is similar to two-stream networks [17] but
instead of using optical flow to generate features in one of the
networks, we let each individual network identify different
features, under the assumption that the features generated by
the networks will be complementary.

Fig. 1. Pipeline of our architecture for activity recognition.

Pre-processing: The pre-processing step consists of resizing
images to a fixed resolution of 256×256. Resizing is important
because it reduces the number of features for each image inside
the CNN as well as the processing time.

CNNs: Our architecture has two CNNs that run in parallel.
First is GoogLeNet [18] due to its reduced number of param-
eters generated by inception modules. And the second is a
slightly modified version of AlexNet [12] called CaffeNet [19]
due to its small architecture, which is able to provide a fast
training phase. Although the AlexNet model provided by Caffe
has some small differences from the AlexNet by Krizhevsky
[12], we do not believe our results would be changed by small
architectural and optimization differences. Our version of the

AlexNet contains 8 weight layers including 5 convolutional
layers and 3 fully-connected layers, and 3 max-pooling layers
following the first, second and fifth convolutional layers.
GoogLeNet is a 22-layer deep network and is based on
the inception module that contains convolutional filters with
different sizes, covering different clusters of information. Both
networks receive a sequence of images as input, passing them
through several convolutional layers, pooling layers and fully-
connected layers (FC), ending in a softmax layer that generates
the probability of each image to each class.

Class score fusion: A late fusion combines vectors of
probabilities generated by each CNN by stacking the softmax
output of each CNN. Although other architectures employ
fusion methods such as averaging the probabilities of both
vectors [17], in this work we train a multi-class Support Vector
Machine (SVM) using the stacked L2-normalized softmax
scores as features.

Post-processing: This step intends to reduce noisy predicted
classes and consists of a smoothing pass on the sequence of the
classes. We post-process the output of the SVM by smoothing
this output using a sliding window of fixed size through the
predicted classes assigning to the target frame the majority
voting of all frames within the window. We chose the window
size after several tests using the predicted classes from the
validation dataset and varying the window size from 10 to
50 in 10 frame increments, ultimately choosing a 10-frame
window.

III. EXPERIMENTS

In this section, we describe the dataset used in our experi-
ments for animal activity recognition and the implementation
details used in the CNN models and SVM algorithm.

A. Dataset

The DogCentric Activity dataset1 [5] consists of first-person
videos with outdoor scenes of wearable cameras mounted
on dogs’ back. These kind of videos (first-person videos -
also known as egocentric videos) are very challenging due to
their strong camera motion. The DogCentric Activity dataset
contains dog activities videos in 320×240 resolution (recorded
at 48 frames per second) taken from a egocentric animal
viewpoint. The dataset is divided into 209 videos containing
10 different activities performed by 4 dogs. Not all dogs
perform all activities and an activity can be performed more
than once by the same dog. These activities include move-
ments performed by the dog himself (e.g., running, shaking,
etc.), interactions with people (e.g., petting, feeding, etc.) and
interaction with objects (e.g., waiting for a car to pass by).
Although different dogs do the same activity, their background
varies from residential areas to a sand beach. The 10 target
activities in the dataset include: “waiting for a car to pass by”
(hereafter named Car), “drinking water” (Drink), “feeding”
(Feed), “turning dog’s head to the left” (Left), “turning dog’s
head to the right” (Right), “petting” (Pet), “playing with a ball”

1http://robotics.ait.kyushu-u.ac.jp/∼yumi/db/first dog.html



(Play), “shaking dog’s body by himself” (Shake), “sniffing”
(Sniff ), “walking” (Walk). The dataset is unbalanced according
to the number of frames for each activity and contains 4,920
frames of Car, 3,300 frames of Drink, 3,795 frames of Feed,
1,950 frames of Left, 1,380 frames of Right, 3,740 frames of
Pet, 3,545 frames of Play, 1,880 frames of Shake, 4,960 frames
of Sniff and 4,175 frames of Walk, adding up to 33,645 frames.
Figure 2 illustrates a frame of each activity and the percentage
of each activity in the dataset.

Fig. 2. Example frames of each activity and the percentage of frames for
each activity available in DogCentric Activity dataset.

