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Abstract—Behavioural cloning is an imitation learning tech-
nique that teaches an agent how to behave via expert demonstra-
tions. Recent approaches use self-supervision of fully-observable
unlabelled snapshots of the states to decode state pairs into
actions. However, the iterative learning scheme employed by these
techniques is prone to get trapped into bad local minima. Previous
work uses goal-aware strategies to solve this issue. However, this
requires manual intervention to verify whether an agent has
reached its goal. We address this limitation by incorporating
a discriminator into the original framework, offering two key
advantages and directly solving a learning problem previous work
had. First, it disposes of the manual intervention requirement.
Second, it helps in learning by guiding function approximation
based on the state transition of the expert’s trajectories. Third,
the discriminator solves a learning issue commonly present in
the policy model, which is to sometimes perform a ‘no action’
within the environment until the agent finally halts.

Index Terms—Imitation Learning, Adversarial Learning,
Learning from Observation, Self-Supervised Learning

I. INTRODUCTION

Learning by observing is an intrinsic human ability that
we have been able to rely on since childhood. We can learn
tasks by watching a video teaching us how to cook or how
to play a specific video game. Learning from demonstrations
allows humans to learn tasks from proficient sources and apply
the newly-acquired knowledge in different domains, similar
tasks, or after adapting it to their own reality, i.e., different
body sizes and proportions. Occasionally, learning a task by
observing a specialist can be difficult. We can watch tennis
players performing their best moves, but it is not a simple
task for us to break down their actions into straightforward
instructions to learn them properly.

In Machine Learning (ML), we refer to the technique of
learning from a teacher as Imitation Learning (IL). It consists
of an agent learning from the actions of a known teacher in
order to solve a given task [1]. The learning agent must be able
to achieve the goal or conclude the task which it was trained
for. Recent approaches try to approximate the human learning
experience by exploring a strategy where the agent needs no
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explicit label of the actions performed by the teacher to imitate
them. This strategy of learning without explicitly receiving the
teacher’s actions (labels) or learning by observing is called in
the literature Learning from Observation (LfO) [2]–[5].

LfO emerges with improvements in efficiency [6] and gener-
alisation [4], overcoming the need for fine-grained information
found in annotated trajectories or in complex reward functions.
Since they are more effective, LfO methods require fewer
teacher snapshots, which helps mitigate the lack-of-labels
problem in the available training data. The fact that we can use
LfO with smaller amounts of (unsupervised) data gives us the
opportunity to explore problems where data is scarce or costly
to collect, e.g., autonomous vehicles [7]. The existing methods
for LfO often rely on learning how to map the state-action
transition in a self-supervised manner. This, in turn, requires
access to the test environment and multiple deliberations from
the agent, so we properly map the state-action transitions.

LfO strategies are frequently benchmarked by measuring
performance and efficiency following a specific formalisa-
tion [3]–[5]. One can also evaluate imitation by comparing
the trajectories that both the agent and the teacher have taken
in order to solve a given task. Both perspectives have their
issues. With the traditional measures, an agent can diverge
from the teacher and still achieve the same reward, even
though it is performing in a completely different way from
what was expected. Indeed, sparse rewards in an environment
make identifying proficient behaviour non-trivial. By only
comparing rewards and not trajectories or intent, an agent
might reach the same reward as its proficient counterpart,
though perhaps missing part of the desired behaviour that
it should account for. We can derive a similar example for
the second perspective. Suppose the agent is acting within a
maze environment, where the agent and the teacher follow
practically the same trajectory, but in the end, the agent does
not achieve a final state, resulting in a totally different reward.

II. RELATED WORK

Behavioural Cloning (BC) [8] is one of the most straightfor-
ward techniques for Imitation Learning [9]. BC uses teacher
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trajectories containing the state st and the action at of a given
task at time t to create a policy π = P (a | st). BC presents
consistent results in the aspect of episodic rewards by training
a policy in a supervised manner. However, it comes with a
high cost for wide state-space scenarios, requiring sufficient
trajectories to make the policy generalise for unknown states.

