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Abstract. Unifying the symbolic and geometric representations and algorithms 
used in AI and robotics is an important challenge for both fields. We take a 
small step in this direction by presenting an interface between geometric rea-
soning and a popular class of agent systems, in a way that uses some of the 
agent’s available constructs and semantics. We then describe how certain kinds 
of information can be extracted from the geometric model of the world and used 
in agent reasoning. We motivate our concepts and algorithms within the context 
of a real-world production system. 

1 Introduction 

Modern manufacturing environments require systems capable of dynamically adjust-
ing to rapid changes in throughput, available production equipment, and end-product 
specifications. When there are complex and non-specialized machines or robots in-
volved that are able to perform a multitude of tasks, intelligent and flexible systems 
are needed for modeling parts, the environment, and production processes, and for 
reasoning about how processes should manipulate parts in order to obtain the desired 
product. These systems typically reason in terms of concepts such as a machine's 
degrees of freedom, the positions and orientations of parts, and collision-free trajecto-
ries when moving parts during production. Such geometric reasoning is especially 
appealing in the context of manufacturing because detailed CAD models of parts and 
end-products are readily available, and production processes are often well defined. 
When a production system is controlled by a higher level software entity such as an 
agent system, however, which typically reasons in terms of abstract and symbolic 
representations that ignore the finer details present in the geometric model, it is cru-
cial to be able to unify at least some aspects of the two representations so that they 
may be linked and information may be shared. Indeed, such a unified representation is 
also an important challenge for robotics and AI in general. 

This paper focuses on interfacing a (single-agent) agent programming language, 
from the popular Belief-Desire-Intention (BDI) family of agents [1], with geometric 
reasoning in a way that exploits some of the agent's existing constructs and semantics.  



We also give insights into the kinds of information that can be abstracted from the 
geometric model for the agent's benefit; this includes information about any new, 
previously unknown objects in the domain, and which objects are connected to each 
other and will therefore move together. Since BDI agent systems do not plan their 
actions before execution, but instead perform context-based expansion of predefined 
(user-supplied) plans during execution, our work differs from existing works such as 
[2, 3, 4, 5, 6, 7, 8] which focus on integrating symbolic planners with geometric rea-
soners. A notable exception is [9], who also interleave symbolic reasoning with acting 
as we do; however, they do not use a standard model of agency. 

2 Background 

Geometric Reasoning. In this paper we use the term geometric reasoning to refer to 
motion planning as defined in [10]. A state, then, is the 3D world 𝑊 = ℝ!, and its 
fixed obstacles are the subset 𝑂 ⊂ ℝ!. A robot is modelled as a collection of (possibly 
attached) rigid bodies. For example, a simple polygonal robot 𝐴 could be defined as 
the sequence𝐴 = 𝑥!, 𝑦!, 𝑧! ,…    , 𝑥!, 𝑦!, 𝑧! , where each 𝑥! , 𝑦! , 𝑧! ∈ ℝ! . A key 
component of motion planning is a configuration space 𝐶, which defines all the pos-
sible transformations that can be applied to a body such as 𝐴 above. More specifical-
ly, a pose (or configuration) 𝑐 ∈ 𝐶is the tuple 𝑐 = 𝑥, 𝑦, 𝑧, ℎ , where 𝑥, 𝑦, 𝑧 ∈ ℝ! 
and ℎ is the unit quaternion, i.e. a four dimensional vector used to perform 3D rota-
tions; in a 2D world 𝑊 = ℝ!, ℎ would instead be an angle in [0,2𝜋). With a slight 
abuse of notation the transformation of a body 𝐴 by pose 𝑐 is denoted 𝐴(𝑐). A robot's 
pose composed of bodies 𝐴!,… ,𝐴!is an element of 𝐶!×…×𝐶!, where each 𝐶! is the 
configuration space of 𝐴!. If a body 𝐴! is attached via a joint to the end of some body 
𝐴!, some of 𝐴!'s degrees of freedom will be constrained, e.g. the 𝑥, 𝑦 and 𝑧 parame-
ters of all poses of 𝐴! might depend on the corresponding ones in 𝐴!. 

