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Abstract—Recent approaches to goal recognition have progres-
sively relaxed the requirements about the amount of domain
knowledge and available observations, yielding accurate and
efficient algorithms. These approaches, however, assume that
there is a domain expert capable of building complete and correct
domain knowledge to successfully recognize an agent’s goal. This
is too strong for most real-world applications. We overcome
these limitations by combining goal recognition techniques from
automated planning, and deep autoencoders to carry out unsu-
pervised learning to generate domain theories from data streams
and use the resulting domain theories to deal with incomplete and
noisy observations. We show the effectiveness of the technique in
a number of domains and compare the recognition effectiveness
of the autoencoded against hand-coded versions of these domains.

I. INTRODUCTION

Goal and plan recognition refer to the tasks of identifying,
respectively, the desired goal towards which an observed agent
intends to achieve, and the specific plan to which the agent
has committed to executing to achieve said goal. Although the
first approaches to plan recognition based on planning theories
required a substantial amount of domain knowledge [1], subse-
quent approaches have gradually relaxed such requirements ei-
ther by using more expressive planning and plan-library based
formalisms [2]–[5] as well as allowing for different levels of
accuracy and amount of information available in observations
required to recognize goals [6]–[9]. However, regardless of
the type of domain model formalism describing the observed
agent’s behavior, all such approaches assume that a human
domain engineer can provide an accurate and complete domain
model for the plan recognition algorithm. Such dependence
on a human domain engineer severely limits the applicability
of modern plan and goal recognition algorithms to abstracted
domains rather than real-world ones.

In this paper, we overcome the dependence on human
domain engineers for goal recognition by automatically build-
ing planning domain knowledge from raw data and using
the resulting model in an algorithm capable of recognizing
an agent’s goal from the same type of raw data. To auto-
matically generate such domain knowledge, in Section III
we employ a variational autoencoder (VAE) [10] to map
from raw data (in this paper, images) into a latent space
representing logical fluents, and, using such fluents, we derive
a PDDL [11] action library over which we can reason using

planning techniques [12]. Specifically, in Section IV we extend
landmark-based goal recognition techniques [9] to infer goals
from the encoded raw data and use the decoder part of the
variational autoencoder to visualize the plan steps expected of
the observed agent. Our main contribution, thus, is a novel
goal recognition mechanism that combines deep-learning and
heuristic planning techniques to obviate the need for accurate
domain engineered planning domains. This allows modern
goal recognition algorithms to work directly on real-world
data, rather than rely on additional processing of such data
into a symbolic representation. We evaluate our technique in
Section V on a dataset consisting of domains from earlier work
on planning in latent space [12] as well as images we generate
automatically from domains from standard planning bench-
marks. Our results show that our domain autoencoding scheme
approximates the encoding of ground versions of hand-coded
planning domains and allow recognition accuracies that, in
the best case matches and in the worst case is within 33%
of hand-coded goal recognition domains. Finally, we compare
our contribution to recent work in Section VI and conclude
the paper pointing towards further research in Section VII.

II. BACKGROUND

A. Goal Recognition

Goal recognition is the task of recognizing the goal being
pursued by a rational (software or human) agent from ob-
servations of its acting in the environment. The observations
collected from the environment can be either a sequence of
actions performed by the agent, or the consequences thereof
— such sequences can be either seen in full or a partial
subsequence of the actions performed by the agent. Plan
recognition is a related task to goal recognition, but whose
object is not only recognizing the goal of the agent being
observed, but also inferring the upcoming actions the agent
will take towards such goal [13,14]. Goal and plan recognition
in real-world data assume an underlying processing step that
translates raw sensor data into some kind of symbolic rep-
resentation [15], as well as a model of the observed agent’s
behavior generation mechanism. Most goal and plan recogni-
tion approaches [2,16,17] employ plan libraries to represent
agent behavior (i.e., a library that describes all plans for
achieving goals), and plan recognition techniques which use
such libraries are analogous to parsing.



Recent work uses classical planning domain definitions to
represent potential agent behavior bring goal and plan recog-
nition closer to automated planning [6]–[9,18]–[20]. These
approaches — which do not use plan libraries — show that
automated planning techniques can be used to efficiently
recognize goals and plans. In many domains where goal
and plan recognition are important (e.g., smart environments,
user monitoring and crime detection), plan libraries may be
unavailable, making this second class of approaches important.

Approaches that use STRIPS-style [21] domain encodings
are often known as plan recognition as planning (PRAP)
because they use planning domains to generate hypotheses
of possible plans consistent with observations [18]. While
most approaches for this kind of plan recognition have se-
rious scalability issues, recent work on plan recognition as
planning have solved this issue [9] by using landmark-based
heuristics [22] to efficiently process observations without the
need to call a planner multiple times. Planning landmarks are
necessary facts or actions in plans that achieve a particular
goal from an initial, and which can be used to discriminate
observations from plans towards different goals. Our recent
work has developed heuristics and efficient algorithms to use
landmark information to rank goal hypotheses in time linear
with the number of observations.

