Planning Domain Generation
from Natural Language Step-by-Step Instructions

Mauricio Steinert, Felipe Meneguzzi
Pontifical Catholic University of Rio Grande do Sul
6681 Ipiranga Avenue
Porto Alegre, Rio Grande do Sul - Brazil
mauricio.steinert@edu.pucrs.br, felipe.meneguzzil@pucrs.br

Abstract

Classical planners generate plans to achieve a specific goal,
given a well-defined planning domain, described in a for-
mal language to be processed into a computer. Learning do-
main descriptions from unstructured raw data is desirable
to avoid the knowledge-acquisition bottleneck that emerges
from translating problems into a symbolic representation. In
this work we propose using natural language input to define
planning domains given a sequence of step-by-step instruc-
tions to accomplish a task. Specifically, we develop a rule-
based solver capable of converting step-by-step instructions
into symbolic representation that can be used as input to off-
the-shelf planners.

Introduction

Classical planners generate plans to achieve a specific goal,
given a well-defined planning domain, described in a formal
language, such as PDDL. Given the niche aspect of PDDL
modeling, we want to allow users to be able to employ other
data formats as input (Amado et al. 2018), preferably ones
that resemble human communication like images and natural
language, avoiding possible the knowledge-acquisition bot-
tleneck of translating from raw data into symbolic represen-
tation (Granada et al. 2017). To overcome this knowledge-
acquisition bottleneck, in this work we propose using natural
language instructions as input to describe planning domains.
To solve this problem, we developed a rule-based solver that
operates over sentences that describe step-by-step instruc-
tions to accomplish a goal, automatically translating these
instructions into a symbolic representation that can be im-
mediately used by off-the-shelf planners.

In order to evaluate our work, we generate domain
descriptions from the WikiHow Dataset (Steinert and
Meneguzzi 2020)', a dataset we assembled specifically for
this task that is composed by a large volume of step-by-
step instructions. We develop a Rule-based solver to extract
information from instructions sentences and translate them

Copyright © 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

"Publicly available at https://github.com/pucrs-automated-
planning/wikihow-planning-recipes-dataset

into usable PDDL domain and problem specifications, fol-
lowed by experiments with quantitative and qualitative re-
sults evaluation.

Method

In the following sections we detail the general structure and
features of our dataset, including its acquisition and prepro-
cessing tasks. Next, we discuss Rule-based solver, an algo-
rithm that performs information extraction over instances in
the WikiHow dataset in order to identify actions and objects
based on predefined rule sets.

WikiHow Dataset

In order to evaluate our approach, we developed the Wiki-
How Dataset (Steinert and Meneguzzi 2020) for automated
planning. The WikiHow Dataset comprises step-by-step in-
structions in natural language extracted from the WikiHow
website”. These articles are organized in categories and con-
tain step-by-step instructions on how to perform tasks. In
our specific case, we work with the cooking recipes’ cate-
gory, all articles of which share a similar structure:

» The first sentence of each step summarizes the step and
the following sentences usually refine it.

* More complex tasks are divided into sections, where each
section is a set of independent steps. For example, pasta
recipes have distinct sections on how to cook the pasta
and to prepare the sauce in the same recipe.

» Sentences are written in imperative form, i.e. each sen-
tence usually starts with a verb, followed by direct object
and optional prepositions and object of preposition.

We generated this dataset by extracting data from the
HTML files from WikiHow based on a predefined list of
URLSs of category pages. After acquiring all raw data, we
preprocess them by removing HTML tags and identifying
instructions steps within sentences. We keep only the first
sentence of each step, given that it summarizes a whole step.
We break sentences with conjunction and within the same
sentence in order to facilitate identifying actions and ob-
jects as well as their correlation in further processing stages.

*https://www.wikihow.com/

Verb Frequency | Noun Frequency
add 8,353 | water 4.101
heat 4,247 | bowl 3,404
place 3,871 | oven 2,973
serve 3,032 | pan 2,877
mix 2,815 | butter 2,583
cook 2,744 | sugar 2,375
remove 2,666 | oil 2,351
pour 2,466 | salt 2,141
cut 2,337 | dough 1,958
stir 2,228 | cream 1,884

Table 1: Top-10 verbs and nouns dataset frequency

For example, the sentence add salt and I pound (450 g) of
pasta to the boiling water is broken into two sentences add
salt and add I pound (450 g) of pasta to the boiling wa-
ter. The resulting dataset after preprocessing has a total of
5,518 recipes with an average of 13.75 steps per recipe, and
each step with an average of 8.74 words. Since we use a
rule-based solver that depends on manual parameters’ setup,
we evaluate the dataset about term frequency, specifically
verbs that are used to identify actions and nouns that are used
to identify objects. Table 1 reports the top-10 frequency of
verbs and nouns found in dataset.

