
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Interfacing Belief-Desire-Intention Agent Systems with
Geometric Reasoning for Robotics and Manufacturing

Lavindra de Silva1, Felipe Meneguzzi2, David Sanderson1, Jack C. Chaplin1, Otto J.
Bakker1, Nikolas Antzoulatos1, and Svetan Ratchev1

1Institute for Advanced Manufacturing, Faculty of Engineering, University of Nottingham, UK
{firstname.lastname@nottingham.ac.uk}

2Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
{felipe.meneguzzi@pucrs.br}

Abstract. Unifying the symbolic and geometric representations and algorithms
used in AI and robotics is an important challenge for both fields. We take a
small step in this direction by presenting an interface between geometric rea-
soning and a popular class of agent systems, in a way that uses some of the
agent’s available constructs and semantics. We then describe how certain kinds
of information can be extracted from the geometric model of the world and used
in agent reasoning. We motivate our concepts and algorithms within the context
of a real-world production system.

1 Introduction

Modern manufacturing environments require systems capable of dynamically adjust-
ing to rapid changes in throughput, available production equipment, and end-product
specifications. When there are complex and non-specialized machines or robots in-
volved that are able to perform a multitude of tasks, intelligent and flexible systems
are needed for modeling parts, the environment, and production processes, and for
reasoning about how processes should manipulate parts in order to obtain the desired
product. These systems typically reason in terms of concepts such as a machine's
degrees of freedom, the positions and orientations of parts, and collision-free trajecto-
ries when moving parts during production. Such geometric reasoning is especially
appealing in the context of manufacturing because detailed CAD models of parts and
end-products are readily available, and production processes are often well defined.
When a production system is controlled by a higher level software entity such as an
agent system, however, which typically reasons in terms of abstract and symbolic
representations that ignore the finer details present in the geometric model, it is cru-
cial to be able to unify at least some aspects of the two representations so that they
may be linked and information may be shared. Indeed, such a unified representation is
also an important challenge for robotics and AI in general.

This paper focuses on interfacing a (single-agent) agent programming language,
from the popular Belief-Desire-Intention (BDI) family of agents [1], with geometric
reasoning in a way that exploits some of the agent's existing constructs and semantics.

We also give insights into the kinds of information that can be abstracted from the
geometric model for the agent's benefit; this includes information about any new,
previously unknown objects in the domain, and which objects are connected to each
other and will therefore move together. Since BDI agent systems do not plan their
actions before execution, but instead perform context-based expansion of predefined
(user-supplied) plans during execution, our work differs from existing works such as
[2, 3, 4, 5, 6, 7, 8] which focus on integrating symbolic planners with geometric rea-
soners. A notable exception is [9], who also interleave symbolic reasoning with acting
as we do; however, they do not use a standard model of agency.

2 Background

Geometric Reasoning. In this paper we use the term geometric reasoning to refer to
motion planning as defined in [10]. A state, then, is the 3D world 𝑊 = ℝ!, and its
fixed obstacles are the subset 𝑂 ⊂ ℝ!. A robot is modelled as a collection of (possibly
attached) rigid bodies. For example, a simple polygonal robot 𝐴 could be defined as
the sequence𝐴 = 𝑥!, 𝑦!, 𝑧! ,… , 𝑥!, 𝑦!, 𝑧! , where each 𝑥! , 𝑦! , 𝑧! ∈ ℝ! . A key
component of motion planning is a configuration space 𝐶, which defines all the pos-
sible transformations that can be applied to a body such as 𝐴 above. More specifical-
ly, a pose (or configuration) 𝑐 ∈ 𝐶is the tuple 𝑐 = 𝑥, 𝑦, 𝑧, ℎ , where 𝑥, 𝑦, 𝑧 ∈ ℝ!
and ℎ is the unit quaternion, i.e. a four dimensional vector used to perform 3D rota-
tions; in a 2D world 𝑊 = ℝ!, ℎ would instead be an angle in [0,2𝜋). With a slight
abuse of notation the transformation of a body 𝐴 by pose 𝑐 is denoted 𝐴(𝑐). A robot's
pose composed of bodies 𝐴!,… ,𝐴!is an element of 𝐶!×…×𝐶!, where each 𝐶! is the
configuration space of 𝐴!. If a body 𝐴! is attached via a joint to the end of some body
𝐴!, some of 𝐴!'s degrees of freedom will be constrained, e.g. the 𝑥, 𝑦 and 𝑧 parame-
ters of all poses of 𝐴! might depend on the corresponding ones in 𝐴!.