In order to perform experiments, we divided the dataset into
training, validation, and test sets. We use the validation set to
obtain the model configuration that best fits the training data,
i.e., the configuration with the highest accuracy, and the test
set to assess the accuracy of the selected model in unseen data.
Our method to divide the dataset is similar to the one proposed
by Iwashita et al. [5] and consists of randomly selecting half of
the videos of each activity as test set. In case where the number
of videos (N ) is odd number, we separate (N+1)

2 videos for
test set. The rest of the videos are divided into training and
validation sets. Validation set contains 20% of the videos and
the rest is separated to training set. The complete division
contains 105 videos (17,400 frames) in testing set, 20 videos
(3,205 frames) in validation set and 84 videos (13,040 frames)
in training set.

B. Model Training

We implemented each part of our architecture using dif-
ferent toolkits: we implemented the neural networks using

the Caffe2 framework [19], whereas we used the Crammer
and Singer [20] implementation of the SVM from scikit-
learn3[21]. We trained each model within our architecture
using different strategies. Each CNN was trained using two
different training strategies: fully-training the network from
scratch, and fine-tuning a pre-trained network. We trained the
SVM using each softmax output from train and validation
set of AlexNet[Fine-tuned] and GoogLeNet[Fine-Tuned] networks as
well as a fusion of both.

Fully-trained networks: The fully-trained networks learn
all weights from scratch using the DogCentric Activity dataset
[5]. For both networks GoogLeNet and AlexNet the training
phase uses mini-batch stochastic gradient with momentum
(0.9). For each image we apply a random crop, i.e., a crop in a
random part of the image, generating a sub-image of 224×224.
All images have their pixels subtracted by the mean pixel of all
training images. The activation of each convolution (including
those within the “inception” modules in GoogLeNet) use a
rectified linear unit (ReLU).

In GoogLeNet, each iteration uses a mini-batch with 128
images. Regarding the weight initialization in GoogLeNet,
we employ the Xavier [22] algorithm that automatically de-
termines the value of initialization based on the number of
input neurons. To reduce the chances of overfitting, we apply
dropout on the fully-connected layers with a probability of
80%. The learning rate is set to 3 × 10−4 and we drop it
to 2 × 10−4 every epoch, stopping the training after 2.04k
iterations (20 epochs).

In AlexNet, each iteration contains a mini-batch with 64
images. We initialize weight in AlexNet using the Gaussian
distribution with a standard deviation of 0.01. Similar to
GoogLeNet, we avoid overfitting by applying a dropout with
90% of probability to prone nodes of fully-connected layers.
The learning rate is set to 10−4 and we drop it 5×10−4 every
epoch, stopping the training after 4.08k iterations (20 epochs).

Fine-tuned networks: Our fine-tuned networks
(AlexNet[Fine-tuned] and GoogLeNet[Fine-tuned]) are based
on a fine-tuning process that uses weights from a network
pre-trained on the 1.2-million-image ILSVRC 2012 ImageNet
dataset [23]. More specifically, we use the already-trained
models provided by the Caffe software package [19].

During training phase the network loads the pre-trained
models and updates their weights via backpropagation for all
images of the training set. The network updates all pre-trained
layers with different learning rates, allowing the network to
learn more the specific features of our dataset in the last layers
than the basic features in the first layers.

The configuration of both networks are similar to the
configuration of their fully-trained versions. However in
AlexNet[Fine-tuned] we decrease the global learning rate in 10%
(we set to 10−5) and in the last layer we increase the learning
rate of the weights from 1 to 10 the learning rate of the bias
from 2 to 20. In GoogLeNet[Fine-tuned] we change the dropout to

2http://caffe.berkeleyvision.org/
3http://scikit-learn.org/



70%, decrease the global learning rate to 3×10−5 and increase
the learning rate of the weights from 1 to 10 the learning rate
of the bias from 2 to 20. This configuration allows all layers
to learn, but giving the final layer the capability to learn faster
than the other layers.

SVM: We train the multi-class Support Vector Machine
using the off-the-shelf implementation from scikit-learn
toolbox. We use the linear kernel and default scikit-learn
regularization parameter C = 1 with the square of the hinge
loss as loss function.

IV. RESULTS

In order to evaluate our approach, we compare the predic-
tions of each model using the test set. We use the classification
generated by each model for each class and the accuracy
over all classes to check which models perform better the
classification task. Table I shows the accuracy scores for
each class individually (Car, Drink, Feed, Left, Right, Pet,
Play, Shake, Sniff, Walk) and the global accuracy (All) that
considers all classes at once. The Fused network consists in
the application of late fusion in both AlexNet[Fine-tuned] and
GoogLeNet[Fine-tuned] networks using SVM to generate the final
scores. We combine AlexNet[Fine-tuned] and GoogLeNet[Fine-tuned]

because they achieved a better accuracy when compared with
the fully-trained models (AlexNet and GoogLeNet).