Rule-based Solver

The Rule-based Solver uses a predefined set of actions and
objects to process sentences. These sets are manually gen-
erated based on the frequency of nouns and verbs in the
dataset. Nouns define objects, and for each object it is possi-
ble to assign a type. These types are also used in the PDDL
formalization, helping off-the-shelf solvers find a plan for a
problem. Verbs define actions. To minimize the set of ac-
tions, we group actions with similar effects, where a set of
keywords can trigger the same action. For example, the cut,
slice and chop keywords trigger the action cut.

The Rule-based solver works by evaluating each sentence
at a time, as we detail in Algorithm 1. For each sentence, we
start by identifying actions and objects (Lines 2 and 3). Ac-
tion and object identification use our predefined set of action
keywords and object names, comparing these entries with
each word in the sentences. For both cases, we convert each
word to its canonical form before comparing to our sets.
Using our previous identified actions and objects, we try to
identify objects in the current sentence that fit the required
parameters for the actions (Lines 4 to 6). These associations
are established based on the syntactic function of each term
— for example, a verb (action) requires a direct object (an ob-
ject in which an action is applied). The same concept applies
to prepositions and the objects of prepositions. If any pa-
rameter is not resolved, then the current action is discarded
(Lines 7 and 8). If there are no unsolved parameters, then
the current action is added into solved actions set and its ef-
fects added as a goal in problem formalization (Lines 9 to
11). Finally, after processing all sentences, both domain and
problem PDDL descriptions are generated (Lines 12 and 13)
using previously processed information. The last step sends

the generated domain and problem PDDL formalization to
be processed by an off-the-shelf planner in order to generate
a plan (Line 14).

Algorithm 1: Rule-based pseudocode

1 for sentence in sentences do

actions = identify_actions(sentence);

objects = identify_objects(sentence);

for action in actions do

for parameter in get_parameters(action) do
object = fit_action(objects, parameter);
if object not found then

L unsolvable_parameters = True;

% N U B W

9 if not unsolvable_parameters then
10 add_action_solved_actions(action);
11 add_effect_to_goal(action, object);

12 generate_domain();
13 generate_problem();
14 generate_plan();

Besides grouping actions by their effects, we must infer
the preconditions of the corresponding actions. Here we as-
sume that all effects of previous actions are preconditions to
perform the current action. A major drawback of this design
choice is that all actions have the same set of parameters,
even if they are not in practice required to perform the cur-
rent action.

We developed the Rule-based solver using Python and
spaCy? for part-of-speech tagging. To generate plans, we
used Pyperplan (Alkhazraji et al. 2020), a lightweight
STRIPS planner written in Python that we configured to
perform a blind breadth-first search to solve problems. The
Rule-based solver can operate automatically or interactively
asking users input to fill in blanks related to action parame-
ters.

Experiments and results

We performed our experiments over all 5.518 instances of
the WikiHow dataset. Given that we operate over cooking
recipes, we divide our objects into two broad types: vessels
and ingredients.

The rule-based solver was capable of returning a valid
plan, i.e. solving the problem, for 50% of them. This first
experiment is performed without any interactive information
input. Table 2 summarizes our statistical results, where we
observed that the average plan length is really small (1.02
actions) and shows high variance between generated plans
(1.54), with the longest plan containing 15 steps.

We also observed an average of 7.25 identified actions
for each instance, approximately 52% of actions consider-
ing that all evaluated sentences contain valid actions. From
these identified actions, we report an average of 0.97 solved
actions, i.e. actions which parameters are available within
evaluated sentence. We also observe that the solver iden-

*https://spacy.io/

Avg Std Min Max
Plans length 1.02 1.54 1 15
Identified actions | 7.25 5.14 0 55
Solved actions 097 0.99 0 5

Table 2: Statistical analysis of results

Without manual input | With manual input

(squash egg) (squash egg)

(put egg whisk) (squash cheese)

(put egg skillet) (put egg skillet)

(pour egg skillet) (put egg whisk)
(put cheese skillet)
(pour egg skillet)

Table 3: Generated plans with and without manual informa-
tion input comparison.

tified a maximum of 5 distinct actions for some generated
domain formalization.

In order to evaluate how missing information affects gen-
erated results, we performed experiments by manually fill-
ing in blanks and comparing results. Table 3 compares gen-
erated plans with and without manual information input,
where we observe that plans with manual information input
are more detailed.

Related Work

Using unstructured raw data to define planning domains is
an active area of research. Framer (Lindsay et al. 2017) re-
ceives sentences with instructions as input and acquires ac-
tions and objects using Named Entity Recognition systems,
groups similar actions description using a similarity function
to finally sends this compiled information for LOCM (Cress-
well, McCluskey, and West 2009) to generate a formal do-
main description. Users must manually eliminate redundan-
cies and fill in blanks.

StoryFramer (Hayton et al. 2017) devises planning do-
main models from input natural language plot synopses us-
ing a generation process similar to Framer, but in this case it
generates a domain and problem definition capable of telling
the original source story.