A motion planning problem, then, is a tuple 𝐶, 𝑐𝑜𝑙, 𝑐! , 𝑐! , where 𝑐𝑜𝑙 ∶ 𝐶 →
𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 is a function from poses to truth values indicating whether a pose
𝑐 ∈ 𝐶 is in collision (𝑐𝑜𝑙 𝑐 = 𝑡𝑟𝑢𝑒) with some object or not, and 𝑐! , 𝑐! ∈ 𝐶 are the
initial and goal poses [3]. A collision-free motion plan solving a motion planning
problem is a sequence 𝒄 = 𝑐!,… , 𝑐! such that 𝑐! = 𝑐!, 𝑐! = 𝑐!, and for each pose 𝑐!,
we have that 𝑐! ∈ 𝐶 and 𝑐𝑜𝑙 𝑐! = 𝑓𝑎𝑙𝑠𝑒.
BDI Agents. In this work we use the popular AgentSpeak [1] agent programming
language to formally represent the large class of BDI agent systems in the literature.
An AgentSpeak agent is a tuple 𝐴𝑔 = 𝐸,𝐵,𝑃𝑙, 𝐼 where: 𝐸, the event queue, is a set
consisting of both external events (environment perception) and internal events (sub-
goals); 𝐵, the belief base, is a set of ground logical atoms; 𝑃𝑙, the plan library, is a set
of plan-rules; and 𝐼, the intention stack, is a set of partially instantiated plan steps of
plan-rules that were adopted. A plan-rule is a syntactic construct of the form
𝑒 ∶ 𝑐𝑜𝑛 ← 𝑏𝑜𝑑𝑦 , where 𝑒 is the triggering event; 𝑐𝑜𝑛 , the context condition,

is a logical formula; and 𝑏𝑜𝑑𝑦 is a sequence of steps to be executed in the environ-
ment. There are two types of triggering events relevant to this paper: +𝜑 or −𝜑 for an

atom 𝜑 indicates, respectively, that a belief in 𝐵 has been added or removed, and −!𝜓
or
−?𝜓 indicates, respectively, that an achievement or test goal has failed, i.e. that either
the plan to achieve 𝜓 has failed during execution, or that belief 𝜓 does not hold in 𝐵,
respectively. Finally, 𝑏𝑜𝑑𝑦 is constructed from the following elements: (i) the exe-
cution of an action in the environment; (ii) the adoption of a subgoal !𝜓 or testing of a
condition ?𝜓, both of which generate internal events; or (iii) the explicit modification
of a belief (+𝜑 or −𝜑). An example of a plan-rule in our AgentSpeak-like language is
the following:1 +!𝑚𝑜𝑣 𝑅,𝐹,𝑇 ∶ 𝑐𝑎𝑛𝑀𝑜𝑣 𝑅,𝐹,𝑇 ← 𝑛𝑎𝑣 𝑅,𝐹,𝑇 ; ? 𝑎𝑡 𝑅,𝑇 .

If the achievement goal !𝑚𝑜𝑣 𝑟1, 𝑡1, 𝑡2 is reached when some rule is executed,
AgentSpeak looks up 𝑃𝑙 for a rule that is both relevant and applicable for the goal.
Our rule above is relevant because 𝑚𝑜𝑣 𝑅,𝐹,𝑇 and 𝑚𝑜𝑣 𝑟1, 𝑡1, 𝑡2 unify on the
application of substitution 𝜃 = 𝑅 𝑟1 ,𝐹 𝑡1 ,𝑇 𝑡2 to the former; we use 𝑚𝑜𝑣(𝒐) to
denote the ground instance resulting from operation 𝑚𝑜𝑣 𝒗 𝜃, where 𝒗 and 𝒐 are the
vectors of variables and constants above. If the plan-rule is also applicable, i.e. belief
𝑐𝑎𝑛𝑀𝑜𝑣 𝑟1, 𝑡1, 𝑡2 ∈ 𝐵, then the plan's body, after applying the substitution, is add-
ed to 𝐼 as a new intention. Pursuing it involves executing action 𝑛𝑎𝑣 𝑟1, 𝑡1, 𝑡2 and
then checking for success by testing 𝐵 via ? 𝑎𝑡 𝑟1, 𝑡2 . The action to navigate is de-
fined by the following action-rule: 𝑛𝑎𝑣 𝑅,𝐹,𝑇 ∶ 𝑎𝑡 𝑅,𝐹 ∧ 𝑐𝑎𝑛𝑀𝑜𝑣 𝑅,𝐹,𝑇 ←
𝑚𝑣𝐸𝑥𝑒𝑐 𝑅,𝐹,𝑇 ;𝑚𝑣𝐸𝑓𝑓(), where 𝑚𝑣𝐸𝑥𝑒𝑐 𝑅,𝐹,𝑇 is associated with a procedure
that moves the robot, and 𝑚𝑣𝐸𝑓𝑓() with one that returns, possibly after sensing the
environment, a set of literals representing the result of moving.2