As Table I shows, our Fused+SVM+PP approach (see Fig-
ure 1) obtains the best results for most classes, achieving the
global accuracy (All) of 75.6%. This approach is the result of a
post-processing smoothing over the output of the Fused+SVM
model. For Fused models, we train the SVM using the stacked
softmax outputs from training and validation sets of the fined-
tuned models (AlexNet[Fine-tuned] and GoogLeNet[Fine-tuned]). We
perform the testing using the stacked softmax outputs from test
set of the same models. For Fine-tuned models, we train the
SVM with the softmax output from training and validation sets
of each model.

Classes containing small number of frames such as Left (6%
of total frames), Right (4% of total frames) and Shake (6%
of total frames) achieved low accuracy scores for all models.
Another reasonable explanation is that the frames of these
classes are too similar to frames of other classes. For example,
in classes Right and Left there are some frames before the dog
turn the head to the right that are very similar to frames of
the class Walk.

Our networks trained from scratch (AlexNet and
GoogLeNet) achieved the lowest accuracy scores for most
of the results when compared to their fine-tuned versions.
These networks seems to be somehow complementary since
AlexNet achieved better results than GoogLeNet for 4 out of
9 (both networks achieved the same accuracy for Shake) and
GoogLeNet achieved better results than AlexNet for 5 out of
9. These split results indicate that the networks may identify
different features of each class. Fine tuning our networks
improved results for most classes. Using SVM after the
fine-tuned network in order to classify frames increased even
more the accuracy scores.

Observing that our networks may identify different features
in the same image, we decide to fuse both networks using
a late fusion method. As using SVM usually achieves better
results than the fine-tuned versions without SVM, we perform
the late fusion stacking the softmax scores of both networks
and classifying them using SVM. This process (Fuse+SVM)
obtained better results for most classes (Right has the best
accuracy using the fully-trained AlexNet network) and the best
accuracy over all classes when compared with the fully-trained
and fine-tuned versions. A reason that the Right class do not
achieved a good result for the Fused network is that both fine-
tuned versions achieved low scores for the class.

Fig. 3. Temporal representation of the frame sequence for all classes in
DogCentric Activity dataset.

Since the process of identifying actions occurs frame by
frame instead of the entire video, sometimes the misclas-
sification of a small number of frames of an activity may
occur. Observing the output of the Fused method for each
class (Figure 3 – Predicted labels bar) we can see a lot of
noisy predicted labels, i.e., few labels that are classified by
the network in the middle of a group of frames with another
label. As an activity would not occur in a single frame or
in a small number of frames, we believe that a frame in the
middle of a sequence of 10 frames that contains a different
class suggests that the frame was misclassified. Thus, we apply
a post processing on the predicted labels in order to smooth
labels removing the misclassified ones. Figure 3 illustrates the
sequence of frames in a timeline with their corresponding true
label (lowest bar) predicted label (middle bar) and predicted
label after the smoothing process (highest bar). In each bar,
classes are represented by colored vertical lines in a temporal
sequence that are described in the legend. In Zoom (a) and
Zoom (b) we can see in the same part of the frame sequence
how the post processing eliminates noisy labels. Observing
the results in Table I we can see that after the post-processing
the accuracy increased for most classes and for the overall



TABLE I
PER-ACTIVITY ACCURACY IN THE DOGCENTRIC ACTIVITY DATASET FOR ALL BASELINES AND FUSION METHODS.

Network Car Drink Feed Left Right Pet Play Shake Sniff Walk All

AlexNet 0.289 0.212 0.070 0.070 0.044 0.179 0.004 0.000 0.221 0.021 0.267
GoogLeNet 0.401 0.170 0.218 0.002 0.042 0.143 0.142 0.000 0.239 0.033 0.320
AlexNet[Fine-tuned] 0.858 0.404 0.315 0.012 0.000 0.395 0.294 0.161 0.453 0.224 0.526
AlexNet[Fine-tuned] + SVM 0.876 0.497 0.419 0.052 0.000 0.539 0.327 0.188 0.565 0.415 0.618
GoogLeNet[Fine-tuned] 0.756 0.496 0.462 0.144 0.022 0.542 0.364 0.053 0.507 0.207 0.571
GoogLeNet[Fine-tuned] + SVM 0.799 0.524 0.486 0.202 0.002 0.573 0.395 0.097 0.596 0.379 0.634
Fused + SVM 0.895 0.541 0.517 0.254 0.032 0.634 0.412 0.179 0.629 0.474 0.682
Fused + SVM + PP 0.914 0.545 0.636 0.114 0.000 0.653 0.436 0.099 0.911 0.625 0.756