Formally, we model planning domains of the agents being
observed as following a STRIPS [21] domain model D =
〈R,O〉, where: R is a set of predicates with typed variables.
Such predicates can be associated to objects in a concrete
problem (i.e. grounded) representing binary facts. Grounded
predicates represent logical values according to some inter-
pretation as facts, which are divided into two types: positive
and negated facts, as well as constants for truth (>) and
falsehood (⊥). The set F of positive facts induces the state-
space of a planning problem, which consists of the power set
P(F) of such facts, and the representation of individual states
S ∈ P(F). O is a set of operators op = 〈pre(op), eff (op)〉,
where eff (op) can be divided into positive effects eff +(op)
(the add list) and negative effects eff −(op) (the delete list).
An operator op with all variables bound is called an action
and the collection of all actions instantiated for a specific
problem induces a state transition function γ(S, a) 7→ P(F)
that generates a new state from the application of an action to
the current state. An action a instantiated from an operator op
is applicable to a state S iff S |= pre(a) and results in a new
state S′ such that S′ ← (S ∪ eff +(a))/eff −(a).

A planning problem within D and a set of typed objects
Z is defined as P = 〈F ,A, I, G〉, where: F is a set of
facts (instantiated predicates from R and Z); A is a set
of instantiated actions from O and Z; I is the initial state
(I ⊆ F); and G is a partially specified goal state, which
represents a desired state to be achieved. A plan π for a
planning problem P is a sequence of actions 〈a1, a2, ..., an〉
that modifies the initial state I into a state S |= G in which the
goal state G holds by the successive execution of actions in a
plan π. Modern planners use the Planning Domain Definition
Language (PDDL) as a standardized domain and problem

Fig. 1: Autoencoder represented as an input X , output X̂ and
a hidden layer (latent layer) h.

representation medium [11], which encodes the formalism
described thus far.

Bringing this all together, a goal recognition problem is a
tuple PGR = 〈D,F , I,G, O〉, where D is a planning domain;
F is the set of facts; I ⊆ F is an initial state; G is the set
of possible goals, which include a correct hidden goal G∗

(i.e., G∗ ∈ G); and O = 〈o1, o2, ..., on〉 is an observation
sequence of executed actions, with each observation oi ∈ A,
and the corresponding action being part of a valid plan π
that sequentially transforms I into G∗. The solution for a
goal recognition problem is the correct hidden goal G ∈ G
that the observation sequence O of a plan execution achieves.
An observation sequence O contains actions that represent an
optimal or sub-optimal plan that achieves a correct hidden
goal, and this observation sequence can be full or partial.
A full observation sequence represents the whole plan that
achieves the hidden goal, i.e., 100% of the actions having
been observed. A partial observation sequence represents a
subsequence of the plan for the hidden goal, such that a certain
percentage of the actions actually executed to achieve G∗

could not be executed.

B. Neural Networks and Unsupervised Autoencoding

An autoencoder (AE) [23] is a neural network trained
to encode an arbitrary input into an n-dimensional vector
representation that can be decoded reproducing the exact
input as the output of the entire network. In other words,
training an autoencoder consists of learning from unlabeled
data an approximation to the identity function, where the
generated output X̂ is similar to the input X [24]. Internally,
an autoencoder consists of two parts: an encoder function
h = f(x) that maps the input through multiple layers to a
specific hidden layer h, that encodes a latent representation
(L) of the input, and a decoder that produces a reconstruction
r = g(h), as illustrated in Figure 1. Since autoencoders
are designed to be unable to copy perfectly the input, they
have to learn useful properties that resembles the training
data. The purpose of an autoencoder is to constrain the latent
layer h to a smaller dimension than the input X , forcing the
autoencoder to learn the most salient features of the training
data. In fact, the autoencoder often learns a low-dimensional
representation very similar to Principal Component Analysis
(PCA). Unlike PCA, autoencoders that contain nonlinear en-
coder and decoder functions can learn more powerful nonlinear
generalizations [23].



State Autoencoder (SAE) is a special type of autoencoder
which learns bidirectional mapping between raw data and
propositional states. In this work, the encode function maps
images to propositional states, i.e., a symbolic representation
as latent space vectors, and the decode function maps the
propositional states back to images. In order to create a
SAE as a Gumbel-Softmax Variational Autoencoder [12], a
Gumbel-Softmax activation [25] is used in the latent layer
of a Variational Autoencoder (VAE) [26]. VAE is a version
of autoencoder that impose additional constraints on the en-
coded representations (latent layer). Instead of learning an
arbitrary function to encode and decode the input data, VAE
learns the parameters following a probability distribution of
the data, such as Gaussian. Since the distribution has to be
differentiable to the application of backpropagation, VAEs use
a reparametrization trick. In SAE, Gumbel-Softmax performs
the reparametrization trick for categorical distribution by
approximating the Gumbel-Max [27]. Thus, a one-hot vector
z is generated for each class as

zi = Softmax
(
gi + log πi

τ

)
(1)

where gi is independent and identically distributed samples
drawn from Gumbel(0, 1) [28], π is the class probability vector
and τ is the “temperature” that controls the magnitude of
approximation, which is annealed to 0 by a certain schedule.
Thus, the output of the Gumbel-Softmax converges to a
discrete one-hot vector when τ ≈ 0.