Fig. 1. The assembly platform, tool rack, and a simulation of the pallet being gripped

The Assembly Platform. We use the production system in Figure 1 [11] as a running
example to motivate some of the concepts in this paper. The system combines the
functionality of six independent workstations, each governed by a separate agent, to
assemble detent hinges for lorry-cab furniture. Each station is served by a linear trans-
fer system that transports a pallet carrier; this supports a pallet with the individual
parts that need to be assembled, as well as the partially/fully assembled hinge. The six
workstations, controlled by PLCs (Programmable Logic Controllers), are as follows:

1 𝑅 is short for 𝑅𝑜𝑏𝑜𝑡, 𝐹 for 𝐹𝑟𝑜𝑚, 𝑇 for 𝑇𝑜 and 𝑡𝑖 for 𝑡𝑎𝑏𝑙𝑒 𝑖
2 An action-rule's body is adapted from STRIPS to be a sequence of functions that return a

(possibly empty) set of literals, each of which is applied to the belief base 𝐵, i.e. the positive
literals are added to 𝐵, and atoms associated with negative literals are removed from 𝐵.

two consist of a Kuka robot each; two accommodate one workspace each; one con-
tains a tool changing rack; and one contains an inspection station. The tool changing
rack is placed between the Kuka arms, which have access to the rack as well as to the
workspaces that are used for carrying out assembly operations. The rack contains six
slots which can hold up to six different types of end effectors such as pneumatic and
two-finger grippers. RFID tags on the tools are used to determine which of them are
currently on the rack, so that the Kuka arms may dynamically lock into the relevant
ones during assembly. Finally, the inspection station is used to perform force and
vision tests to verify whether the hinge was assembled correctly. The hinge that is
assembled is composed of two separate leaves held together by a metal pin. Three
metal balls need to be placed into adjacent cylindrical slots in the center of the hinge,
three springs need to be placed into the same slots, and a retainer is used to close the
hinge. By using only a subset of these parts to assemble a hinge, there can be four
product variants, each having a different detent force.

3 Interfacing AgentSpeak with Geometric Reasoning

Like in works such as [2, 7], evaluable predicates are fundamental in linking
AgentSpeak with geometric reasoning. While standard predicates are evaluated by
looking up the agent's belief base, evaluable predicates are attached to external proce-
dures, which for us involve searching for a viable trajectory within a geometric
world/state 𝑊. Thus, we call such predicates geometric predicates. For example,
predicate 𝑐𝑎𝑛𝑀𝑜𝑣 𝑅, 𝑐𝑢𝑟𝑟,𝑇 in our plan-rule from the previous section could be a
geometric predicate which invokes a motion planner to check whether it is possible
for Kuka arm 𝑅 to move from its current pose 𝑐𝑢𝑟𝑟 to tool 𝑇, specifically, to a posi-
tion from where the arm can now easily lock into the tool with a predefined vertical
motion. We use 𝑐𝑢𝑟𝑟 as a special constant symbol to represent the current pose.