A motion planning problem, then, is a tuple 𝐶, 𝑐𝑜𝑙, 𝑐! , 𝑐! , where 𝑐𝑜𝑙 ∶ 𝐶   →
𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒  is a function from poses to truth values indicating whether a pose 
𝑐   ∈ 𝐶 is in collision (𝑐𝑜𝑙 𝑐 = 𝑡𝑟𝑢𝑒) with some object or not, and 𝑐! , 𝑐! ∈ 𝐶 are the 
initial and goal poses [3]. A collision-free motion plan solving a motion planning 
problem is a sequence 𝒄 = 𝑐!,… , 𝑐! such that 𝑐! = 𝑐!, 𝑐! = 𝑐!, and for each pose 𝑐!, 
we have that 𝑐! ∈ 𝐶 and 𝑐𝑜𝑙 𝑐! = 𝑓𝑎𝑙𝑠𝑒. 
BDI Agents. In this work we use the popular AgentSpeak [1] agent programming 
language to formally represent the large class of BDI agent systems in the literature. 
An AgentSpeak agent is a tuple 𝐴𝑔 =    𝐸,𝐵,𝑃𝑙, 𝐼  where: 𝐸, the event queue, is a set 
consisting of both external events (environment perception) and internal events (sub-
goals); 𝐵, the belief base, is a set of ground logical atoms; 𝑃𝑙, the plan library, is a set 
of plan-rules; and 𝐼, the intention stack, is a set of partially instantiated plan steps of 
plan-rules that were adopted. A plan-rule is a syntactic construct of the form 
𝑒 ∶    𝑐𝑜𝑛 ← 𝑏𝑜𝑑𝑦 , where 𝑒  is the triggering event; 𝑐𝑜𝑛 , the context condition, 

is a logical formula; and 𝑏𝑜𝑑𝑦  is a sequence of steps to be executed in the environ-
ment. There are two types of triggering events relevant to this paper: +𝜑 or −𝜑 for an 



atom 𝜑 indicates, respectively, that a belief in 𝐵 has been added or removed, and −!𝜓 
or  
−?𝜓 indicates, respectively, that an achievement or test goal has failed, i.e. that either 
the plan to achieve 𝜓 has failed during execution, or that belief 𝜓 does not hold in 𝐵, 
respectively. Finally, 𝑏𝑜𝑑𝑦  is constructed from the following elements: (i) the exe-
cution of an action in the environment; (ii) the adoption of a subgoal !𝜓 or testing of a 
condition ?𝜓, both of which generate internal events; or (iii) the explicit modification 
of a belief (+𝜑 or −𝜑). An example of a plan-rule in our AgentSpeak-like language is 
the following:1 +!𝑚𝑜𝑣 𝑅,𝐹,𝑇 ∶ 𝑐𝑎𝑛𝑀𝑜𝑣 𝑅,𝐹,𝑇 ← 𝑛𝑎𝑣 𝑅,𝐹,𝑇   ; ? 𝑎𝑡 𝑅,𝑇 . 

