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Background and Outline

• Why did we build that app? “Google Core AI”@CMU

• Challenge to create usable AI components for an App library

• Involving producers and consumers to motivate application

• Two components produced for a Proactive Indoor Navigation App

• Indoor Localization

• User Prediction
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Core AI Components

• User Prediction (Producer Team)

• Felipe, Katia and Piotr

• Decision theoretical intention recognizer 

• Indoor Navigation (Consumer Team)

• Balajee, Bernardine and Evan

• App Team

• Felipe, Balajee and Chet
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Indoor Localization

• Indoor localization performed with sensors in the mobile phone

• Signal strength fingerprinting 
(precise, high CPU usage)

• Dead reckoning 
(low CPU usage, error prone)
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RSSI Database Construction

• Requires a map correlating APs signal in a 
building with precise locations

• Built using a robot equipped with accurate 
sensors 
(Rangefinder and Gyroscope)

• Tele-operated in each floor of a building

• Creates a map of empty space 

• Map is shared with all mobile phones 
entering the building
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Intention Prediction
• Based on a decision-theoretical model 

behaviour 
Markov Decision Process (MDP)

• An MDP is defined in terms of

• An initial state S0 

• A transition model T(s,a,s′) — P(s′|a,s) 
(Markovian) 

• A reward function R(s) — sometimes 
expressed as R(a,s) 

• A solution to a MDP must specify what 
the agent should do for any state. Such a 
solution is called a policy
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Intention Prediction
• Based on a decision-theoretical model 

behaviour 
Markov Decision Process (MDP)

• While, the solution to MDPs usually assumes a 
perfect decision-maker to generate a policy

• We define a stochastic policy

• That yields the probability of an action being 
chosen, proportionally to its optimality

⇡⇤
(s) = argmax

a
Q⇤

(s, a)

⇡⇡(a|s) = Q⇤(s, a)P
a02A Q⇤(s, a0)
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root

R1602 - 0 : prob = 0.332

R1602D - 0R1602A - 0R1604 - 0 : prob = 0.218

R1604C - 10 R1604B - 0 R1604A - 0 R1600 - 0 : prob = 0.137

R1611 - 0 R1609 - 0 R1612 - 0

R1502 - 0R1602B - 0 R1602C - 10

Generating a prediction

• Given a probability estimate of the 
current user-position (Belief state)

• Generate a tree of future paths using 
the stochastic MDP policy, such that:

• Actions used to create successor 
states have a minimum probability

• All possible successor states to 
such actions are added to the tree

• Only states along an increasing 
gradient towards target states are 
followed

...

R1602 0.332103

R1602B 0.03321
R1602C 0.05166
R1602D 0.03321

R1604 0.217712

R1600 0.136531

R1602A 0.00369

...

...

⇡⇡(a|s) � thr
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Hierarchical Path Planning

• Algorithm based D*-lite

• Hierarchical map representation in two 
levels of granularity

• Higher-level structural graph
(multiple rooms, floors, buildings)

• Low-level grid of the free space 
(single floor)
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Putting it all together

• Navigation App was built using three separate Android services 
controlled by the main App

• Communication via Android messaging

• Profiling of each component led to substantial design changes
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Navigation Step-by-step

• Step 1 - Inputs

• RSSI database

• Floor plans for target building

• User annotations or learned habits
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Navigation Step-by-step

• Step 2 - Particle filter update

• Particles generated by the PF 
using the WiFi data (1 Hz)

• Particles updated by the dead-
reckoning system (30 Hz)

• Particles outside known space 
discarded

Particle Error Bubble
Particles
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Navigation Step-by-step

• Step 3 - Prediction update

• Particles from the Indoor 
Localization component are 
converted to a Belief-State

• Prediction tree is generated from 
most likely current state (beyond a 
certain threshold)

.24 - Corridor

.14 - Room 1602A

.57 - Room 1602

.05 - Room 1604Particle Error Bubble

Particles

root

R1602 - 0 : prob = 0.332

R1602D - 0R1602A - 0R1604 - 0 : prob = 0.218

R1604C - 10 R1604B - 0 R1604A - 0 R1600 - 0 : prob = 0.137

R1611 - 0 R1609 - 0 R1612 - 0

R1502 - 0R1602B - 0 R1602C - 10
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Navigation Step-by-step

• Step 4 - Path planning

• Most likely destination is 
extracted from the prediction 
tree

• Optimal path is generated taking 
into consideration obstacles 
along the way

• Path-planning performed for the 
same floor and between floors 

Friday, 22 March 13



Key Insights and Results

• Producer/consumer model for AI components interesting motivator

• Major bottlenecks

• WiFi based localization - required adjustments on update frequency

• MDP Policy recalculation - whenever possible done via external service

• Accuracy and runtime results

• Variance in destination prediction when in long corridors

• Magnetic disturbances in the building have large effect on localization
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Potential for Future Work

• RSSI database acquisition

• Implement autonomous robot scanning

• Use crowd sourcing for RSSI database updates

• MDP learning and solver algorithm

• Generate a stochastic policy using policy iteration (anytime algo)

• Online learning of user habits
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Questions?
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Signal'Strength'
Fingerprinting'

•  Automated)WiFi)signal)strength)database)genera4on)using)a)pioneer)
robot)

•  27D)dynamic)robot)map)of)the)environment))
•  At)run4me,)the)distance)is)calculated)as)a)weighted)average)of)the)
nearby)calibra4on)points)to)reduce)noise)

Dead%Reckoning%

Signal%Strength%
Fingerprin4ng%

Par4cle%Filter%

•  Accurate,%high%density%signal%strength%database%in%a%short%4me%
•  Shape%and%structure%of%the%laser%map%allows%us%to%speed%up%our%pose%es4ma4on%

and%reduce%computa4on%%
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Particle)Filter)
Ini$al'Distribu$on:'Uniformly'random'over'en$re'environment'

•  Step:'Use'dead'reckoning'model'to'update'par6cles'

If'there'are'new'observa$ons,'update'the'probability'of'each'
par$cle'

•  Step'a:'Use'robot'map'to'iden6fy'and'remove'par6cles'that'lie'
on'walls'
Step'b:'When'a'Wifi'reading'is'received,'update'par6cle'weights'

Re=arrange'the'samples'to'be'concentrated'in'the'most'important'
areas'

•  Step:'ReAsample'using'importance'resampling:'a'new'set'of'n'
par6cles'from'the'old'set'propor6onal'to'its'weight'
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