To solve this issue, recent approaches in IL [3]–[5], [10]
employ strategies that do not require labelled data provided
by a teacher. Torabi et al. [3] designed a LfO model-based
strategy called Behavioural Cloning from Observation (BCO),
which learns to imitate using a self-supervised strategy that
does not require a teacher to provide annotated data. BCO
starts by learning the state-action transition to build a predictor
capable of guessing what action occurred in a given pair of
states St and St+1. It then uses such a model to label the
teacher trajectories. Next, all automatically-labelled data is
used to train a policy in a supervised fashion. Even though
the authors present better results than supervised methods
that use the teacher’s original labels, the approach lacks a
proper exploration technique, leading to a situation in which
it repeatedly finds itself stuck in endless states.

Imitating Unknown Policies via Exploration (IUPE) [5] is
an approach that uses sampling and exploration mechanisms
to solve the efficiency issue. After each interaction, the inverse
dynamics modelM learns the most likely action given a state-
transition in a supervised fashion, and then it trains a policy
with the pseudo-labelled (M’s outputs) as teacher’s actions.
IUPE weighs the random and policy samples to create a dataset
similar to the teacher’s transitions. Finally, its exploration
mechanism uses the softmax distribution over its outputs to
perform weighed sampling over all actions from both models.
By avoiding the usage of its maximum a posteriori (MAP)
estimation, it creates a stochastic policy that dynamically
changes its exploration ratio according to each model’s output.
The downside of using IUPE is its need for hand-crafted goal-
aware functions, which require prior domain knowledge, to
retrieve intermediate samples capable of approximating the
initial random state-action pairs to the proficient ones.

Ho and Ermon [11] propose Generative Adversarial Im-
itation Learning (GAIL), an approach that uses adversarial
training to solve that same problem. GAIL requires a smaller
teacher dataset compared to other approaches. Nevertheless,
the method needs extensive interactions with the environment.
Torabi et al. [10] find inspiration on GAIL to design a Gen-
erative Adversarial Network (GAN) [12] named Generative
Adversarial Imitation from Observation (GAIfO). GAIfO tries
to learn a policy by creating a mechanism to distinguish if the
source of the data is from a teacher or provided by the model.
By training the model to understand what is the next state St+1

from a given state-action pair St and a, GAIfO produces a
policy that has similar behaviour to a teacher. Although GAIfO
has yielded significantly better results than GAIL, by reducing
the number of samples necessary to train a policy, it falls in
the same issue as GAIL, where the number of interactions
with the environment is a bottleneck.

III. PROBLEM FORMULATION

We formalise Imitation Learning assuming an environment
defined by a Markov Decision Process (MDP), which is
represented by a five-tuple M = {S,A, T, r, γ} [13, Ch 3.],
where S is the state-space, A is the action space, T is the
transition model, r is the immediate reward function, and γ
is the discount factor. Solving an MDP yields a stochastic
policy π(a|s) with a probability distribution over actions for
an agent in state s that needs to take a given action a. Imitation
from observation (IfO) [3] aims to learn the inverse dynamics
of the agent, Mst,st+1

a = P (a|st, st+1), i.e., the probability
distribution of each action a when the agent transitions from
state st to st+1. While we assume the environment is an MDP,
in imitation learning the agent has no access to an explicit
reward signal. The actions performed by the teacher are
unknown, so we want to find an imitation policy from a set of
state-only demonstrations of the teacher T = {ζ1, ζ2, . . . , ζN},
where ζ is a state-only trajectory {s0, s1, . . . , sN}.

A classic self-supervised IL approach in the LfO area
focuses on using two models to learn to imitate. The models
are the Inverse Dynamic Model (M) and the policy model
πθ. The Inverse Dynamic Model is responsible for learning
to predict P (a | st, st+1), which action caused the transition
between a given pair of states (st, st+1). After training the (M)
model, it is now possible to predict the most possible action
taken by the teachers in their collected trajectories that will
be used in the policy πθ training [3], [4]. Using the pseudo-
labels â to replace the potential actions that the teachers
might have taken builds a natural exploration for LfO methods
which helps the agent acquire the capability of generalisation
by accessing different states from the original trajectory and
acquiring knowledge about state transitions [14]. A learner can
iterate over this self-supervised pipeline to reduce the error
coming from both M and πθ models.