accuracy. Zoom (b) in Figure 3 illustrates when a few noisy
incorrectly classified labels are replaced by the correct class
(Play). On the other hand, the smoothing process eliminates
few correctly predicted classes when they are in the middle
of other classes. For example, Zoom (a) in Figure 3 shows
that few frames are correctly classified as Left activity. When
applying the post-processing, the smoothing process replaces
these few correctly classified frames to other activities such
as Drink, Play or Feed. As observed before, classes with the
lowest number of frames tend to be misclassified, and thus,
the post processing fails when smoothing these classes. For
example, the class Right contains 4% of the frames in the
dataset and our Fused network identified a small portion of
the correct frames. This small portion of the correct frames
is sparse and the post-processing replaces all these correctly
predicted labels by incorrect but most frequent labels.

Using the output of the fused networks (Fused+SVM) we
perform an analysis to see how predicted classes are classified
in relation to the true classes. We decide to use the output
of the Fused+SVM networks instead of the Fused+SVM+PP
because it is more interesting to observe the classification
predicted by the network instead of its smoothed results.
In order to perform this analysis we generate a normalized
confusion matrix, depicted in Figure 4 that shows the effect
of the fused networks, where rows represent the true classes
and columns the predicted classes. Shades of blue represent the
value in each cell, going chromatically from a darker blue for
higher values to a lighter blue for lower values. The confusion
matrix shows normalized values, predicted values are divided
by the total number of true values for each cell. Observing the
confusion matrix we can approximate the precision and recall
value of each class.

Observing Figure 4, we can see that the network predicts
few frames to the class Right. Other classes predicted as Right
include Shake and Walk, indicating that some frames of these
classes may be similar to the frames of the class Right. Usually
the network classify wrongly the true class Right by the class
Walk, indicating that features of these classes in particular
may be very similar. The class Car is very dissimilar to the
other classes showing a dark shade of blue in the matrix,
having almost all frames correctly classified, which indicates a
high precision score. The high classification score of the class
Car is reasonable since its scenario is usually different from
the scenario of the other classes. On the other hand, some

Fig. 4. Normalized confusion matrix for our Fused+SVM network.

frames of the true class Pet are misclassified as Car, which
decreases its recall. Other classes, such as Shake and Play are
misclassified by other classes such as Feed, Left and Right.
Our network sometimes wrongly classify the class Drink as
the class Play. This error may be reasonable because in many
frames from the class Play the dog is playing with the ball
and the camera is recording the floor, as it occurs when the
dog is drinking water.

Since classification accuracy takes into account only the
proportion of correct results that a classifier achieves, it is not
suitable for unbalanced datasets as it may be biased towards
classes with larger number of examples. By analyzing the
DogCentric Activity dataset in Figure 2, we note that it is
indeed unbalanced, i.e., classes are not equally distributed
over frames. For dealing with the unbalanced nature of the
dataset, we measure the performance of the fusion method
based on Precision (P ), Recall (R) and F-Measure (F ) scores.
Calculating such scores for all classes, our network achieves
the highest precision scores for Drink, Car and Pet, the highest
recall scores for Car, Sniff and Play, and the highest F-
measure are obtained by Car, Pet and Sniff classes. Table II
shows Precision, Recall and F-measure scores for all classes
and the overall (All) scores. As illustrated in Figure 4, the Right



class has the lowest precision, recall and F-measure scores.

TABLE II
PRECISION, RECALL AND F-MEASURE FOR EACH ACTIVITY OF THE

DOGCENTRIC ACTIVITY DATASET USING OUR FUSED NETWORK
(Fused+SVM).

