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Abstract. Open multi-agent systems consist of a set of heterogeneous
autonomous agents that can enter or leave the system at any time. As
they are not necessarily from the same organization, they can have con-
flicting goals, which can lead them to execute conflicting actions. To
prevent these conflicts from negatively impacting the system, a set of ex-
pected behaviors — which we refer to as norms — can desirable; to enforce
compliance to such norms, sanctioning of violating agents can be used to
deter further violations. As new agents enter the system, they must be
able to identify existing norms in order to avoid sanctions. In this con-
text, this paper provides two contributions. First, we propose a norma-
tive multi-agent system that can be used to evaluate norm-identification
algorithms. Second, we validate an existing bayesian norm-identification
approach in this system, confirming its positive result in a set of experi-
ments.

Keywords: norm identification, normative system, multi-agent system

1 Introduction

Multi-agent systems allow the specification, modeling and implementation of
complex behaviors generated by multiple autonomous agents interacting in a
common environment. If these agents can perform actions that interfere with
each other and jeopardize the overall functioning of the system, some kind of
coordination mechanism can be employed to prevent this negative impact [5];
this can be achieved using regimentation or enforcement approaches. This first
approach restricts the possible actions of the agents by design, completely pre-
venting forbidden actions. While regimentation precludes violations, it also de-
creases the agent autonomy (e.g. in [6]). The latter, in turn, enforces a set of
desirable behaviors (norms) by sanctioning violating agents (e.g. in [3, 7,9, 20]).
This has two main advantages: it allows agents to reason whether to follow a
norm-compliant or a norm-violation behavior based on, for example, its resulting
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expected utility, and it enables an open multi-agent system where agents are not
necessarily designed by the same organization [5].

As the expected behavior is not known at design time in enforcement ap-
proaches, the participating agents must be able to identify norms currently being
enforced in a given system. This can be necessary, for example, in systems in
which norms are not explicitly available or if there is no trust between agents.
There are many different approaches to norm identification in the literature [17,
18,12,2,1,11]. In this paper we leverage an existing Bayesian approach [4] to
develop a norm identification procedure within an agent simulation [8]. In order
to validate the resulting approach we propose a normative multi-agent system
testbed. We perform a set of experiments using this testbed; the results show
that the employed approach is able to correctly identify the existing norms in the
system, enabling agents to start taking into account these norms in its reasoning
process, and thus allowing them to avoid sanctions.

2 Background

In this section we describe the Jason platform which is used to develop the multi-
agent system, and its companion CArtAgO to implement artifacts which can be
manipulated by agents. Then we describe how we formalize norms and how it
relates to the Bayesian norm identification approach.

2.1 Jason with CArtAgO

Jason is based on the AgentSpeak language [13], which in turn implements the
BDI architecture (belief, desires and intentions) [14] to simulate agent reasoning.
An agent designer provides a set of plan-rules to achieve an implicit goal; these
plans are chosen based on the current context of the agent beliefs and the set of
available plans for an agent is called the plan library.

While Jason provides a framework for the internal reasoning of the agents,
CArtAgO (Common ARTifact infrastructure for AGents Open environments)
provides the abstraction of a virtual environment [15] in terms of artifacts. Arti-
facts contain a set of operations available to agents and are a useful abstraction
of components used to perform a certain coordinated behavior among agents.

2.2 Norms

Norms exist in a society and are used to define the expected behavior of agents
when performing actions in this environment [10]. Their function is to avoid
potential harmful behavior that negatively impacts society, e.g. agents driving
on the left and on the right side of the road, as this would lead to a high
number of car accidents. Norms can be violated by individual agents if they
reason that this is the best course of action, i.e. if an agent reasons that the
outcome of a norm violating behavior is more desirable than compliance. This
makes norms more flexible than hard-constraint rules specified at design time,



and over which agents have no choice, limiting their autonomous behavior. As a
norm can be violated, it must be enforced in order to remain active, i.e. agents
not following established norms must be sanctioned to deter further violations;
this enforcement can be carried out by an authoritative organization or by other
agents in the society [16].

According to [16], there are five phases of norm development: creation, iden-
tification, spreading, enforcement and emergence. In the current work we focus
on the norm identification phase, which refers to the problem of how new agents
entering the society can infer the norms created and currently being enforced
in the system. We implement and validate a recent approach proposed in the
literature, which uses the Bayes Theorem to make this inference, described in
the next section.