LfO strategies offer a more data-efficient approach to imi-
tation learning, since they can learn similar policies to other
methods that require labelled data. Specifically, we consider
policies to be similar not only in terms of similar returns,
but also policies that generate similar trajectories in the state
space. This is in contrast to the literature in imitation learning,
which often measures similarities by looking at the returns
alone for any given task [3]–[5]. However, just because an
agent achieves similar returns in a given task, this does not
mean the agent is actually imitating observed behaviour if the
policies generate radically different trajectories.

IV. SELF-SUPERVISED ADVERSARIAL IMITATION
LEARNING

In this paper, we create the Self-supervised Adversarial
Imitation Learning (SAIL), an IL method that interleaves self-
supervised and adversarial learning to create a policy based
on observation of a teacher without any use of labelled snap-
shots. SAIL uses an exploration mechanism based on previous
work [5], [15] to explore when it is unsure of the teacher’s
actions, and a discriminator model to classify whether the
policy trajectory is similar to a teachers’ one. SAIL comprises
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Fig. 1: Self-supervised Adversarial Imitation Learning (SAIL) training pipeline proposed in this paper. All models are initialised
with random weights, and the agent interacts with the environments to collect data, so M learns state transitions. Afterwards,
given state-only demonstrations, theM creates self-supervised labels to use with its policy in a supervised manner. The updated
policy then interacts with the environment and collects new samples to be used in a new iteration by the state transition model.
Unlike previous work, SAIL uses a discriminator to classify whether samples should be appended to the initial samples and a
generative model to update its policy to act more like its observation samples. SAIL repeats steps (ii) from (viii) for a specific
amount of epochs or until both models stop improving.

four different models: (i)M, which predicts an action given a
state transition P (â | st, st+1); (ii) a policy model πθ that uses
the self-supervised labels â to mimic a teacher, given a state
P (â | st); (iii) a generative model G conditioned by prediction
from πθ and the current state P (st+1 | st, ã); and (iv) a
discriminator model D to discriminate πe and πθ, creating
better samples forM and updating weights θ when the policy
is not similar to its proficient counterpart.

Algorithm 1 provides an overview of the learning procedure
of SAIL. We first initialise all four models with random
weights (Line 1-4). With πθ randomly initialised, we can use
this model as a random agent and collect all samples required
(Line 5). Considering that IL methods have no knowledge
about optimal or the teacher’s action distributions, these ran-

Algorithm 1 SAIL

1: Initialise model Mθ as a random approximator
2: Initialise policy πθ with random weights
3: Initialise generative model G with random weights
4: Initialise discriminator D with random weights
5: Generate Is using πθ

6: for i← 1 to epochs do
7: Improve Mθ by SUPERVISED(Is)
8: Use Mθ with T e to predict Â
9: Improve πθ and G by

BEHAVIOURALCLONING(T e, Â)
10: Use πθ to solve environments E
11: Append samples Ipos ← (st, ãt, st+1)
12: Append Is ← ∀i ∈ Ipos | D(G(Iposi )) = 1

dom samples help M to classify each state transition without
any biases since the randomly generated ones are equally
distributed. Once all samples consisting of (st, a, st+1) tuples
are appended to Is, SAIL trains its inverse dynamic model in
a supervised manner (Function SUPERVISED in Line 7). With
its updated weights θ, M predicts all pseudo-labels Â to all
teacher’s transitions in T e (Line 8). As the model’s weights
might not be optimal in each iteration, SAIL implements an
exploration mechanism that allows for Mθ to deviate from
its MAP by sampling from its predictions using softmax
distributions of the same output as weights. This mechanism
allows SAIL to dynamically explore other labels when unsure
(with more uniform distributed MAP values) and exploit once
its MAPS values are farther apart. After creating all self-
supervised labels, we train πθ using a behavioural cloning
approach (Function BEHAVIOURALCLONING in Line 9). Un-
like other behavioural cloning approaches, SAIL also uses a
generative model G to predict its next state, conditioned by
the action predicted by πθ. Hence, it also updates G during
πθ’s training (we further explain the learning process of the
generative model in Section IV-B). Afterwards, SAIL uses πθ

to create new samples that might help M better approximate
the unknown ground-truth actions from T e (Line 10). Finally,
SAIL appends to Is all samples that D could not differen-
tiate between T e and G(Ipos) (Line 12). We aim to discard
trajectories that could result in M getting stuck in bad local
minima and update πθ to correct some behaviours that D uses
to differentiate between teacher and student. We better explain
how D benefits SAIL in Section IV-A.