Activity Precision Recall F-measure

Car 0.92 0.97 0.94
Drink 0.93 0.57 0.70
Feed 0.72 0.65 0.68
Left 0.41 0.40 0.41
Right 0.11 0.04 0.06
Pet 0.85 0.72 0.78
Play 0.47 0.77 0.58
Shake 0.32 0.29 0.30
Sniff 0.71 0.84 0.77
Walk 0.64 0.64 0.64

All 0.69 0.68 0.69

We calculate the values of Precision, Recall, F-measure,
and Accuracy for all networks developed in our work and
compare them with the existing work. In order to compare
our results with the current state-of-the-art in the DogCentric
Activity dataset, we add in Table III the results achieved by
Iwashita et al. [5] and by Ryoo et al. [9]. We compare our
results with 4 approaches performed by Iwashita et al. [5]
namely Linear kernel, RBF kernel, Histogram intersection and
Multi-channel, and with 3 approaches performed by Ryoo et
al. [9] namely PoT+STIP+Cuboid, PoT+ITF+STIP+Cuboid
and PoT+ITF, where RBF Kernel denotes the Radial Basis
Function Kernel, PoT stands for Pooled Times series, STIP
means Space Time Interest Point, and ITF stands for Improved
Trajectory Features. We only compare our networks in terms of
Accuracy with the state-of-the-art because the other authors do
not provide Precision, Recall and F-measure results. Our fused
model without post processing (Fused+SVM) achieves higher
accuracy (63.4%) than models proposed by Iwashita et al. [5].
Their highest score is obtained by a multi-channel model with
a global accuracy of 60.5%. Approaches proposed by Ryoo et
al. [9] overcome our fused model, with an accuracy higher
than 70%. On the other hand, our fused model with post-
processing (Fused+SVM+PP) overcomes the current state-
of-the-art approach that uses a combination of two feature
representations, namely Pooled Time series and Improved
Trajectory Features and achieves an accuracy of 74.5% [9].

V. APPLICATION

In this work we develop an application that translates
recognized activities into audible feedback in order to help vi-
sually impaired people. This application intends to enhance the
amount of information a guide dog can provide as feedback,
helping the construction of mental maps in visually impaired
people. Our application receives a sequence of frames from a

TABLE III
PRECISION, RECALL, F-MEASURE, AND ACCURACY FOR ALL BASELINES,
FUSION METHODS AND THE CURRENT STATE-OF-THE-ART APPROACH FOR

THE DOGCENTRIC ACTIVITY DATASET.

Approach Precision Recall F-measure Accuracy

Linear kernel [5] - - - 0.526
RBF kernel [5] - - - 0.542
Histogram intersection [5] - - - 0.573
Multi-channel [5] - - - 0.605
PoT+STIP+Cuboid [9] - - - 0.731
PoT+ITF+STIP+Cuboid [9] - - - 0.741
PoT+ITF [9] - - - 0.745
AlexNet 0.260 0.270 0.265 0.267
GoogLeNet 0.340 0.320 0.330 0.320
AlexNet[Fine-tuned] 0.550 0.530 0.540 0.526
AlexNet[Fine-tuned] + SVM 0.620 0.620 0.620 0.618
GoogLeNet[Fine-tuned] 0.600 0.570 0.585 0.571
GoogLeNet[Fine-tuned] + SVM 0.640 0.630 0.635 0.634
Fused+SVM 0.690 0.680 0.685 0.682
Fused+SVM+PP 0.740 0.760 0.750 0.756

camera and translates the identified activities into sound feed-
back. Figure 5 illustrates the architecture of our application,
where AlexNet and GoogLeNet are our trained networks that
are fused in SVM. Audio generation receives the predicted
class for the current frame and generates its corresponding
phrase in output. The user receives a new sound (a new phrase)
only when the SVM yields a different predicted class, avoiding
the continuous reproduction of the same phrase.

We test our application using the DogCentric Activity
dataset [5] since it contains video data from dog-mounted
camera. As some activities of DogCentric Activity dataset may
not interest the user, such as “The dog is looking left” or “The
dog is shaking”, we decide to create phrases for 5 out of the
10 classes. We record audio feedback for each class of interest
(Car, Drink Feed, Pet and Sniff ), and thus, the user receives an
audio feedback every time a different class is predicted in the
video. Below we set classes in bold and their corresponding
sentences we created to describe the activity.

• Car: There is a car on your way.
• Drink: The dog is drinking.
• Feed: The dog is being fed.
• Pet: The dog is being petted.
• Sniff: The dog is now sniffing something.

Figure 6 depicts two screens of our application when
running to detect the classes Pet (a) and Car. In order to

Fig. 5. Architecture of the application that translated activities identified in
frame sequences into audible feedback.



Fig. 6. Demo of the application for Pet and Car activities.

provide a visual feedback we print the sound phrase on the
screen while yielding the feedback. Thus, when the application
detect someone petting the dog, it yields the phrase “The dog
is being petted” (a) and when a car appears on the video, the
application yields the phrase “There is a car on your way”.