2.3 Norm identification using a Bayesian approach

In this section we describe a norm identification approach which uses the Bayes
Theorem in order to infer a set of norms in a given society [4]; we refer to
the original paper to more detailed information. Norm identification approaches
usually infer whether a norm exists in the society by looking at the actions
performed by existing agents in the system. For this, such approaches assume
that they have a model of how the system works and that they can collect a set
of observations; the first can be encoded as a state-space graph of the possible
transitions in the system, where nodes are states and edges are agent actions,
while the second is a list of observations, where each one is a sequence of nodes
visited by an existing agent.

In this approach, norms are defined in a subset of linear temporal logic (LTL),
which specifies constraints on sequences of states. They can be either obligations
(eventually or next) or prohibitions (never or not next); having the following
six norm interpretations:

1. eventually(d): Constrain a plan execution to include node 4.

2. never(d): Constrain a plan execution to exclude node ¢.

3. next(v,d): Constrain a plan execution to, when agent reaches context node
v, include node §, where exists an edge from «y to ¢ in the graph.

4. not_next(y,d): Constrain a plan execution to, when agent reaches context
node v, exclude node §, where exists an edge from 7 to § in the graph.

5. eventually(vy,d): Similar to item 3, but it is not necessary to exist an edge
from ~ to d. This indicates that node § will eventually be reached from node
5.

6. never(y,0): Similar to item 4, but it is not necessary to exist an edge from
~ to §. This indicates that node § will never be reached from node ~.

Given the above six norm interpretations, there are a number of possible
norm hypotheses with respect to a state-space graph; all these possible norm
hypotheses are candidates for actual norms in the system. The norm hypotheses
are weighted according to a number of observations given by some new agent



in the system; each observation contains a sequence of states in the state-space
graph, executed by existing agents.

The approach we employ [4] uses an alternative interpretation of the Bayes
Theorem that computes the odds of each possible norm hypotheses against a null
hypothesis (i.e. the hypothesis that there are no norms), given some observed
data D:

O(H, : H|D) = p(H1|D) _ p(H1)p(D|Hy)/p(D) — O(H, :HQ)P(D|H1)

p(Ha2|D)  p(H2)p(D|H2)/p(D) p(D|Hz)

, where H are the set of hypotheses and O(H; : Hs) is the prior odd of H;
over Hy. The prior odds of the null hypothesis is defined as one, while for the
other norm hypotheses is set to an arbitrary value less than one. Note that here,
each norm is considered in isolation against a null hypothesis of there being no
norm. The candidate norms became actual norms when their relative odds is
greater than the odds of other norm hypotheses. We refer to the original paper
for further details, and in the following sections we describe the scenario and
experiments performed.

3 Norm-detecting system

We developed a multi-agent system testbed in Jason with CArtAgO. The envi-
ronment is a park (based on [19]), where agents can move in a grid simulating
a park environment. There are bars where agents can buy food or beverages;
after that, they can act in two ways: they can go to a trash can to recycle the
waste or they can discard it somewhere in the park. In the first case they are
non littering agents and in the second they are littering agents. Agents perform
these actions and walk randomly in the park until the simulation ends. In this
system, a norm is established when almost every single agent is from the same
type, i.e. littering or non littering.

Figure 1 shows a park environment example. The trash can is located at the
top left, in gray, and the bar is at the center, in green; yellow diamonds represent
garbage in the environment, and agents are represented by circles (dark and light
blue circles represent non littering agents carrying or not litter; gray and black
circles represent littering agents carrying or not litter).

All agents start with a score of 100 utility points, being either littering or
non littering agents, which we refer to as their strategy. The agents change their
strategy once its score reaches a certain threshold; in the current work we set
this threshold to 50 utility points. There are two sources of change in this score:
the first is when they litter or when they recycle; in the first case they have a
gain of utility of 0.5 points, while in the latter case they loss 0.5 points of utility.
These values represent the fact that is easier to litter than it is to find a trash
can and recycle.

The second source of change in the agent scores is when a non littering
agent observes another agent littering. This can occur when both agents are
within an observing distance of one another, i.e. agents cannot observe all other



litter agents: 3
not litter agents: 3
unknown agents: 1

cycles: 13003
stabilized at cycle: 0

Fig. 1: Example of a park environment with seven agents

agents and their performed actions in the environment. In this situation, the
observer agent yells at the other agent, losing a very small enforcement cost
(0.01 of wutility); consequently, the agent that littered loses 10 utility points from
its score, representing a reputation loss or some loss derived from a negative
emotion (e.g. guilty).