A. Goal-aware function

Developing a goal-aware function can be a complex task.
Environments in the agent literature have different meanings
for what a goal is. Environments typically have one of two
different types of tasks: 1) maintenance; or 2) achievement [16,
Chapter 2]. Environments with an achievement task define a
clear end goal, such as MountainCar [17] – where an agent
has to reach a flag located on top of a mountain with an
accumulated reward ⩾ −110. Since agents in an IL context
have no access to the reward signal, we must consider the
number of steps an agent performs before reaching its ob-
jective. As environments grow in complexity, such a function
will become harder to encode. By contrast, maintenance task
environments usually define a set of states that an agent should
not reach. For example, Ant [18], where an agent walks as
far as possible without reaching angles that it classifies as
‘falling’. While others, such as CartPole [19], define a stopping
criterion, e.g., when its pole reaches a certain angle, and an
optimal threshold, e.g., maintain its task for 195 consecutive
steps. Thus, encoding a goal-aware function creates a degree
of unwanted complexity in a learning algorithm.

By only using samples that reach a goal, SAIL acquires
examples that have ‘some’ degree of optimality, and approx-
imates I’s samples from T e [5]. Nevertheless, classifying
whether samples are close to T e might be difficult. First,
defining what indicates a sample being close to a proficient
teacher is hard. If we consider a stationary agent (which
SAIL is), we might discard samples that allowM to accurately
predict transitions due to their distance to T e states alone.
Therefore, to achieve better policies, SAIL needs a goal-aware
function that allows for M to deal with sub-optimal samples.

To remove the usage of hand-crafted goal-aware functions,
SAIL uses a discriminator D to discriminate between πθ and
πe. By doing so, SAIL eliminates all human intervention and
gains a non-greedy sampling mechanism by using a model
to classify which agent created a trajectory. Moreover, since
D starts with random weights (Line 4), it allows samples
that did not reach a ‘goal’, i.e., sub-optimal samples, to be
appended to Is. However, considering that SAIL works under
LfO constraints (not having access to πe actions), there is a
need to create a mechanism that can discriminate between
teachers’ and students’ state-only trajectories. Using state-
only trajectories from πθ and πe, and an adversarial learning
approach (Equation 1), SAIL allows πθ via G to be updated
from its gradient flow from D.

min
M∪π

max
D

SAIL(M, π,G,D) =

Er∼R(πϵ,Env)[log(D(r))]+
Er′∼R(πθ,Env)[log(1−D(G(r′, πθ(r

′))))]

(1)

Considering that SAIL uses a few samples (in the form of T e∪
T π), it is important to avoid D overfitting. For that, we record
all πθ trajectories in a replay buffer RB and only sample a few
trajectories from both sets at each iteration, RB(st,··· ,st+n) ∼
T e ∪ T π . By only using a sub-set from each sample pool of

trajectories, SAIL avoids overfitting D during first iterations
(where πθ’s trajectories are considerably different).

B. Generative model

SAIL uses a generative model in two different steps.
Firstly during Function BEHAVIORALCLONING; and after-
wards, when selecting which samples should be appended to
Is Although SAIL adds a new model to its pipeline, in these
situations, it benefits in two folds: (i) intrinsically encodes
environments physics in πθ; and (ii) it updates πθ when using
D via its gradient flow. Which we believe far surpasses the
overhead cost created by using a generative model.

The first benefit results from SAIL updating G weights
using Equation 2. Thus, when using the generative model
in Line 9, SAIL allows LG to update πθ to create actions
that would correctly condition G to generate correct state
transitions and equal to those observed. Moreover, by learning
how to properly decode from (st, ãt) 7→ ˆst+1, the generative
model becomes a forward dynamics model, which helps πθ

encode some of the environments’ dynamics, e.g., physics.
We hypothesise that it is also possible only to update G
weights when πθ correctly predicts a self-supervised label.
However, this creates two different problems. The first problem
is that not always M will be correct. Thus, πθ being correct
about â might not be indicative of how accurate it is in
conditioning G. The second problem originates from the fact
that M might stop predicting some actions when being stuck
in local minima [5]. In this scenario, G will not update for
state transitions for the action not being predicted. Therefore,
G will update πθ fewer times, resulting in less exploration,
since updating πθ weights with two different objectives can
also help it to no be stuck at local minima.