VI. RELATED WORK

The increasing availability of wearable devices such as
cameras, Google Glass4, Microsoft SenseCam5, etc. facilitates
the low-cost acquisition of rich activity data. In recent years,
this increase of available egocentric data have attracted a lot
of attention in the computer vision community. The first-
person point-of-view is very popular in the study of daily
activities [9], [24]. For instance, Hsieh et al. [24] performs
activity recognition using multiple representations such as
objects manipulated by a user, the motion pattern of the
hands, background contexts, etc.. In order to perform activity
recognition they use the ADL+ dataset that contains video and
wrist-worn accelerometer data of people performing activities
of daily living. A model mixing object features representing
what is in the scene, scene features describing where the
subject is, and motion features indicating how the subjects
interact with the objects is developed.

Ma et al. [25] propose a method that uses twin-stream
networks, one to capture the appearance of the objects such as
hand regions and objects attributes, and the other to capture
motion such as local hand movements and global head motion
using stacked optical flow fields as input. The appearance-
based stream is trained using the hand segmentation, focusing
on certain regions of the image near the hand, and with object
images cropped based on hand location to identify objects of
manipulation. The stream intends to encode features such as
hand-object configurations and object attributes. The motion-
based stream is trained to differentiate between action labels
using as input a stack of optical-flow motion fields. A late
fusion method [17] joins both networks. Their experiments
use GTEA [26] and Gaze [27] datasets.

Other work focus on recognizing activities not only using
wearable cameras attached to a person, but also to an animals,

4https://www.google.com/glass/start/
5http://research.microsoft.com/en-us/um/cambridge/projects/sensecam/

also called first-person animal activity recognition. Iwashita
et al. [5] perform the activity recognition extracting global
and local features from the DogCentric Activity dataset. More
specifically, they extract global features from dense optical
flow [28] and binary pattern [29], and local features from a
cuboid feature detector [30] and STIP detector [31]. Using
these hand-crafted features they achieve the highest classifica-
tion accuracy of 60.5%.

Ryoo et al. [9] develop a new feature representation named
pooled time series (PoT). PoT intends to capture motion
information in first-person videos applying time series pooling
of feature descriptors, detecting short-term/long-term changes
in each descriptor element. Their approach first extracts ap-
pearance/motion descriptors from a sequence of frames and
represents them as a set of time series. A time series represents
how each element of a descriptor is changing over time.
Temporal pooling is applied on each time series in order to
summarize the information represented in a sequence of video
frames. The system applies multiple pooling operations and
the results are concatenated to form the final feature vector
that better represents the video. Finally, activity recognition is
performed by training and testing a Support Vector Machine
(SVM) classifier using these vectors. This approach achieves
74% of accuracy when combined with INRIA’s improved
trajectory feature (ITF) [32] using the DogCentric Activity
dataset [5].

VII. CONCLUSIONS AND FUTURE WORK

In this work, we developed a novel architecture for dog-
centric activity recognition based on two convolutional neural
networks and a late fusion method. The pipeline of the archi-
tecture includes training two deep convolutional neural net-
works in parallel to extract features from images and by a late
fusion process classify unseen images. Using frame sequences
from the DogCentric Activity dataset, we perform experiments
showing that the convolutional networks can indeed learn
high-level relevant features for the activity recognition task.
Experiments show that our approach that employs the late
fusion of two CNNs achieves better results when compared
with the current state-of-the-art.

In addition to the developed models and fusion methods,
we suggest an application that could support visually impaired
people in their orientation and mobility skills. Our approach
shows that it is possible to use the CNNs classification in
applications to support people in their tasks.

As future work, we intend to augment our dataset us-
ing hand-crafted features such as histogram of optical flow
(HOF), histogram of gradients (HOG), motion boundary his-
tory (MBH) and dense trajectories to extract more features
from unbalanced data. Along with the current images, all these
features feed the deep convolutional neural networks intending
to reduce errors due to the small size of our dataset. We plan
to employ deep learning architectures that take into account
the temporal dimension, such as Long-Short Term Memory
networks (LSTM) [33] and 3D CNNs [14] considering that
they are capable of encoding temporal features.



Future work includes the creation of a more realistic dataset
where each video may contain a sequence of activities instead
of a single activity. Finally, we intend to test our application
with visually impaired users and relate their feedback about
the effectiveness of our approach.
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