III. PLANNING IN LATENT SPACE

Planning algorithms are based on the factored transition
function γ(S, a) that represents states as discrete facts. This
transition function is traditionally encoded manually by a
domain expert, and virtually all existing plan recognition
approaches require varying degrees of domain knowledge in
order to recognize observations [9]. Automatically generating
such domain knowledge involves at least two processes: con-
verting real-world data into a factored representation (i.e. the
predicates in R); and generating a transition function (i.e. the
set of operators O) from traces of the factored representation.
Although a few approaches have tackled the challenge of
applying learning to models of transition functions [29], almost
no approaches have addressed the problem of generating
domain models from real world data. A recent approach
to planning generates domain models from images of the
visualization of the state of simple games and problems,
such as the sliding blocks puzzle or towers of Hanoi [12].
This approach uses an auto-encoder [30] neural network to
automatically generate two functions with regard to an input
image X and a latent representation L: an encoder φ : X 7→ L
and a decoder ψ : L 7→ X . In this specific case, the input
is a d-dimensional image Rd and the output is an n × m
matrix Rn×m representing n categorical variables each of
which with m categories. When m is two, the output of
this autoencoder corresponds to binary variables that can be
interpreted as propositional logic symbols comprising the F

Fig. 2: Image goal recognition problem.

component of a planning domain (without the intermediary
step of the generating the set R of predicates).

The resulting representation in latent space is amenable
to automatically inducing a transition function γ from pairs
of states under the assumption that state transitions corre-
spond exactly to pairs of consecutive images in the observed
traces. Under this assumption, they generate a large number
of propositional actions representing changes between these
images as add and delete effects of STRIPS-style actions. The
resulting domain representation encodes in latent-space the
propositional features from the images. LatPlanα is a heuristic-
based forward-search planner [12] that uses this representation
to plan solutions for problems derived from images of the
initial and target state using the encoded domains. Preliminary
experimentation with LatPlanα [12] shows that heuristics from
the planning literature [31, Chapter 3] are still applicable,
however, given the propositional nature of the encoding, they
are not as informative. Such lack of informativeness provides
a challenge to the application of heuristics for goal and plan
recognition [8,9,32], especially those based on landmarks.
As we see in Section IV, in order to successfully employ
efficient goal recognition approaches, we need to not only
learn a consistent latent representation of states, but also use
the propositional transition function induced from state pairs
to generate STRIPS-style operators.

IV. GOAL RECOGNITION IN LATENT SPACE

In this section we propose an approach capable of apply-
ing different goal recognition techniques in image domains.
Figure 2, illustrates the problem of goal recognition using
images, in this case we want to infer which is the correct
image configuration that the agent is trying to achieve from
the set of candidate goals using only observations consisting
of intermediate image configurations. As we can see, inferring
the correct goal from such domain is not a trivial task when
a small number observations are provided.

To recognize goals in image based domains, there are 4
milestones we must achieve. First, we must train an autoen-
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Fig. 3: Autoencoder architecture.

coder capable of creating a latent representation to a state
of such image domain. Second, we derive a PDDL domain
using Algorithm 1, by extracting the transitions of such domain
when encoded in latent space, obtaining a domain D . Third,
we must convert to a latent representation a set of images
representing, the initial state I, the set of facts F and a set
of possible goals G, where the hidden goal G∗ is included.
Finally, we can apply goal recognition techniques using the
computed tuple 〈D,F , I,G, O〉

We create the encoded representation of the image states
using an autoencoder adapted from Asai and Fukunaga [12],
and which has the architecture illustrated in Figure 3. The
input to the network are 42x42 single channel (black and
white) images, which correspond to the visual representation
of problems in our experimental domains. The encoder part
consists of three layers: two 2D convolution layers [33] using
a 3x3 filter in both of them, followed by a fully connected
layer with 72 nodes, using rectified linear unit (ReLU) acti-
vation [34]. Prior to the first convolutional layer, we add 0.4
Gaussian noise, as well as a 0.4 dropout rate after the two
convolutional layers. The fully connected layer connects to
a 6x6 (36 nodes) latent layer, using Gumbel Softmax [25]
activation. This layer generates the latent representation of the
image, which we use to infer the planning domain. We use
the latent layer with a size of 36 bits in order to represent
the entire state space of all problems in our experimental
domains. The decoder part of the network consists of two
fully connected layers using ReLU activation, connected to
the output of the latent layer. We also add a 0.4 dropout rate
after each fully connected layer of the decoder. Finally, the
decoder reconstructs the input image using an output layer
with the same size as the input layer.