LG = − 1

N

[
N∑
i=1

si+1 · log(G(si, πθ(si))

]
(2)

The second benefit originates from the fact that SAIL has
an adversarial training mechanism in its pipeline. Hence, D
directly updates πθ weights via gradient flow when it correctly
discriminates between teacher and student (Equation 1). This
behaviour is beneficial because updating πθ through D allows
for the agent to have a direct temporal signal, i.e., where it
deviates from its teachers’ observations. Consequently, since
SAIL maintains all original behavioural cloning techniques,
it creates agents that mimic teachers’ trajectories more accu-
rately while not losing performance.

Both generative update moments allow SAIL to have more
precise trajectories (further explored in Section V), as well
as more trajectories that are similar to their source (discussed
in Section VI-B). We believe having trajectories closer to the
teachers is beneficial since it avoids unwanted biases due to
previous methods only using the performance metrics, which
does not carry behaviour meaning [20].

V. EXPERIMENTAL RESULTS

We tested SAIL and all baselines described in Section II
with four different environments: (i) CartPole; (ii) Mountain-



Car; (iii) Acrobot; and (iv) LunarLander. We use OpenAI
Gym [21] versions for all environments. Figure ?? illustrates
a single frame for each of these environments, while Sec-
tion V-A gives a brief description of all environments and
SAIL neural network topology.

A. Implementation and Metrics

We follow Gavenski et al. [5] implementation for our
agents. Therefore, πθ is a Multi-Layer Perceptron (MLP)
model with 2 hidden layers with 32 neurons and 2 self-
attention modules after each layer. M is an MLP with
2 hidden layers with 32 neurons, 2 self-attention modules
and 2 Layer Normalisation layers. G is an MLP with 2
hidden layers with 2 × (| s | +1) neurons, where | s |
is the size of the environment state vector, and no self-
attention or normalisation layers. D is a Long Short Term
Memory [22] with 2 layers, 32 neurons each, and dropout
of 50%. The official SAIL implementation can be found at:
https://github.com/NathanGavenski/SAIL.

To measure our experiments, we will use two main metrics:
Average Episodic Reward (AER), and Performance (P) [11]
metrics. AER is the average of all accumulated rewards for a
consecutive amount of tries in each environment. Performance
is returned by calculating the average reward for each run
scaled to be within [0, 1], where zero is a behaviour compatible
with a random policy (πξ) reward, and one a behaviour
compatible with the teacher (πε).

P =

∑E
i=1

πϕ(ei)−πξ(ei)
πε(ei)−πξ(ei)

E
(3)

It is possible for a model to achieve scores < 0 if it has the
worst performance than a random policy and > 1 if the model
can perform better than its teacher. We do not use accuracy for
evaluation since achieving high accuracy in Imitation Learning
tasks does not guarantee good results in solving a task.

We now briefly describe all environments used in this work.
• CartPole-v1 is an environment where an agent moves

a car sideways, applying force to a single pole. The
goal is to prevent the pole from falling over. The space
state has four dimensions:car position, car velocity, pole
angle, and pole velocity at tips. The agent receives a
single reward point every time the pole remains upright.
Barto [19] describes solving CartPole as getting an aver-
age reward of 195 over 100 consecutive trials.

• MountainCar-v0 environment consists of a car situated
in a valley. The agent needs to learn to leverage potential
energy by driving up the opposite hill until completing
the goal. The state-space has two continuous attributes:
velocity and position and three discrete action spaces: left,
neutral, and right. A reward of −1 is provided for every
time step until the goal position of 0.5 is reached. The
first state starts in a random position with no velocity.
Moore [17] defines solving MountainCar as getting an
average reward of −110 over 100 consecutive trials.

• Acrobot-v1, based on Sutton’s work [23], is an environ-
ment where an agent has two joints and two links. The

joint between the two links is actuated. The state space
consists of: {cos θ1, sin θ1, cos θ2, sin θ2, θ1, θ2}, and the
action space consists of the 3 possible forces. The goal
is to move the end of the lower link up to a given height.
Although Acrobot is an achievement task environment, it
does not have a specified reward threshold.

