
Method Composition through
Operator Pattern Identification

Maurício Cecílio Magnaguagno, Felipe Meneguzzi
 School of Computer Science (FACIN)

 Pontifical Catholic University of Rio Grande do Sul (PUCRS)
 Porto Alegre - RS, Brazil

mauricio.magnaguagno@acad.pucrs.br, felipe.meneguzzi@pucrs.br

Introduction

● Classical planning description (PDDL)
○ Easier to describe
○ Harder to solve

● Hierarchical task networks (HTN) and macros
○ Harder to describe
○ Save time by focusing on certain actions/primitives

● We can start with PDDL and eventually jump to HTN

2

Introduction - Motivation

● Steps to convert classical domains to a Hierarchical Task Network (HTN):
○ Cluster operators into methods.
○ Convert goals into tasks that use such methods.
○ Repeat this process for every domain...
○ Notice sub-problems share method construction.
○ Modify old method to match new domain.

● Repetitive process for a human
● Can we automate such process?

3

Background

Classical Planning

● Initial state
● Goal state
● Use actions/operators
● Optimality is search/heuristic

dependent
● Anarchical/flat description

○ Easier to make/maintain
○ Harder to solve

4

Hierarchical Planning

● Initial state
● Task list
● Use operators and methods
● Optimality is description dependent
● Hierarchical description

○ Harder to make/maintain
○ Easier to solve

Classical Planning - PDDL

(define (domain dependency)
 (:requirements :strips :typing :negative-preconditions)
 (:predicates (have ?a ?x) (got_money ?a) (happy ?a))

 (:action work
 :parameters (?a - agent)
 :precondition (not (got_money ?a))
 :effect (and (not (happy ?a)) (got_money ?a)))

 (:action buy
 :parameters (?a - agent ?x - object)
 :precondition (and (got_money ?a) (not (have ?a ?x)))
 :effect (and (not (got_money ?a)) (have ?a ?x)))

 (:action give
 :parameters (?a ?b - agent ?x - object)
 :precondition (and (have ?a ?x) (not (have ?b ?x)))
 :effect (and (not (have ?a ?x)) (have ?b ?x) (happy ?b))))

(define (problem pb1)
 (:domain dependency)
 (:objects
 ana bob - agent
 gift - object
)
 (:init
 (got_money bob)
)
 (:goal
 (happy bob)
)
)

5

HTN - JSHOP

(defdomain dependency (
 (:operator (!work ?a)
 ((agent ?a) (not (got_money ?a)))
 ((happy ?a))
 ((got_money ?a))
)
 …
 (:method (work_to_buy_to_give_gift_to ?a)
 do-nothing
 ((object ?gift) (have ?a ?gift) (happy ?a))
 ()

 somebody-have-gift
 ((object ?gift) (not (have ?a ?gift)) (agent ?b) (have ?b ?gift))
 ((!give ?b ?a ?gift))

 got-money
 ((object ?gift) (not (have ?a ?gift)) (agent ?b) (got_money ?b))
 ((!buy ?b ?gift) (!give ?b ?a ?gift))
 ...
)
)

(defproblem pb1 dependency
 (;init
 (agent ana)
 (agent bob)
 (object gift)
 (got_money bob)
)
 (;tasks
 (work_to_buy_to_give_gift_to bob)
)
)

6

Domain Knowledge Construction

7

● Identifies subproblems based on PDDL operators only
● Requires no annotations
● Requires no examples (plan traces)

Classical
domain

Classical
problem

Relate
operators

with patterns

Compose
methods

Goal state
to tasks

HTN
domain

HTN
problem

P
ar

se
r

C
od

e
G

en
er

at
or

Classify Predicates

We partition to understand what is dynamic or static in the domain.

8

Identifying Operator Patterns

● Swap operator pattern
○ Zero or more actions swap the value of a predicate to satisfy certain

condition

● Dependency operator pattern
○ Action/method precondition is satisfied by the effects of another

action/method

● Free variable operator pattern
○ Action/method have free variable(s) to be decided at run-time

9

Swap Operator Pattern

10

Preconditions Effects

(connected ?location1 ?location2)*

(at ?agent ?location1) (not (at ?agent ?location1))

(not (at ?agent ?location2))** (at ?agent ?location2)

Preconditions Effects

(trade ?item1 ?item2)*

(have ?agent ?item1) (not (have ?agent ?item1))

(not (have ?agent ?item2))** (have ?agent ?item2)

*Constant predicate
**Optional precondition, mutually exclusive (can only be at one place at a time)

Swap Operator Pattern

11

(:method (swap_predicate ?object ?goal)

 base
 ((predicate ?object ?goal))
 ()

 using_operator
 (

(constraint ?current ?intermed)
(swap_predicate ?object ?current)
(not (predicate ?object ?goal))
(not (visited_predicate ?object ?intermed))

)
 (

(!operator ?object ?current ?intermed)
(!!visit_predicate ?object ?current)
(swap_predicate ?object ?goal)
(!!unvisit_predicate ?object ?current)

)
)