If the achievement goal !𝑚𝑜𝑣 𝑟1, 𝑡1, 𝑡2  is reached when some rule is executed, 
AgentSpeak looks up 𝑃𝑙 for a rule that is both relevant and applicable for the goal. 
Our rule above is relevant because 𝑚𝑜𝑣 𝑅,𝐹,𝑇  and 𝑚𝑜𝑣 𝑟1, 𝑡1, 𝑡2  unify on the 
application of substitution 𝜃 = 𝑅 𝑟1 ,𝐹 𝑡1 ,𝑇 𝑡2  to the former; we use 𝑚𝑜𝑣(𝒐) to 
denote the ground instance resulting from operation 𝑚𝑜𝑣 𝒗 𝜃, where 𝒗 and 𝒐 are the 
vectors of variables and constants above. If the plan-rule is also applicable, i.e. belief 
𝑐𝑎𝑛𝑀𝑜𝑣 𝑟1, 𝑡1, 𝑡2 ∈ 𝐵, then the plan's body, after applying the substitution, is add-
ed to 𝐼 as a new intention. Pursuing it involves executing action 𝑛𝑎𝑣 𝑟1, 𝑡1, 𝑡2  and 
then checking for success by testing 𝐵 via ? 𝑎𝑡 𝑟1, 𝑡2 . The action to navigate is de-
fined by the following action-rule: 𝑛𝑎𝑣 𝑅,𝐹,𝑇 ∶ 𝑎𝑡 𝑅,𝐹 ∧ 𝑐𝑎𝑛𝑀𝑜𝑣 𝑅,𝐹,𝑇 ←
𝑚𝑣𝐸𝑥𝑒𝑐 𝑅,𝐹,𝑇   ;𝑚𝑣𝐸𝑓𝑓(  ), where 𝑚𝑣𝐸𝑥𝑒𝑐 𝑅,𝐹,𝑇  is associated with a procedure 
that moves the robot, and 𝑚𝑣𝐸𝑓𝑓(  ) with one that returns, possibly after sensing the 
environment, a set of literals representing the result of moving.2 

 

 
Fig. 1. The assembly platform, tool rack, and a simulation of the pallet being gripped 

The Assembly Platform. We use the production system in Figure 1 [11] as a running 
example to motivate some of the concepts in this paper. The system combines the 
functionality of six independent workstations, each governed by a separate agent, to 
assemble detent hinges for lorry-cab furniture. Each station is served by a linear trans-
fer system that transports a pallet carrier; this supports a pallet with the individual 
parts that need to be assembled, as well as the partially/fully assembled hinge. The six 
workstations, controlled by PLCs (Programmable Logic Controllers), are as follows: 
                                                             
1  𝑅 is short for 𝑅𝑜𝑏𝑜𝑡, 𝐹 for 𝐹𝑟𝑜𝑚, 𝑇 for 𝑇𝑜 and 𝑡𝑖 for 𝑡𝑎𝑏𝑙𝑒  𝑖 
2  An action-rule's body is adapted from STRIPS to be a sequence of functions that return a 

(possibly empty) set of literals, each of which is applied to the belief base 𝐵, i.e. the positive 
literals are added to 𝐵, and atoms associated with negative literals are removed from 𝐵. 



two consist of a Kuka robot each; two accommodate one workspace each; one con-
tains a tool changing rack; and one contains an inspection station. The tool changing 
rack is placed between the Kuka arms, which have access to the rack as well as to the 
workspaces that are used for carrying out assembly operations. The rack contains six 
slots which can hold up to six different types of end effectors such as pneumatic and 
two-finger grippers. RFID tags on the tools are used to determine which of them are 
currently on the rack, so that the Kuka arms may dynamically lock into the relevant 
ones during assembly. Finally, the inspection station is used to perform force and 
vision tests to verify whether the hinge was assembled correctly. The hinge that is 
assembled is composed of two separate leaves held together by a metal pin. Three 
metal balls need to be placed into adjacent cylindrical slots in the center of the hinge, 
three springs need to be placed into the same slots, and a retainer is used to close the 
hinge. By using only a subset of these parts to assemble a hinge, there can be four 
product variants, each having a different detent force. 