• LunarLander-v2, created by Klimov [21], is an environ-
ment where an agent needs to land on the moon under
low gravity conditions. The state space is continuous, and
the action space is discrete. There are four actions: do
nothing, move left, right, and reduce the falling velocity.
All actions have a reward of −1, except for do nothing
state, which is −0.3. A positive value is returned when
the agent moves in the right direction (always at 0, 0
coordinates). LunarLander-v2 is solved when the agent
receives a reward of 200 over 100 constitutive trials.

B. Results

Table I shows results for all baselines and SAIL in four
different environments. SAIL’s performance is closer to the
teacher’s reward in almost all environments (CartPole, Moun-
tainCar and Acrobot), and it performs worst in the LunarLan-
der environment, resulting in the best algorithm throughout
all environments. When comparing SAIL to other methods,
we observe it yields a lower standard deviation (⩽ 1) in
the first three environments, with a higher deviation for the
LunarLander environment (5.63). We believe these lower devi-
ations are due to the gradient flow from D into πθ discussed in
Section IV-A, and G intrinsically encoding each environment
physics into πθ without a direct signal (Section IV-B). By
properly encoding physics in its policy, SAIL achieves a
behaviour that helps its agent yield similar results to the
teacher since it has knowledge on how st+1 should be given
a and st. Moreover, D allows πθ to have a temporal signal
in its trajectory, helping to correct any unwanted/divergent be-
haviour that helps D discriminate against teacher and student.

Conversely, SAIL does not achieve the best results for
Acrobot and LunarLander. For the Acrobot environment,
SAIL achieves an accumulated reward lower than IUPE (3.19
lower). However, its standard deviation is even lower than
behavioural cloning, which had labelled snapshots during its
training. We believe this is the case for this environment
because Acrobot rewards hectic behaviour from the agent,
which IUPE deeply beneficiates given its exploration mech-
anism, while D incentives SAIL to have more consistent
trajectories. We hypothesise that for cases where SAIL has
a higher exploration ratio, reducing the gradient from its
adversarial phase would be beneficial, avoiding it getting
into an exploitative phase too soon. As for the LunarLander
environment, SAIL achieves a similar result to GAIfO, which
had 16.38 more accumulated reward, but with 24.32 more
deviation points. We believe this is the case for SAIL due
to it learning the proficient behaviour much more closely than
the other IL counterparts. If we compare BC’s performance,
we observe that by having the finer-grained information of
all actions, the results dramatically changed – which we

https://github.com/NathanGavenski/SAIL


TABLE I: SAIL and baselines results for all environments.

Algorithm Metric CartPole MountainCar Acrobot LunarLander

Random AER 21, 92± −200± 0 −499.36± −170.47±
P 0 0 0 0

Expert AER 500± 0 −98.03± 8.17 −74.85± 8.61 256.79± 21.38
P 1 1 1 1

BC AER 218.53± 160.71 −102.06± 4.23 −80.21± 3.61 63.05± 79.50
P 0.37 0.97 0.99 0.63

GAIL AER 302.03± 158.96 −200± 0 −274.27± 116.85 120.21± 28.03
P 0.41 0 0.54 0.66

GAIfO AER 500± 0 −200± 0 −128.20± 15.88 200± 29.95
P 1 0 0.85 0.86

IUPE AER 500± 0 −166.97± 18.34 −75.65± 12.85 −81.34± 74.5
P 1 0.32 1 0.21

SAIL AER 500± 0 −99.35± 1.84 −78.84± 0.41 183.62± 5.63
P 1 0.99 0.99 0.83

draw the comparison to SAIL’s results. For the LunarLander
environment, IUPE has the worst and only negative result.
We believe that such a result originates from the fact that
LunarLander optimal behaviour highly correlates to the agent
and goal initialisation, which IUPE lacks mechanisms to
understand from its proficient source.

Finally, we observe that for environments with more relation
between states (i.e., carrying momentum), such as Moun-
tainCar, SAIL performs best. While most baselines yielded
policies closer or equal to a random one, SAIL achieved a
performance ≈ 1. During experimentation, we observe that
most other methods require the agent to be in a specific state,
i.e., stopped or with almost no movement force. However,
we did not notice a similar behaviour since SAIL receives
information from its discriminator model.