Our approach requires us to create one distinct autoencoder
for each domain and train each of them with pre-processed
images sampled from the domain. We trained the autoencoder
with 20000 distinct states as images from each domain.
We pre-processed the images before training by applying a
grayscale filter and then binarizing the resulting images with a
threshold of 0.4. Training took 150 epochs, with a 0.1 learning
rate and a batch size of 1000 samples.

Having trained an autoencoder for each domain, we must
derive a PDDL domain representation. A PDDL domain
consists of multiple actions that can be performed in the

Fig. 4: PDDL domain generation.

Algorithm 1 Learn actions of a PDDL domain
Require: Set of transitions T

1: function ACTION-LEARNER(T )
2: E ← 〈〉 . Map of candidate actions
3: A← 〈〉 . Set of generated actions
4: for all (s, s′) ∈ T do
5: eff ← XORE(s, s

′)
6: E(eff )← E(eff ) ∪ s

7: for all eff ∈ E do
8: pre ← ∅ . Derived pre-condition
9: for all s ∈ E(eff ) do

10: pre ← XNORP (pre, s)

11: A← A ∪ 〈pre, eff 〉
12: return A

domain at specific situations encoded in their pre-conditions,
and transition the environment by changing the state of bi-
nary variables representing such environment. To extract such
actions, we create a list containing all possible transitions
of a domain. These transitions map which binary variables
change as the observed agent executes actions in the domain
environment. We encode these transitions using the latent
representation containing 72 bits divided into two blocks of
36 bits representing, respectively, the previous state and the
state resulting from applying the action. We generated this
latent representation of the transitions by seeding two images
(the state s before the action and the next state s′, after the
action) and encoding both using the respective autoencoder.
Using this set of encoded transitions we derive a set of PDDL
actions by performing a bit-wise comparison on both states
of a transition to compute the changes between state s and
s′ using Algorithm 1. We perform a modified XOR operation
on both states to compute the effect of each transition, and
call this operation XORE standing for Effect XOR in Line 5.
The difference of this operation is that the output is 1 for
positive effects (i.e. when a bit has 0 in s and 1 in s′) and
-1 for negative effects (i.e. when a bit has 1 in s and 0 in
s′) to distinguish between these two types of effect. XORE

allows to group transitions that change the same set of bits into
a set of candidate actions, which we further differentiate by
inferring their pre-conditions. To compute the precondition of
candidate actions, we use a variation of the XNOR operator,
which we call XNORP standing for Precondition XNOR, in
Line 10. The XNORP operation aims to distinguish, from the
grouped action candidates, which ones share the exact same bit
configuration in s, i.e. which bits in do not change between
the preconditions of a set of candidate actions. The idea is
that if a bit has the same value through all states s of every



TABLE I: Effect XOR and Precondition XNOR operators.

A B XORE XNORP
0 0 0 -1
0 1 1 0
1 0 -1 0
1 1 0 1

transition in this group of transitions with the same effect, it
must be a necessary predicate to execute this action (Lines 9–
11). Similar to our XORE operation XNORP uses 1 to
represent positive preconditions and −1 to represent negative
preconditions. The behavior of both XORE and XNORP

is summarized in Table I. With this process, we compute all
the elements of a PDDL action, and call this process Action
Learner, as illustrated in Figure 4. Using the Action Learner
we can output a PDDL domain with a compressed number
of actions. Finally, to be able to plan using this computed
domain, we must have a planning problem. We compute a
planning problem by seeding an image that is the initial state
and an image that is the desired state (goal).

Having computed a planning problem and derived a PDDL
domain, we must now setup a goal recognition problem. Fol-
lowing Section II-A, we represent a goal recognition problem
by the tuple PGR = 〈D,F , I,G, O〉. We already computed
the domain D in Algorithm 1, and the facts F represented
by the 36 bits in latent space representation. We compute
the initial state I, a set of candidate goals G, and finally a
set of observations O. To compute I and the set of goals G,
we use the image representations of these states and convert
them to latent representation. To derive the observations O,
we take pairs of images representing of the environment.
These images are encoded to the latent representation, and
then by using the PDDL domain we extracted, we compute
which action from the PDDL domain was responsible for such
state transition. After building a goal recognition problem, we
can now apply off-the-shelf goal recognition techniques, such
as [7,9,18,19]. The output of such techniques is the goal with
highest probability of being the correct one, in the latent space
representation. We then decode the inferred goal, obtaining
its image representation using the decoder. This process is
illustrated in Figure 5.

V. EXPERIMENTS

A. Datasets

In order to evaluate our approach to goal recognition, we
generated a number of image-based datasets based on existing
goal recognition problems [12,35]. We have two main experi-
mental objectives: first, we want to compare the performance
of goal recognition approaches using domain knowledge built
by hand with that of automatically-learned domain knowledge;
second, we want to evaluate the performance of various
approaches to goal recognition using the automatically-learned
domain knowledge. Our evaluation dataset thus consists of a
number of goal recognition problems generated by taking the
generated PDDL domains and an image that serves as both
the initial state of the problem I, and the starting point from

Fig. 5: Plan recognition process.

which we generate a trace of images that correspond to the
steps of a plan to achieve a goal. In order to generate such
traces, we use a standard PDDL planner [36] to search for a
plan for a set of randomly generated goals.From the resulting
traces, we can generate the observations at various levels of
observability by omitting the states resulting from a percentage
of the actions generated by the planner.