Swap Operator Pattern

• Method
– Base case
– One recursive case for each operator

that swaps the same predicate
• Cache

– Visit operator
– Unvisit operator

12

(:operator (!!visit_predicate ?object ?current)
 ()
 ()
 ((visited_predicate ?object ?current))
)

(:operator (!!unvisit_predicate ?object ?current)
 ()
 ((visited_predicate ?object ?current))
 ()
)

Dependency Operator Pattern

13

Preconditions Effects

(connected ?location1 ?location2)

(at ?agent ?location1) (not (at ?agent ?location1))

(not (at ?agent ?location2)) (at ?agent ?location2)

Preconditions Effects

(at ?agent ?location)

(dropped ?item ?location) (not (dropped ?item ?location))

(have ?agent ?item)

Dependency Operator Pattern

14

Dependency Operator Pattern

● Method
○ Goal satisfied

○ Satisfied

○ Unsatisfied

15

(:method (dependency_first_before_second ?param)
 goal_satisfied
 ((goal_predicate))
 ()
)

(:method (dependency_first_before_second ?param)
 satisfied
 ((predicate ?param))
 ((!second ?param))
)

(:method (dependency_first_before_second ?param)
 unsatisfied
 ((not (predicate ?param)))
 ((!first ?param) (!second ?param))
)

Dependency Injection

16

Dependency Injection

17

Free Variable Operator Pattern

● High-level pattern (beyond operators)
● Find value of variable at run-time
● Value is related to goals

● (happy bob)
● Who works?
● What is the gift?

● We want to unify ?p3
● Discover value at run-time based on

the preconditions of the original
method

(:method (apply_op ?p1 ?p2 ?p3)
 apply_op_with_3_parameters
 ((precond1 ?p1 ?p2) (precond2 ?p2 ?p3))
 ((!op ?p1 ?p2 ?p3))
)

(:method (unify_apply_op ?p1 ?p2)
 unify_parameter_p3
 ((precond2 ?p2 ?p3))
 ((apply_op ?p1 ?p2 ?p3))
)

18

Composing methods and tasks

● Classify operators

● Add methods to domain

● Relate goals to operator effects

● Find methods that contain such operators (and maintain such effects)

● Replace variables of tasks using goal state predicates

● Ground tasks or create a free-variable methods and tasks to ground at

run-time

● Add tasks to task list

19

Use Case: Rescue Robot Domain

● Operators
● Enter
● Exit
● Move
● Report

This domain was created by Kartik Talamadupula and Subbarao Kambhampati.

20

Room Room

Room

Hallway

Hallway

Use Case: Rescue Robot Domain

21

Preconditions Effects

(in ?l1 ?b)

(at ?agent ?l1)

(not (reported ?agent ?b)) (reported ?agent ?b)

Preconditions Effects

(connected ?l1 ?l2)

(hallway/room ?l1)

(hallway/room ?l2)

(at ?agent ?l1) (not (at ?agent ?l1))

(not (at ?agent ?l2)) (at ?agent ?l2)

Move
Enter
Exit

Report

Use Case: Rescue Robot Domain

● Patterns
● Swaps:

■ Enter
■ Exit
■ Move

● Dependencies
■ Enter ⇒ Report
■ Exit ⇒ Report
■ Move ⇒ Report

● Methods
● Swap_at = Enter|Exit|Move
● Swap_at_before_Report = Swap_at ⇒ Report

22

Brute-force Fallback

● If no permutation of tasks obtain the goal state we fallback to a modified
version of the method described in Complexity Results for HTN planning

● We mark actions to avoid infinite loops (each action can be used N times)

23

Experimentation - Rescue Robot Robby

24

Robby Problem Classical planner HTN Brute force HTN Patterns + Brute force

pb1 0.000 0.008 0.021

pb2 0.000 2.594 0.025

pb3 0.001 Time-out (> 100s) 0.072

pb4 0.000 4.399 0.031

pb5 0.001 20.812 0.062

pb6 0.000 Time-out (> 100s) 0.046

Experimentation - Goldminers

● Obstacle
● Deposit
● Gold
● Agent

25

Goldminers Classical planner HTN Brute force HTN Patterns + Brute force

pb1 Time-out (> 100s) Time-out (> 100s) 6.270

pb2 Time-out (> 100s) Time-out (> 100s) 3.668

Experimentation - Almost

26

• Domains from IPC 2014
• ChildSnack

– Fails to see where to start decomposing: moving tray to the kitchen
• FloorTile

– Fails to see when to use paint-up: first row
• Grid

– Fails to see multiple journeys are required to reach goal position: multiple keys

Conclusions and Future Work

● It is possible to automatically obtain an HTN description from a classic
description without examples/annotations

○ At least for some domains

● May be used to increase domain knowledge on systems that can achieve
speed-up when such knowledge is available

● Erol et al. brute-force conversion
● Lotinac and Jonsson, invariance analysis
● Shivashankar et al. GoDeL

● Improve the efficiency and quality of the resulting HTN domain knowledge
● Selectively choose methods for decompositions rather than performing blind

search

27