To evaluate a geometric predicate it needs to be associated with a collection of
goal poses, from which at least one needs to have a viable trajectory from the current
pose for the predicate to evaluate to 𝑡𝑟𝑢𝑒. Goal poses could either be determined
manually or computed offline automatically with respect to the 3D model of the world
and the objects involved. In our assembly platform, for example, the Kuka arms are
manually trained on how to grasp the various shapes that might be encountered during
production. This is especially important because objects like the pallet carrier are too
heavy to be lifted from most seemingly good grasps and poses—there is only one
pose that will work; indeed, a mere 3D model of the world that cannot also take into
account additional information such as object weights will not be able to automatical-
ly predict such goal poses accurately. Consequently, we require that a “sampling”
SMP from ground geometric predicates to their corresponding goal poses be provided
by the user. For example, predicate 𝑐𝑎𝑛𝑀𝑜𝑣𝐺𝑟 𝑘1,𝑔𝑟1, 𝑐𝑢𝑟𝑟, 𝑝𝑐 , which checks
whether Kuka arm 𝑘1 combined with gripper 𝑔𝑟1 can move to a pose from where
pallet carrier 𝑝𝑐 can be grasped, will map to the set consisting of just the single pose
depicted in Fig. 1.

We describe SMP as follows. Let 𝑃 = 𝑝!(𝑜!,… , 𝑜!),… , 𝑝! 𝑜!! ,… , 𝑜!! be the set
of ground instances of all geometric predicates occurring in the agent, and 𝑃! =
{𝑝!,… , 𝑝!} and 𝑂 = {𝑜!,… , 𝑜! ,… , 𝑜!! ,… , 𝑜!! } their associated predicate and constant
symbols, respectively. Then, if 𝑛!"# is the maximum arity of a predicate in 𝑃, func-
tion SMP is denoted by the partial function SMP ∶ 𝐶×𝑃!×𝑂!×…×𝑂!!"# → 2! , where
𝐶 is the configuration space and each 𝑂! = 𝑂. Thus, function SMP is a user-defined
“sampling” with only the goal poses that “matter” with respect to the current pose
𝑐 ∈ 𝐶 and the given ground geometric predicate. In practice, the full goal pose for a
task such as picking up an object could be computed dynamically from a user-
supplied pose for the gripper—such as the one in Fig. 1—by first transforming the
gripper's pose to “place” it relative to the object and within the current world 𝑊, and
then using inverse kinematics to derive suitable poses for the geometric bodies that
form the robot arm, which are attached to the gripper and to each other.

Function SMP is used within an “intermediate layer” like the ones used in [2, 3],
which we actualise here via a special evaluable predicate denoted by INT ∶ 𝑃!×𝑂!×
…×𝑂!!"# → 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 , where 𝑃!, 𝑛!"# and each 𝑂! are as before. For example, if
𝑛!"# = 4 in the given domain, the agent developer might invoke the intermediate
layer via function INT 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑐𝑢𝑟𝑟, 𝑡1, 𝑛𝑢𝑙𝑙 , where 𝑛𝑢𝑙𝑙 is a symbol reserved
for unused parameters. Function INT 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑐𝑢𝑟𝑟, 𝑡1, 𝑛𝑢𝑙𝑙 is defined as fol-
lows. Suppose 𝑐! is the current pose of the robot, and that SOL (“solution”) and FCT
(“facts”) are global variables initialised to the empty sequence and empty set, respec-
tively. Then, if there is a pose 𝑐! ∈ SMP 𝑐! , 𝑝, 𝑜!,… , 𝑜!!"# , and a collision-free
motion plan from 𝑐! to 𝑐! , we first assign the motion plan to SOL and then return
𝑡𝑟𝑢𝑒, and otherwise we assign the set of facts describing why there was no trajecto-
ry—specifically the obstruction(s) that were involved—to FCT and return 𝑓𝑎𝑙𝑠𝑒. This
approach keeps trajectories and poses transparent to the agent developer.