Using this method to produce experimental datasets, we
generated PDDL domains and images for six different datasets:
• three variations of the 8-Puzzle, whose goal to order a

set of pieces when you can only move the blank space:
– the MNIST 8-puzzle uses the handwritten digits from

the MNIST dataset as the pieces of the puzzle, with the
number 0 representing the blank space, as illustrated in
Figure 6a—every image of the dataset uses the same
handwritten digit for every repeating number;

– the Mandrill 8-puzzle uses the image of a Mandrill,
shown in Figure 6b—we use the mandrill’s right eye
as the blank space;

– the Spider 8-puzzle uses the image of a Spider, shown
in Figure 6c—like the mandrill data set, we use the
spider’s right eye as the blank space;

• two variations of the Lights-out puzzle game [37], which
consists of a 4 by 4 grid of lights that can be turned on
and off, and which starts with a random number of lights
initially on—toggling any of the lights also toggles every
adjacent light—the objective is to turn every light off;
– lights-out digital (LO Digital) is a standard lights out

representation using crosses to represent when a light
is on, illustrated in Figure 6d;

– lights-out twisted (LO Twisted) is a variation of the
digital version of lights out such that the image rep-
resentation undergoes a distortion filter, twisting the
exact position of each light, as seen in Figure 6e; and

• the Tower of Hanoi puzzle consists of stacked disks of
different sizes and stakes—the objective is to move every
disk to a different stack, and we we use a version of



(a) MNIST (b) Mandrill (c) Spider

(d) LO Digital (e) LO Twisted (f) Hanoi

Fig. 6: Sample state for each domain.

the puzzle with three disks and four stakes illustrated in
Figure 6f.

B. Domain Encoding

Table II shows the performance of our approach in learning
the latent representation and inferring PDDL actions for each
domain. We measure this performance in terms of the accuracy
with which the autoencoder distinguishes real transitions in
the underlying domain (SAE Accuracy %) and the degree
of redundancy in the inferred PDDL actions (PDDL Redun-
dancy). SAE accuracy measures the percentage of the number
of transitions from the original domain (total transitions) that
was captured by the encoded domain (encoded transitions),
whereas PDDL redundancy measures the ratio between in-
ferred actions (Computed actions) and ground actions in the
original domain (Total actions). The closer to the real number
of transitions the better, since it means the autoencoder is
capable of completely distinguishing all possible transitions of
a domain. When a domain includes too many redundant state
representations, some of the bits in the latent representation
tend to become meaningless, and thus constitute noise for all
algorithms that rely on that representation. Similarly, when
we generate redundant transitions and actions, these become
noise for the goal recognition algorithms that need to deal with
the computed domain model. The MNIST, Mandrill and spider
datasets all represent the same problem, the N-Puzzle, however
the redundancy in the generated PDDL is largely different.
The MNIST generated domain is much more redundant, As
we can see in Table II, the state autoencoder generated a
distinct representation for each of the transitions in most
of the domains, with the exception of the MNIST 8-puzzle
domain, where 0, 4% of the transitions were duplicates. The
MNIST, Mandrill and spider datasets all represent the same
N-Puzzle problem, however the redundancy in the generated
PDDL differs widely. The MNIST generated domain is much
more redundant, meaning there are more overlapping actions
that could be pruned than the other domains, likely caused
by the inability of the autoencoder to generate a distinct
representation for each transition.

C. Goal Recognition

To test the ability of our approach to recognize goals using
only images, we created a dataset of goal recognition problem

with only images. This dataset consists of 6 distinct problems
for each domain, where each problem has at least 4 distinct
candidate goals. From each of these problems (i.e. the initial
states and candidate goals), we generate 5 different conditions
for the goal recognition algorithm, by altering the level of
observability available to the algorithm. We set five different
percentages of observability: 100%, 70%, 50%, 30% and 10%.
The observations from the Dataset described in Section V-A
are pruned so that only the specified fraction of the original
observations are left. We use three goal recognition approaches
to evaluate our approach: the landmark-based heuristics hgc
(Goal Completion Heuristic) and huniq (Uniqueness Heuristic)
developed by Pereira, Oren, and Meneguzzi (POM in the
table) in [9], and the most accurate approach developed by
Ramı́rez and Geffner in [18] (RG in the table). These three
approaches are the current state-of-the-art in goal and plan
recognition in terms of time and accuracy, respectively.