VI. DISCUSSION

In this section, we consider the following: (i) how
SAIL learns with different amounts of samples; and (ii) how
πθ behaves compared to its performance and discriminator
accuracy. The first case allows us to understand the trade-off
between having more or fewer trajectories than those presented
in Section V. Understanding this balance is essential, so
SAIL learns with as fewer samples as possible and, therefore,
faster. We investigate the second case to understand how
much πθ approximates from πe trajectories. IL works use
performance and AER as metrics but do not consider how
similar the policy is to its teacher.

A. Sample Efficiency

We observe that SAIL inherits two different behaviours
from behavioural cloning methods. Firstly, it requires a sample
size bigger than a single trajectory to learn how to achieve a
performance similar to its teacher. This is no surprise since 1
trajectory barely provides any information for SAIL to learn
how to encode different states and generalise significantly in
each environment [24]. The second behaviour SAIL inherits
is it fails to scale according to the number of samples due

to compounding error [25]. As the samples grow, the policy
diverges less from its observed trajectories, decreasing the
agent’s performance. Therefore, behavioural cloning methods
need to find the correct number of trajectories they should use.
Conversely, as Table II shows, SAIL achieves a performance
close to 1 with 25 episodes, only decreasing its standard
deviation for each row consecutively and increasing again with
100 trajectories. We believe that SAIL achieves this result due
to the updates from G and, therefore, D. Using a different
objective, e.g., recreating trajectories closer to the teachers’,
SAIL results in fewer episodes needed than previous methods
would because πθ is less dependent on its LfO objective.

Nevertheless, SAIL achieves these results also due to using
a smaller discriminator model, which comes with the price
of being sequential. We hypothesise that to keep the sample
size small, SAIL cannot use a larger sequence model, such as
Transformers [26], since the high number of parameters means
that the discriminator model would easily overfit on its small
dataset. We believe that increasing SAIL efficiency would
require further experimentation regarding the augmentation of
observations since performing modification of teacher samples
requires prior domain knowledge so as not to augment tuples
into impossible or undesired transitions.

B. Imitation Behaviour

IL metrics usually rely only on the accumulated reward
of the agent to judge how well a policy learned to mimic
its teacher’s behaviour. Most works, such as this, use P
as a metric, which, we believe, fails to show IL agents’
intricacies (such as trajectory). By only using the reward
signal to evaluate these agents, we can not conclude that the
agent behaves like its teacher. There might be a proficient
behaviour desired in an environment that is not encoded in the
reward function or a stochastic behaviour not apparent in its
observation. Therefore, P may fail to measure a divergence in
trajectory since the accumulated reward might be equal. Let us
use a maze environment as an example, where there are always
two trajectories with equal lengths, but in one path, there is a



TABLE II: Results for SAIL with different sample sizes.

Environment Trajectories P AER (avg) AER (min) AER (max) SD

CartPole

1 0.55 1.55 86.23 457.30 ±133.98
25 1 500 500 500 ±0
50 1 500 500 500 ±0
75 1 500 500 500 ±0

100 1 500 500 500 ±0

MountainCar

1 0 −200 −200 −200 ±0
25 0.87 −109.96 −114.40 −103.60 ±4.21
50 0.96 −101.78 −103.70 −99.11 ±2.02
75 0.99 −99.35 −102.10 −97.38 ±1.84

100 0.98 −101.31 −109.90 −97.87 ±4.93

Acrobot

1 0.98 −87.47 −112.20 −77.75 ±14.03
25 0.99 −77.95 −79.75 −76.78 ±1.16
50 0.99 −79.33 −80.33 −78.23 ±0.96
75 0.99 −78.84 −79.46 −78.46 ±0.41

100 0.99 −79.36 −80.72 −76.43 ±1.73

LunarLander

1 0.31 −30.13 −76.95 55.28 ±52.28
25 0.86 196.50 148 242.20 ±36.86
50 0.83 133.19 −24.84 207.30 ±98.04
75 0.83 183.62 175.20 188.90 ±5.63

100 0.81 151.26 10.72 204.50 ±79.45

slight chance of the floor breaking. In this case, a conservative
agent might never take the trajectory with the faulty floor. On
the other hand, a more aggressive agent will not consider this
when making its way through the maze. An imitation learning
agent that learns from the conservative policy might inherit the
bias of never stepping into the floor that might break. However,
the performance will not measure this behaviour, even if the
student becomes closer to the aggressive policy.