4 Encapsulating Geometric Reasoning within AgentSpeak

AgentSpeak-like languages offer some useful, built-in mechanisms that allow a
clean embedding of motion planning. In particular, we can encapsulate each geomet-
ric predicate 𝑝 𝒗 occurring in the agent within a unique achievement goal ! 𝑒! 𝒗 via
the plan-rules and action-rules shown below. Specifically, we first associate the
achievement goal with the two plan-rules in the left-hand column below:

+! 𝑒! 𝒗 ∶ 𝑡𝑟𝑢𝑒 ← 𝑎𝑐𝑡𝑆𝑢𝑐𝑐! 𝒗 𝑎𝑐𝑡𝑆𝑢𝑐𝑐! 𝒗 ∶ INT 𝑝,𝒗 ← 𝑒𝑥𝑒𝑐 ; 𝑝𝑜𝑠𝑡 ;Φ!
−! 𝑒! 𝒗 ∶ 𝑡𝑟𝑢𝑒 ← 𝑎𝑐𝑡𝐹𝑎𝑖𝑙! 𝒗 𝑎𝑐𝑡𝐹𝑎𝑖𝑙! 𝒗 ∶ ¬INT 𝑝,𝒗 ← 𝑝𝑜𝑠𝑡 ;Φ!

Since the bottom plan-rule handles a goal-deletion event, it is only triggered if the
top plan-rule fails, i.e. if the precondition of the ground action 𝑎𝑐𝑡𝑆𝑢𝑐𝑐!(𝒐), which
involves motion planning, is not applicable. Moreover, as per the semantics of goal-
deletion events, once the bottom rule finishes executing, the associated achievement
goal ! 𝑒! 𝒐 will still fail. These are the semantics we desire in order to, before failing,
compute and include the beliefs/facts relating to why the failure occurred. Sets Φ!
and Φ! are predefined beliefs denoting any “predictable” changes resulting from the

achievement goal's execution; for example, geometric predicate
𝑐𝑎𝑛𝑀𝑜𝑣𝐺𝑟 𝐾,𝐺𝑟, 𝑐𝑢𝑟𝑟,𝑃𝐶 might have Φ! = 𝑟 and Φ! = ¬𝑟 , with 𝑟 =
𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝐾,𝐺𝑟,𝑃𝐶 (i.e. pallet carrier 𝑃𝐶 is reachable to arm 𝐾 with gripper 𝐺𝑟).

The second step in our encapsulation is defined in the right-hand column above by
the action-rules associated with actions 𝑎𝑐𝑡𝑆𝑢𝑐𝑐! and 𝑎𝑐𝑡𝐹𝑎𝑖𝑙!.3 In our definition,
𝑝𝑜𝑠𝑡 is a function that returns the set of (symbolic) facts representing either the
pose that resulted from executing 𝑒𝑥𝑒𝑐(), or the “reasons” why there was no trajecto-
ry while evaluating the precondition, i.e. the set FCT computed by INT 𝑝,𝒐 . Like-
wise, 𝑒𝑥𝑒𝑐() is associated with a procedure that executes (in the real world) a given
motion plan, which in our case is the one that was assigned to SOL when INT 𝑝,𝒐
was called. Action 𝑎𝑐𝑡𝐹𝑎𝑖𝑙! 𝒐 is not associated with any such function because its
action-rule is only chosen when there is no viable motion plan. Thus, the rule's pre-
condition confirms that ¬INT 𝑝,𝒐 still holds, just in case there was a relevant
change in the environment after INT 𝑝,𝒐 was last checked, causing INT 𝑝,𝒐 to
now hold (in which case there are no failure-related facts to include).

We assume that 𝑒𝑥𝑒𝑐() always succeeds, and that if necessary the programmer
will check whether the action was actually successful by explicitly testing its desired
goal condition. This is exemplified by the !𝑚𝑜𝑣𝑒 𝑅,𝐹,𝑇 achievement goal in Sec-
tion 2, where ? 𝑎𝑡 𝑅,𝑇 checks whether the 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑅,𝐹,𝑇 action was successful.
One property of the described encapsulation is that looking for motion plans and then
executing them and/or applying the associated symbolic facts are one atomic opera-
tion—no other step can be interleaved to occur between those steps. This ensures that
a motion plan found while evaluating an action's precondition cannot be invalidated
by an interleaved step while the action is being executed.

Once all geometric predicates have been encapsulated as described, we may then
use their corresponding achievement goals from within plan-rules. Since we cannot
include them in context conditions (logical formulae) they can instead be placed as
the first steps of plan bodies. This allows such achievement goals to be ordered so that
the ones having the most computationally expensive geometric predicates are checked
only if the less expensive ones were already checked and they were met.