Table IV summarizes goal recognition performance using
our latent representation and learned PDDL encoding for all
domains in the dataset and three different goal recognition
approaches. Each row of this table shows averages for the
number of candidate goals |G|; the percentage of the plan
that is actually observed (&) Obs; the average number of
observations per problem |O|; and, for each goal recognition
approach, the time in seconds to recognize the goal given
the observations; the Accuracy % with which the approaches
correctly infer the hidden goal; and Spread in G, representing
the average number of returned goals. As we can see, the
approaches differ widely in accuracy and time elapsed. While
the RG approach has better accuracy, it does so with a large
spread and long execution times. This trade-off is highlighted
in the most complex domains, such as Lights out digital and
lights out twisted. For comparison, Table III shows the results
of solving these problems with hand made PDDL domains.
Since there is no learning inaccuracies in such domains, the
results are often superior than the learned models. However,
in the lights out model, we can see that the approaches also
struggle with a high amount of spread.

VI. RELATED WORK

Asai and Fukunaga [12] develop a planning architecture
capable of planning using only pairs of images (representing,
respectively, the initial and goal states) from the domain by
converting the images into a latent space representation. Their
architecture consists of a variational autoencoder (VAE) fol-
lowed by an off-the-shelf planning algorithm. The architecture
convert images into discrete latent vectors using the VAE, and
uses the information in such latent vectors to plan over the
images and find a sequence of actions that transforms the state
into one matching the goal image.

Although our work is based on the one proposed by Asai
and Fukunaga, there are two main differences between them.
First, they do not create a PDDL domain file, instead they
train a neural network to act as an action discriminator.
This action discriminator is responsible for defining which
actions can be performed in each state, and validating them.



TABLE II: PDDL generation performance for each domain.
Domain Total Transitions Encoded Transitions SAE Accuracy % Computed Actions Ground Actions PDDL Redundancy
MNIST 967680 963795 99.6% 4946 192 25.76
Mandrill 967680 967680 100.0% 495 192 2.578
Spider 967680 967680 100.0% 763 192 3.974

LO Digital 1048576 1048576 100.0% 5940 1392 4.267
LO Twisted 1048576 1048576 100.0% 12669 1392 9.101

Hanoi 237 237 100.0% 211 38 5.552

TABLE III: Experimental results on Goal Recognition using handmade domains.
POM (hgc ) POM (huniq ) RG

Domain |G| (%) Obs |O| Time (s))
θ (0 / 10)

Accuracy %
θ (0 / 10)

Spread in G
θ (0 / 10)

Time (s)
θ (0 / 10)

Accuracy %
θ (0 / 10)

Spread in G
θ (0 / 10) Time (s) Accuracy % Spread in G

10 1.6 0.010 / 0.012 66.6% / 100.0% 1.6 / 2.3 0.008 / 0.008 66.6% / 66.6% 1.6 / 2.0 0.075 33.3% 1.3
30 4.0 0.011 / 0.012 66.6% / 100.0% 1.0 / 1.3 0.009 / 0.009 100.0% / 100.0% 1.0 / 1.6 0.080 100.0% 2.3

Hanoi 4.0 50 6.3 0.012 / 0.013 66.6% / 100.0% 1.0 / 1.6 0.009 / 0.010 66.6% / 66.6% 1.0 / 2.0 0.085 100.0% 1.3
70 8.6 0.013 / 0.013 100.0% / 100.0% 1.3 / 1.3 0.010 / 0.010 66.6% / 66.6% 1.3 / 1.6 0.091 100.0% 1.3
100 11.6 0.013 / 0.013 100.0% / 100.0% 1.6 / 2.0 0.011 / 0.011 100.0% / 100.0% 1.3 / 1.6 0.098 100.0% 1.3
10 1.0 0.098 / 0.111 16.6% / 33.3% 1.0 / 2.6 0.074 / 0.080 33.3% / 33.3% 2.6 / 2.6 0.179 100.0% 4.8
30 3.0 0.109 / 0.120 66.6% / 100.0% 1.1 / 2.3 0.079 / 0.085 83.3% / 83.3% 1.0 / 2.5 0.188 100.0% 1.3

8-Puzzle 6.0 50 4.0 0.117 / 0.129 66.6% / 100.0% 1.0 / 2.0 0.088 / 0.091 100.0% / 100.0% 1.1 / 1.6 0.191 100.0% 1.3
70 5.3 0.121 / 0.135 100.0% / 100.0% 1.0 / 1.8 0.092 / 0.100 100.0% / 100.0% 1.0 / 1.0 0.210 100.0% 1.0
100 7.3 0.133 / 0.141 100.0% / 100.0% 1.0 / 1.1 0.108 / 0.110 100.0% / 100.0% 1.0 / 1.0 0.246 83.3% 1.1
10 1.0 0.689 / 0.766 33.3% / 66.6% 1.3 / 3.8 0.571 / 0.602 33.3% / 66.6% 1.3 / 4.1 5.76 100.0% 5.6
30 1.6 0.721 / 0.780 50.0% / 83.3% 1.6 / 4.5 0.590 / 0.682 50.0% / 83.3% 1.3 / 5.0 5.79 100.0% 5.3