3 Interfacing AgentSpeak with Geometric Reasoning 

Like in works such as [2, 7], evaluable predicates are fundamental in linking 
AgentSpeak with geometric reasoning. While standard predicates are evaluated by 
looking up the agent's belief base, evaluable predicates are attached to external proce-
dures, which for us involve searching for a viable trajectory within a geometric 
world/state 𝑊. Thus, we call such predicates geometric predicates. For example, 
predicate 𝑐𝑎𝑛𝑀𝑜𝑣 𝑅, 𝑐𝑢𝑟𝑟,𝑇  in our plan-rule from the previous section could be a 
geometric predicate which invokes a motion planner to check whether it is possible 
for Kuka arm 𝑅 to move from its current pose 𝑐𝑢𝑟𝑟 to tool 𝑇, specifically, to a posi-
tion from where the arm can now easily lock into the tool with a predefined vertical 
motion. We use 𝑐𝑢𝑟𝑟 as a special constant symbol to represent the current pose. 

To evaluate a geometric predicate it needs to be associated with a collection of 
goal poses, from which at least one needs to have a viable trajectory from the current 
pose for the predicate to evaluate to 𝑡𝑟𝑢𝑒. Goal poses could either be determined 
manually or computed offline automatically with respect to the 3D model of the world 
and the objects involved. In our assembly platform, for example, the Kuka arms are 
manually trained on how to grasp the various shapes that might be encountered during 
production. This is especially important because objects like the pallet carrier are too 
heavy to be lifted from most seemingly good grasps and poses—there is only one 
pose that will work; indeed, a mere 3D model of the world that cannot also take into 
account additional information such as object weights will not be able to automatical-
ly predict such goal poses accurately. Consequently, we require that a “sampling” 
SMP from ground geometric predicates to their corresponding goal poses be provided 
by the user. For example, predicate 𝑐𝑎𝑛𝑀𝑜𝑣𝐺𝑟 𝑘1,𝑔𝑟1, 𝑐𝑢𝑟𝑟, 𝑝𝑐 , which checks 
whether Kuka arm 𝑘1 combined with gripper 𝑔𝑟1 can move to a pose from where 
pallet carrier 𝑝𝑐 can be grasped, will map to the set consisting of just the single pose 
depicted in Fig. 1. 



We describe SMP as follows. Let 𝑃 = 𝑝!(𝑜!,… , 𝑜!),… , 𝑝! 𝑜!! ,… , 𝑜!!  be the set 
of ground instances of all geometric predicates occurring in the agent, and 𝑃! =
{𝑝!,… , 𝑝!} and 𝑂 = {𝑜!,… , 𝑜! ,… , 𝑜!! ,… , 𝑜!! } their associated predicate and constant 
symbols, respectively. Then, if 𝑛!"# is the maximum arity of a predicate in 𝑃, func-
tion SMP is denoted by the partial function SMP ∶ 𝐶×𝑃!×𝑂!×…×𝑂!!"# → 2! , where 
𝐶 is the configuration space and each 𝑂! = 𝑂. Thus, function SMP is a user-defined 
“sampling” with only the goal poses that “matter” with respect to the current pose 
𝑐 ∈ 𝐶 and the given ground geometric predicate. In practice, the full goal pose for a 
task such as picking up an object could be computed dynamically from a user-
supplied pose for the gripper—such as the one in Fig. 1—by first transforming the 
gripper's pose to “place” it relative to the object and within the current world 𝑊, and 
then using inverse kinematics to derive suitable poses for the geometric bodies that 
form the robot arm, which are attached to the gripper and to each other. 

Function SMP is used within an “intermediate layer” like the ones used in [2, 3], 
which we actualise here via a special evaluable predicate denoted by INT ∶   𝑃!×𝑂!×
…×𝑂!!"# → 𝑡𝑟𝑢𝑒, 𝑓𝑎𝑙𝑠𝑒 , where 𝑃!, 𝑛!"# and each 𝑂! are as before. For example, if 
𝑛!"# = 4 in the given domain, the agent developer might invoke the intermediate 
layer via function INT 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑐𝑢𝑟𝑟, 𝑡1, 𝑛𝑢𝑙𝑙 , where 𝑛𝑢𝑙𝑙 is a symbol reserved 
for unused parameters. Function INT 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑐𝑢𝑟𝑟, 𝑡1, 𝑛𝑢𝑙𝑙  is defined as fol-
lows. Suppose 𝑐! is the current pose of the robot, and that SOL (“solution”) and FCT 
(“facts”) are global variables initialised to the empty sequence and empty set, respec-
tively. Then, if there is a pose 𝑐! ∈ SMP 𝑐! , 𝑝, 𝑜!,… , 𝑜!!"# , and a collision-free 
motion plan from 𝑐! to 𝑐! , we first assign the motion plan to SOL and then return 
𝑡𝑟𝑢𝑒, and otherwise we assign the set of facts describing why there was no trajecto-
ry—specifically the obstruction(s) that were involved—to FCT and return 𝑓𝑎𝑙𝑠𝑒. This 
approach keeps trajectories and poses transparent to the agent developer. 