5 Symbolic Abstractions of Geometric Elements

There are certain elements in the geometric representation that are worth abstract-
ing out into their corresponding symbolic entities so that they may be exploited by the
agent. Our first abstraction is a user-defined surjection from a subset of the geometric
bodies (defined as a sequence of boundary points, for example) onto a subset of the
constant symbols occurring in the agent. This allows multiple bodies—such as the
individual pieces of a Kuka arm—to simply be identified by a single constant symbol
such as 𝑘1, but also for certain geometric bodies (e.g. an unknown box on the floor)
and symbolic constants (e.g. the name of a customer) to be ignored. Indeed, while
every rigid body is crucial for geometric reasoning, it does not necessarily need a

3 For simplicity we omit the last parameters of INT(𝑝,𝒗), which may be 𝑛𝑢𝑙𝑙 constants.

corresponding symbolic representation, and likewise, every constant symbol occur-
ring in the agent does not necessarily represent a geometric body.

Our second abstraction is represented by logical literals, whose ground instances
are obtained and applied via the function 𝑝𝑜𝑠𝑡(). Formally, these literals are a con-
sistent subset of 2!∪!, where 𝑃 = {¬𝑝 | 𝑝 ∈ 𝑃} and 𝑃 is the set of ground instances of
predicates occurring in the agent, obtained by replacing each predicate's vector of 𝑛
terms with an arbitrary vector of 𝑛 constant symbols. Thus, while these literals will
only mention predicate symbols that occur in the agent, they might mention constant
symbols (objects) that do not occur in the agent. This leaves room for discovering
new, previously unknown objects “on the fly”. For instance, if the agent senses from
one of its RFID readers that there is a new object on the tool rack, the agent might
then look up the tag's associated globally unique electronic product code (EPC) on the
web, recognise the object as a certain type of gripper, and assign it with the new sym-
bol 𝑔𝑟7. This might then become associated with new symbolic facts returned by
𝑝𝑜𝑠𝑡(), such as 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑔𝑟7 , 𝑖𝑛𝑇𝑜𝑜𝑙𝑅𝑎𝑐𝑘(𝑔𝑟7) and 𝑛𝑒𝑎𝑟 𝑔𝑟7,𝑔𝑟1 .

One useful domain-independent predicate inferable from the geometric representa-
tion concerns pairs of bodies that are “attached” to one another in the geometric mod-
el. For example, suppose that the vision test in the testing station builds a detailed 3D
model of the partially assembled hinge on the pallet carrier, and then checks that it
was assembled correctly. If this test fails because a part (e.g. one of the leaves) is
absent in the partial hinge, facts such as 𝑎𝑡𝑡 𝑝𝑐, 𝑙𝑒𝑎𝑓1 and 𝑎𝑡𝑡 𝑙𝑒𝑎𝑓1, 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑟 ,
indicating which pairs of parts are nonetheless successfully attached to each other in
the partial hinge, will enable the agent to reason about which parts will move together
when the pallet carrier is transferred onto the conveyer belt. Formally, a possible defi-
nition of 𝑎𝑡𝑡 𝑜, 𝑜! for two objects 𝑜, 𝑜! is the following (we use 𝐴,𝐴! and 𝐶!,𝐶!! in
𝐶 to respectively denote their bodies and configuration spaces): 𝑎𝑡𝑡 𝑜!, 𝑜! holds if
there is a 𝑘 ∈ ℝ and 𝑚 ∈ 1,… ,3 such that for any two poses 𝑎!, 𝑎!, 𝑎!, 𝑎! ∈ 𝐶!
and 𝑎!! , 𝑎!! , 𝑎!! , 𝑎!! ∈ 𝐶!!, we have 𝑎! = 𝑎!! + 𝑘, i.e. at least one degree of freedom
of one of the objects is constrained by the other. Other useful domain-independent
predicates include 𝑣𝑜𝑙(𝑜, 𝑣) and 𝑐𝑜𝑙𝑙(𝑜, 𝑜!), where the former is the volume 𝑣 of
object 𝑜 calculated from its geometric representation, and the latter indicates that
there is a pose in which 𝑜 and 𝑜! (e.g. the two arms) will collide; formally,
𝑐𝑜𝑙𝑙 𝑜, 𝑜! holds if there exist bodies 𝐴,𝐴! associated respectively with objects 𝑜, 𝑜!,
and poses 𝑐 ∈ 𝐶! and 𝑐! ∈ 𝐶!! such that 𝐴 𝑐 ∩ 𝐴! 𝑐! ≠ ∅, i.e. when 𝐴,𝐴! are trans-
formed and ‘placed’ into world 𝑊, at least one of their points overlap. Such a fact
might eventuate in the agent taking precautions to ensure the tool rack is only used by
one arm at a time.