Light-Out 6.0 50 2.6 0.788 / 0.811 33.3% / 100.0% 2.6 / 5.3 0.622 / 0.704 33.3% / 83.3% 2.6 / 5.3 5.82 100.0% 5.4
70 3.6 0.804 / 0.849 66.6% / 100.0% 3.8 / 5.0 0.669 / 0.742 66.6% / 83.3% 3.8 / 5.0 5.90 100.0% 5.3
100 4.3 0.875 / 0.956 100.0% / 100.0% 4.6 / 6.0 0.798 / 0.833 100.0% / 100.0% 4.6 / 5.3 5.93 100.0% 4.8

TABLE IV: Experimental results on Goal Recognition in Latent Space.
POM (hgc ) POM (huniq ) RG

Domain |G| (%) Obs |O| Time (s))
θ (0 / 10)

Accuracy %
θ (0 / 10)

Spread in G
θ (0 / 10)

Time (s)
θ (0 / 10)

Accuracy %
θ (0 / 10)

Spread in G
θ (0 / 10) Time (s) Accuracy % Spread in G

10 1.2 0.591 / 0.603 40.0% / 80.0% 1.6 / 4.0 0.555 / 0.562 40.0% / 60.0% 1.6 / 3.2 21.25 100.0% 6.0
30 3.0 0.612 / 0.625 40.0% / 80.0% 1.4 / 2.8 0.587 / 0.599 20.0% / 80.0% 1.4 / 3.0 22.26 100.0% 4.8

MNIST 6.0 50 4.0 0.673 / 0.677 60.0% / 100.0% 2.2 / 3.0 0.609 / 0.628 60.0% / 80.0% 2.2 / 2.8 22.48 100.0% 4.8
70 5.8 0.698 / 0.703 100.0% / 100.0% 2.4 / 3.0 0.631 / 0.654 60.0% / 100.0% 2.4 / 3.6 23.53 100.0% 3.2
100 7.8 0.724 / 0.730 100.0% / 100.0% 2.4 / 3.0 0.676 / 0.681 80.0% / 100.0% 2.4 / 3.0 26.34 100.0% 3.4
10 1.8 0.013 / 0.014 16.6% / 83.3% 1.0 / 3.8 0.011 / 0.012 16.6% / 33.3% 1.1 / 2.8 1.02 83.3% 5.6
30 4.8 0.015 / 0.017 16.6% / 100.0% 1.0 / 4.8 0.013 / 0.014 20.0% / 83.3% 1.1 / 4.0 1.38 83.3% 3.8

Mandrill 6.0 50 6.0 0.018 / 0.018 33.3% / 83.3% 1.1 / 4.8 0.015 / 0.016 16.6% / 83.3% 1.1 / 4.8 1.44 83.3% 4.1
70 8.1 0.020 / 0.021 50.0% / 83.3% 1.3 / 4.3 0.016 / 0.018 33.3% / 83.3% 1.3 / 4.0 1.68 66.6% 1.8
100 11.3 0.022 / 0.023 66.6% / 100.0% 1.8 / 5.16 0.019 / 0.020 33.3% / 100.0% 2.1 / 4.5 1.71 66.6% 1.8
10 1.5 0.166 / 0.178 33.3% / 66.6% 2.3 / 4.8 0.151 / 0.154 33.3% / 66.6% 2.3 / 4.5 1.35 83.3% 4.1
30 4.0 0.181 / 0.190 66.6% / 66.6% 4.1 / 5.1 0.159 / 0.162 66.6% / 66.6% 5.3 / 5.3 1.57 83.3% 3.0

Spider 6.0 50 5.6 0.193 / 0.199 50.0% / 83.3% 3.5 / 5.5 0.167 / 0.175 50.0% / 66.6% 4.8 / 4.8 1.66 83.3% 2.8
70 7.5 0.201 / 0.205 83.3% / 83.3% 4.6 / 5.5 0.016 / 0.018 83.3% / 83.3% 4.6 / 5.3 1.79 66.6% 2.3
100 10.5 0.208 / 0.217 100.0% / 100.0% 5.5 / 6.0 0.019 / 0.020 100.0% / 100.0% 5.8 / 5.8 2.04 66.6% 1.1
10 1.0 0.831 / 0.902 33.3% / 33.3% 1.5 / 3.0 0.809 / 0.823 16.6% / 50.0% 1.5 / 3.6 42.52 100.0% 6.0
30 1.6 0.884 / 1.09 33.3% / 66.6% 1.5 / 4.3 0.835 / 0.840 16.6% / 83.3% 1.5 / 4.5 43.07 100.0% 5.5

LO Digital 6.0 50 2.5 0.915 / 1.13 33.3% / 83.3% 1.5 / 4.5 0.848 / 0.854 16.6% / 83.3% 1.6 / 5.0 43.41 83.3% 5.1
70 3.6 0.970 / 1.19 83.3% / 100.0% 3.6 / 4.5 0.891 / 0.913 83.3% / 100.0% 3.6 / 4.5 43.78 100.0% 4.8
100 4.3 1.12 / 1.24 100.0% / 100.0% 2.6 / 4.3 0.913 / 0.938 100.0% / 100.0% 2.6 / 3.3 43.91 100.0% 4.8
10 1.0 1.16 / 1.21 16.6% / 16.6% 1.0 / 3.0 1.04 / 1.10 16.6% / 33.3% 1.5 / 4.1 121.97 100.0% 5.8
30 1.6 1.25 / 1.39 16.6% / 50.0% 1.0 / 3.8 1.11 / 1.18 33.3% / 66.6% 1.3 / 5.1 123.92 100.0% 5.0