Instead of natural language input, LatPlan (Asai and
Fukunaga 2018) uses images of states transition as input
and, using State Auto-Encoders, generates a latent space
representation of states, transitions and actions that can be
computed to devise a plan. LatPlan returns either a PDDL
model (Action Model Acquisition, or AMA 1) or a set of
images that represents the order of actions that must be per-
formed to achieve a goal (AMA 2).

LatPlan’s Action Model Acquisition 1 generates large
state transition models to be handled by off-the-shelf plan-
ners. To overcome this limitation, the Cube-Space Autoen-
coder (Asai and Muise 2020) translates unstructured raw
data into PDDL model by jointly computing State Auto-
Encoder and Action Auto-Encoder instead of computing
them independently, which results in a smaller state tran-
sition model. An advantage of converting raw unstructured

data to PDDL is that it allows using domain-independent
heuristics to improve planning performance.

Conclusion

We developed a rule-based solver capable of generating for-
mal domain and problem descriptions in PDDL format from
natural language step-by-step instructions. We evaluated our
solver using a cooking domain, but the method is domain-
independent: adapting to other domains just requires adjust-
ing actions and objects sets. It depends, however, on well-
formed and informative sentences to yield good results.

In the future, we aim to improve the dataset preprocess-
ing stage in order to better identify action parameters that
may be implicit in current sentence or referred in previ-
ous ones. Given that more actions would be available dur-
ing planning stage, this improvement should yield more de-
tailed and accurate plans. Automating action identification
within sentences not based on static keywords but evalu-
ating words similarities by using Named Entity Recogni-
tion mechanisms, synonyms dictionaries or word embedding
vectors (Mikolov et al. 2013) may reduce dependency of
manually provided information by an user while designing
rules.

Using all previous action effects as preconditions for an
action requires that all actions have the same parameters,
where most of the time they are not needed. This also gener-
ates another problem: either the sentence must provide all
the (seldom available) information required by action pa-
rameters, or the solver must be capable of retrieving such in-
formation from previous sentences, which may be a complex
task because of natural language peculiarities, or learn them
automatically. Identifying specific action preconditions in-
stead of using all previous actions effects would explore the
full potential of automated planners by really exploring al-
ternative plans in search for optimal solutions.

References

Alkhazraji, Y.; Frorath, M.; Griitzner, M.; Helmert, M.;
Liebetraut, T.; Mattmiiller, R.; Ortlieb, M.; Seipp, J.; Sprin-
genberg, T.; Stahl, P.; and Wiilfing, J. 2020. Pyperplan.

Amado, L.; Pereira, R. FE.; Aires, J. P.; Magnaguagno, M.;
Granada, R.; and Meneguzzi, F. 2018. Goal recognition in
latent space. In Proceedings of the 31st International Joint
Conference on Neural Networks (IJCNN).

Asai, M., and Fukunaga, A. 2018. Classical planning in deep
latent space: Bridging the subsymbolic-symbolic boundary.
In Mcllraith, S. A., and Weinberger, K. Q., eds., Proceedings
of the Thirty-Second AAAI Conference on Artificial Intelli-
gence, (AAAI), 6094-6101. AAAI Press.

Asai, M., and Muise, C. 2020. Learning neural-symbolic
descriptive planning models via cube-space priors: The voy-
age home (to STRIPS). In Bessiere, C., ed., Proceedings of
the Twenty-Ninth International Joint Conference on Artifi-
cial Intelligence, IJCAI 2020, 2676-2682. ijcai.org.

Cresswell, S.; McCluskey, T. L.; and West, M. M. 2009.
Acquisition of object-centred domain models from planning

examples. In Gerevini, A.; Howe, A. E.; Cesta, A.; and Re-
fanidis, L., eds., Proceedings of the 19th International Con-
ference on Automated Planning and Scheduling (ICAPS).
AAAL

Granada, R.; Pereira, R. F.; Monteiro, J.; Barros, R.; Ruiz,
D.; and Meneguzzi, F. 2017. Hybrid activity and plan recog-
nition for video streams. In The AAAI 2017 Workshop on
Plan, Activity, and Intent Recognition (PAIR@AAAI).

Hayton, T.; Porteous, J.; Ferreira, J.; Lindsay, A.; and Read,
J. 2017. Storyframer: From input stories to output planning
models. In 2017 Workshop on Knowledge Engineering for
Planning and Scheduling (KEPS@ICAPS).

Lindsay, A.; Read, J.; Ferreira, J.; Hayton, T.; Porteous, J.;
and Gregory, P. 2017. Framer: Planning models from natural
language action descriptions. In 27th International Confer-
ence on Automated Planning and Scheduling.

Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Effi-
cient estimation of word representations in vector space. In
Bengio, Y., and LeCun, Y., eds., Ist International Confer-
ence on Learning Representations (ICLR).

Steinert, M., and Meneguzzi, F. 2020. WikiHow Planning

recipes Dataset: Code companion for KEPS 2020. https:
//doi.org/10.5281/zenodo.4056933.