There are also geometric elements that are too ‘fine grained’ to be modeled as
symbolic elements, such as absolute 𝑥 and 𝑦 coordinates, and orientations of objects
in 3D space; doing so may well lead to an explosion in the symbolic state space [3].
Moreover, as pointed out in [2], there are also relevant symbolic facts that do not
depend on a pose, such as the number of products assembled so far and the weight of
a new part. These facts can be managed directly by the agent, for example by directly
sensing the environment.

In the situation where there was no viable motion plan when the precondition of an
action-rule above was checked, the facts applied by 𝑝𝑜𝑠𝑡() instead “describe” the
reason. To this end, two useful domain-independent predicates, inspired by [3], are
𝑜𝑏𝑠𝑆𝑜𝑚𝑒 𝑘2, 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑡1 , indicating arm 𝑘2 obstructs at least one trajectory of
the task 𝑐𝑎𝑛𝑀𝑜𝑣 𝑘1, 𝑡1 , and likewise 𝑜𝑏𝑠𝐴𝑙𝑙 𝑘2, 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑡1 . The agent could
exploit such information by, for instance, moving arm 𝑘2 out of the way.

6 Conclusions and Future Work

We have presented an approach to interfacing BDI agent reasoning with geometric
planning in a way that uses some of AgentSpeak's existing constructs and semantics.
We have also shown how interesting abstractions can be extracted from the detailed
geometric model and then exploited during agent reasoning. We intend to study these
abstractions further, e.g. how to compute 𝑜𝑏𝑠𝑆𝑜𝑚𝑒 𝑘2, 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑡1 , and to for-
malise the integration by extending the operational semantics of AgentSpeak.

Acknowledgements. We thank Elkin Castro, Amit K. Pandey, and the reviewers
for their feedback. Felipe thanks CNPq for support within grant nos. 306864/2013-4
under the PQ fellowship and 482156/2013-9 under the Universal project programs.
The others are grateful for support from the Evolvable Assembly Systems EPSRC
project (EP/K018205/1), and the PRIME EU FP7 project (Grant Agreement: 314762).

7 References

1. Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
Proceedings of the MAAMAW Workshop, pages 42–55. 1996.

2. Lavindra de Silva, Amit Kumar Pandey, and Rachid Alami. An interface for interleaved
symbolic-geometric planning and backtracking. In IROS, pages 232–239, 2013.

3. Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and
Pieter Abbeel. Combined task and motion planning through an extensible planner-
independent interface layer. In ICRA, pages 639–646, 2014.

4. F. Lagriffoul, D. Dimitrov, A. Saffiotti, and L. Karlsson. Constraint propagation on inter-
val bounds for dealing with geometric backtracking. In IROS, pages 957–964, 2012.

5. E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras. Combining high-level
causal reasoning with low-level geometric reasoning and motion planning for robotic ma-
nipulation. In ICRA, pages 4575–4581, 2011.

6. E. Plaku and G.D. Hager. Sampling-based motion and symbolic action planning with ge-
ometric and differential constraints. In ICRA, pages 5002–5008, 2010.

7. Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebastian Trüg, Michael Brenner,
and Bernhard Nebel. Semantic attachments for domain-independent planning systems. In
ICAPS, pages 114–121, 2009.

8. Andre Gaschler, Ingmar Kessler, Ronald P. A. Petrick, and Alois Knoll. Extending the
Knowledge of Volumes Approach to Robot Task Planning with Efficient Geometric Predi-
cates. In ICRA, 2015. To Appear.

9. Leslie Pack Kaelbling and Tomás Lozano-Pérez. Integrated task and motion planning in
belief space. IJRR, 32(9-10):1194–1227, 2013.

10. Steven M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

11. Nikolas Antzoulatos, Elkin Castro, Lavindra de Silva, and Svetan Ratchev. Interfacing
agents with an industrial assembly system for “plug and produce”. In AAMAS, pages
1957–1958, 2015.