LO Twisted 6.0 50 2.1 1.33 / 1.46 16.6% / 50.0% 1.0 / 4.5 1.26 / 1.29 16.6% / 66.6% 1.5 / 5.0 124.42 100.0% 5.6
70 3.3 1.48 / 1.50 16.6% / 83.3% 1.0 / 3.3 1.31 / 1.35 16.6% / 100.0% 1.5 / 5.3 127.22 100.0% 5.5
100 4.3 1.57 / 1.62 100.0% / 100.0% 2.3 / 5.0 1.40 / 1.44 100.0% / 100.0% 2.3 / 5.5 129.99 100.0% 5.5
10 1.0 0.304 / 0.318 33.3% / 66.6% 1.0 / 2.3 0.293 / 0.299 33.3% / 100.0% 1.0 / 4.0 6.08 100.0% 4.0
30 3.0 0.316 / 0.320 100.0% / 100.0% 4.0 / 4.0 0.298 / 0.303 100.0% / 100.0% 4.0 / 4.0 6.21 100.0% 4.0

Hanoi 4.0 50 4.3 0.322 / 0.337 100.0% / 100.0% 4.0 / 4.0 0.306 / 0.311 100.0% / 100.0% 4.0 / 4.0 7.01 66.6% 3.3
70 6.0 0.345 / 0.354 100.0% / 100.0% 4.0 / 4.0 0.310 / 0.319 100.0% / 100.0% 4.0 / 4.0 7.26 100.0% 4.0
100 8.3 0.354 / 0.362 100.0% / 100.0% 4.0 / 4.0 0.327 / 0.331 100.0% / 100.0% 4.0 / 4.0 8.19 100.0% 4.0

Second, their goal is to plan over the converted images from
a domain, whereas we perform a goal recognition over the
generated PDDL domain from latent vectors. Thus, we have
extended their architecture by allowing both planning and plan
recognition tasks over the latent vectors.

Ramı́rez and Geffner [18] propose planning approaches for
goal and plan recognition, and instead of using plan-libraries,
they model the problem as a planning domain theory with
respect to a known set of candidate goals. This work uses
a modified heuristic, an optimal and modified sub-optimal
planner to determine the distance to every goal in a set
of candidate goals given a sequence of observations. More
recently, Pereira, Oren, and Meneguzzi [9] develop landmark-
based approaches for goal recognition, more specifically, they
develop a two fast and accurate heuristics for goal recognition.
Their first approach, called Goal Completion Heuristic, com-
putes the ratio between the number of achieved landmarks
and the total number of landmarks for a given candidate
goal. The second approach, called Uniqueness Heuristic, uses
the concept of landmark uniqueness value, representing the
information value of the landmark for a particular candidate

goal when compared to landmarks for all candidate goals.
Thus, the heuristic estimative provided by this heuristic is
the ratio between the sum of the uniqueness value of the
achieved landmarks and the sum of the uniqueness value of
all landmarks of a candidate goal.

VII. CONCLUSIONS

We developed an approach for goal recognition using image
data as evidence, obviating the need for human engineering to
create a task for goal recognition. We compared three state-of-
the-art approaches of goal recognition to evaluate the domain
we derived from image evidence. Empirical evaluation on mul-
tiple datasets shows that while we can solve some problems
with the same or higher accuracy than hand-coded problems,
many other come to within 33% of the accuracy of recognizing
such problems. Regardless, our approach allows breakthroughs
in goal recognition techniques using planning domains to be
used for goal recognition without human domain engineering
and using only images as input. Our current approach has two
main limitations. First, we need all possible transitions of the
domain in order to infer its encoding. Without every single
transition of the domain, we can not ensure that the actions



generalize enough to every possible state. We plan on solving
this using degrees of uncertainty in each predicate when
generating the domain. Second, we currently use relatively
small images as is input, limiting its applicability to inputs
such as video feeds [38].

As future work, we aim to improve pruning of redundant
actions in the domain inference process and encode domains
with incomplete information to account for the noise and
inconsistencies generated by the autoencoder. As an example,
the encoded lights out domain has many more actions than
its hand-coded counterpart. As the problems become more
complex, we expect the number of actions to increase. We
would like to study ways to detect common patterns in the
computed actions and merge actions that fit in these patterns.
The main benefit of such patterns would be to either derive a
state-variable (SAS+) representation or generalize the actions
to lifted versions of themselves. Finally, we would like to
develop plan recognition algorithms for incomplete domain
models in order to cope with the inaccuracies of the PDDL
inference algorithm, and to be able to just sample the space of
possible transitions in a domain, rather than having to generate
all of them.
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