When a new agent enters in the environment, it collects observations to infer
the current norms. In order to do this, it first needs a representation of the
state-space of the possible states and actions in this system. Figure 2 shows a
possible representation, where nodes are states and edges are actions available
to the agents. Note that not all actions present in the plan library appear in this
graph for readability purposes; we omit irrelevant actions (which will not give
us any useful information of the existing norms) in the figure only (but they are
represented internally in the agents), like recursive actions that try to move from



one location to another. In the figure, states are labeled as a single character
with their corresponding description inside parentheses; as input to the norm
identification algorithm we will provide just the single characters.

buySomething

w(wantToBuy)

goToClosest Bay

o(otherLocation

orderSomething
c(carryingWaste

goToClosestTr4
next

t(atRandomLocation))
n(not littered

Fig. 2: State-space graph of the plan library for an agent in the park environment

Having the representation of the state-space graph, we now describe the
procedure to infer the established norms, shown in Algorithm 1. It starts with
the agent collecting a set of observations, where each observation is a sequence
of characters in the graph (Line 2). The algorithm then provides this set of
observations as input to the Bayesian norm identification algorithm (Line 3),
which in turn calculates the odds of all norm hypotheses; as these odds are
not absolute and must be considered as relative to other norm hypotheses, we
only retrieve the ten most probable norm hypotheses to infer the current norm



(Line 4). We filter these ten norm hypotheses to detect the relevant norm to
our problem (Line 5), i.e. if there is a norm to litter or to not litter. To perform
this filter, we are interested in norm hypotheses where 0 is ¢t,n,r or [ — i.e. the
main nodes in the graph that discriminates between the two behavior we are
interested in. For the norm interpretations where there is a node ~, we filter
those that are 7,w,b or ¢ — i.e. the nodes in the graph which contains a path
to nodes in 4. We then perform further processing to check which is the most
probable norm based on the corresponding norm hypotheses relation (Line 7):

1. for next or eventually: if 6 = (¢t or n), then this is an indication that a not
litter norm is present in the system; if § = (r or [) it is an indication of a
litter norm.

2. for not next or never: this is the opposite of the above rule, e.g. if § = (r or
1), then this is an indication that a not litter norm exists in the system.

The new agent in the society adopts the behavior of the most probable norm,
based on the number of indications of the litter and not litter norm; for this, it
chooses the norm with the highest number of indications (Line 9). In case of a
draw, the agent can either keep collecting observations until it infers a norm or
it can arbitrarily adopts a norm (e.g. a not litter norm).

Algorithm 1 Norm Inference Procedure

1: procedure NORMINFERENCEPROCEDURE((stateSpaceGraph)
2: observations < collect a set of observations

3: normHypotheses < normldenti fication Algorithm(stateSpaceGraph, observations)

4: topTen N ormHypotheses < retrieve top ten hypotheses from normHypotheses

5 filtered < filter relevant topTenNormHypotheses

6 for normHypothesis in filtered do

T check if normHypothesis indicates a litter or not litter norm

8: end for

9 return most probable norm based on the number of each norm indications
0: end procedure

4 Experiments and Results

In order to evaluate the accuracy of correct identification of existing norms, we
ran a set of simulations on the environment described in the previous section.
More specifically, we added a new agent in the system that collects a set of obser-
vations over 10000 execution cycles; this results in an average of two observations
for each observable agent in the system.

We designed four different types of experiments: the first one is designed to
test the accuracy of new agents detecting a not litter norm, while in the second



experiment there is a litter norm. In the third experiment there is no established
norm in the society; finally, in the last experiment we test the accuracy in relation
to the number of existing agents in the system.

4.1 Not Litter Norm

For the first experiment we simulate the environment with six existing agents,
where all agents are of the non littering type, thus this society has an established
not litter norm. We add a new agent in the system, which collects a set of
observations; a sample of a set of observations follows:

1. i,0, f
2. i,w,b,c
3. i,w,b,e,t,n, f

These sequences can be partial in the state-space graph of the scenario, i.e.
they do not need to begin in the initial node state and finish in the end node state,
because agents have a limited observing time and can only observe a limited set
of agents which are at a close distance. From the first observation we cannot
infer any norm, because this is a sequence of states of an agent that decided to
randomly walk in the park. The second observation represents a partial sequence
of states which ends with the state where the agent is “carrying waste”; again,
this does not indicate any norm. Finally, the third observation indicates that a
not litter norm exists, because it is a sequence of states of an agent that has
recycled its waste.

An example of the output of the Bayesian norm identification algorithm given
this setup is the following top ten norm hypotheses:

1. (¢, 'next’, 't’)

2. (’¢’, 'not next’, 'r’)
3. (¢, ’eventually’ 'n’)
4. (7', 'not next’, ')
5. (’c’, 'never’, ’r’)

6. ('r’, ‘never’, ")

7. (1, ’eventually’ )
8. (', ’eventually’, ’s’)
9. (', ’eventually’, 'n’)
10. (’r’, ’eventually’, '¢’)

From these hypotheses, we can infer that a mot litter norm exists. This is
supported by: the first norm hypothesis, indicating that after an agent is in
node ¢, it will go to node ¢ (it will recycle); the second norm hypothesis, in-
dicating that agent will not go to a random location to litter; the third norm
hypothesis, indicating that agent will eventually recycle; and the fifth norm hy-
pothesis, indicating that agent will never go to a random location to litter. All
other hypotheses are irrelevant for the detection of the existing norm. For this
experiment, all simulations correctly inferred the not litter norm; this enables
the new agent to adopt the established norm.