To avoid this issue, we analyse not only πθ’s performance
but also D accuracy and G error. If πθ achieves higher
performance, while D has high accuracy and G has a lower
error, it means that although πθ correctly encoded proficient
behaviour, it has a trajectory that is not close from its teacher.
Moreover, if πθ achieves a performance close to 1, and D
has lower accuracy and G has a higher error, it means that πθ

yields the same reward as its teacher, but its generator learned
how to encode next states to ‘fool’ D, but does not follow
the observations correctly. Therefore, we are looking for a
scenario where πθ has P ≈ 1, D an accuracy ≈ 50% and a
lower error for its G during BEHAVIOURALCLONNING (Line 9
in Algorithm 1. Table III shows all three metrics results for
all four environments used in this work.

We observe that for all environments, when πθ yields its best
result, D has results equal to a random model, e.g., it is not

TABLE III: Discriminator’s accuracy (D), Generator’s loss (G)
and Policy’s performance (πθ) for each environment.

Environment D’s Accuracy (%) G’s Loss πθ’s Performance

CartPole 49.44± 1.12 0.0015 1

MountainCar 49.76± 0.83 0.0029 0.98

Acrobot 50.13± 3.21 0.8685 0.99

LunarLander 49.08± 1.28 0.0308 0.81

able to discriminate whether a trajectory comes from teacher
or student. Additionally, when we compare G error during its
first learning phase, where it tries to recreate the next state
from a teacher’s trajectory, it has a lower error, meaning it
correctly learned how to encode state transitions. Therefore,
SAIL yields a policy consistent with proficient rewards while
keeping a consistent trajectory with its learned source. We
note that error is highly contextual to each environment state
encodings. For example, Acrobot’s states is a vector with 6
values, which consists of 4 values varying from [−1, 1] and
two values from [−12.57, 12.57] and [28.27, 28.27]. Figure 2
displays different error margins for 5 executions of SAIL. It
is possible to note that, although G has a higher error rate for
the Acrobot environment, its initial value (≈ 2.5) is higher
due to the environment encoding characteristics. Thus, its
higher error rate (when compared with all other environments),
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Fig. 2: Error rate for 5 different runs in Acrobot environment.



contextually, could be considered a lower margin rate.

VII. CONCLUSION

In this paper, we developed a novel LfO approach that uses
an adversarial module to learn how to imitate the behaviour
of teachers without accessing its actions and is capable of
achieving state-of-the-art results in performance and efficiency.
We evaluate our model under different amounts of sampled
behaviour and compare it with various baselines from the
literature. SAIL (Self-supervised Adversarial Imitation Learn-
ing) achieves significant results in both Performance and AER
with fewer samples for two main reasons. First, we use
an adversarial mechanism to better approximate our model’s
behaviour with the teacher’s. Such a mechanism is connected
to our end-to-end model and iteratively learns through a loss
error, which makes the model achieve higher returns. Second,
SAIL uses an exploration technique that helps the model
collect the best data for each interaction, resulting in a model’s
convergence in fewer steps. Finally, we evaluate and discuss
the metrics by which we can measure how much a policy
actually imitates sampled behaviour. To that end, we carry out
an ablation study in Section VI where we show that SAIL is
capable of achieving proficient rewards while still ‘fooling’ its
discriminator, including analysis through our obtained results.

In future work, we aim to test our method in a variety of
different environments to understand better SAIL’s ability to
imitate other agent behaviour vis-à-vis other baselines from
literature. We believe that by changing our model’s topology,
we can test with environments that represent their states
with images, which could result in learning from teachers by
collecting available videos from the internet (e.g., YouTube)
since we do not need previous knowledge of actions used by
the teachers. And further investigate how we can measure
proficient behaviour in different environments for a better
understanding of possible emergent behaviour by the agent,
and its impact on real-world applications.
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