4.2 Litter

This experiment is similar to the previous one, but instead of an existing not
litter norm, there is a litter norm established in the society. An example of the
top ten norm hypotheses follows:

1. ('w’, ’eventually’, ")
2. ('n’, ’eventually’, '¢’)
3. (’t’, 'not next’, 'n’)
4. ('n’, ’eventually’, 'r")
5. (Y, ’eventually’, ’0’)
6. (’b’, 'never’; 'n’)

7. ('n’, ’eventually’, 'n’)
8. (', 'never’, 'n’)

9. ('never’, 'n’)
10. ("w’, 'never’, ’t’)

Norm hypotheses one, six, eight, nine and ten indicate that there is a litter
norm, because they lead us to nodes r and [ and away from nodes t and n.
Running this experiment in a set of simulations resulted in all new agents being
able to correctly infer the existing litter norm.

4.3 TUndefined

While the previous experiments have an established norm, in this experiment
we have half littering agents and half non littering agents; the expected result
is that the new agent will not be able to infer any norm. An example of the top
norm hypotheses follows:

1. None
2. (’w’, 'never’, 'w’)
3. (’s’, ‘never’, 'n’)
4. (’s’, ’eventually’, 'n’)
5. (', ‘never’, ’s’)
6. (’s’, never’, ")
7. (’b’, 'never’, ’s’)
8. (’t’, mever’, ")
9. ('n’, 'next’, ")
10. ('w’, ‘never’, ’s’)
11. (’f’, 'never’, ’0’)

None of these norm hypotheses indicate that there is an established norm.
Accordingly, in the set of simulations the new agents were (correctly) not able
to infer any norm.



4.4 Increasing the number of agents

For the last experiment we validate the norm identification approach on a society
with an increasingly large number of agents. We perform several simulations, and
in all cases where all existing agents in the society have a not litter norm or where
all have a litter norm, the new agent was able to correctly infer the established
norm.

When the relation between the number of non littering and littering agents is
close to one, and therefore there is no norm currently established, the approach
correctly infers so. When this relation is disproportional, i.e. there are many more
agents of one type than of the other, the approach is also capable of inferring the
norm of the predominant type. For example, with 50 agents, 95% non littering
agents and the remaining 5% littering agents, the approach inferred a not litter
norm. With 100 agents, 90% littering agents, the litter norm was inferred.

Table 1 shows results from experiments with an increasingly number of
agents, changing the relation between non littering and littering agents, along
with its corresponding inferred norm. When the approach is not able to infer any
norm, the new agent being added to the society can either assume an arbitrary
norm or can keep collecting observations.

Percentage of littering agents|# of agents|Inferred norm

100% to 6 litter
90% 50 litter
100 litter
85% to 0 none
10% 50 none
100 none

5% to 6 not l%tter

0% 50 not litter

0 100 not litter

Table 1: Inferred norms for an increasingly number of agents, and the percentage
of littering and non littering agents

5 Conclusion and Future Work

In this paper we described an experiment to validate a norm identification ap-
proach in a multi-agent system implemented in Jason with CArtAgO. More
specifically, we used a Bayesian norm identification from [4] as a base to get the
most probable norm hypotheses, and then process these results to infer if there
is a norm established in the society. This paper provides two main contributions.
First, we developed a norm inference testbed in a popular agent programming
language that can be used for experiments of norm-identification algorithms.



Second, we have conducted further experiments to validate the bayesian norm-
identification approach by Cranefield et al. [4], confirming their positive result
in a multi-agent setting.

In order for the Bayesian norm identification approach classify the norm
hypotheses, it needs both the state-space graph of the problem and a set of ob-
servations. We manually built the state-space graph of the problem, identifying
its key states and actions. For future work we intend to try to automatically
generate the state-space graph of the plan library built in Jason; the main chal-
lenges would be to identify the key components of the problem and to remove
loops which exists inside the plan library. This would allow the Bayesian norm
identification approach to be applied to any system built in Jason.

We also intend to run more experiments in different and more complex sce-
narios, with norms with increasing complexity, to further evaluate the employed
approach. We would also like to investigate different ways of combining the top
norm hypotheses, maybe introducing weights accordingly to their relative odds.
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