4 Encapsulating Geometric Reasoning within AgentSpeak 

AgentSpeak-like languages offer some useful, built-in mechanisms that allow a 
clean embedding of motion planning. In particular, we can encapsulate each geomet-
ric predicate 𝑝 𝒗  occurring in the agent within a unique achievement goal ! 𝑒! 𝒗  via 
the plan-rules and action-rules shown below. Specifically, we first associate the 
achievement goal with the two plan-rules in the left-hand column below: 

+! 𝑒! 𝒗 ∶ 𝑡𝑟𝑢𝑒   ← 𝑎𝑐𝑡𝑆𝑢𝑐𝑐! 𝒗      𝑎𝑐𝑡𝑆𝑢𝑐𝑐! 𝒗 ∶ INT 𝑝,𝒗 ← 𝑒𝑥𝑒𝑐      ; 𝑝𝑜𝑠𝑡      ;Φ! 
−! 𝑒! 𝒗 ∶ 𝑡𝑟𝑢𝑒   ← 𝑎𝑐𝑡𝐹𝑎𝑖𝑙! 𝒗      𝑎𝑐𝑡𝐹𝑎𝑖𝑙! 𝒗 ∶ ¬INT 𝑝,𝒗 ← 𝑝𝑜𝑠𝑡      ;Φ! 

Since the bottom plan-rule handles a goal-deletion event, it is only triggered if the 
top plan-rule fails, i.e. if the precondition of the ground action 𝑎𝑐𝑡𝑆𝑢𝑐𝑐!(𝒐), which 
involves motion planning, is not applicable. Moreover, as per the semantics of goal-
deletion events, once the bottom rule finishes executing, the associated achievement 
goal ! 𝑒! 𝒐  will still fail. These are the semantics we desire in order to, before failing, 
compute and include the beliefs/facts relating to why the failure occurred. Sets Φ! 
and Φ! are predefined beliefs denoting any “predictable” changes resulting from the 



achievement goal's execution; for example, geometric predicate 
𝑐𝑎𝑛𝑀𝑜𝑣𝐺𝑟 𝐾,𝐺𝑟, 𝑐𝑢𝑟𝑟,𝑃𝐶  might have Φ! = 𝑟  and Φ! = ¬𝑟 , with 𝑟 =
𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 𝐾,𝐺𝑟,𝑃𝐶  (i.e. pallet carrier  𝑃𝐶 is reachable to arm 𝐾 with gripper 𝐺𝑟). 

The second step in our encapsulation is defined in the right-hand column above by 
the action-rules associated with actions 𝑎𝑐𝑡𝑆𝑢𝑐𝑐! and 𝑎𝑐𝑡𝐹𝑎𝑖𝑙!.3 In our definition, 
𝑝𝑜𝑠𝑡     is a function that returns the set of (symbolic) facts representing either the 
pose that resulted from executing 𝑒𝑥𝑒𝑐(  ), or the “reasons” why there was no trajecto-
ry while evaluating the precondition, i.e. the set FCT computed by INT 𝑝,𝒐 . Like-
wise, 𝑒𝑥𝑒𝑐(  ) is associated with a procedure that executes (in the real world) a given 
motion plan, which in our case is the one that was assigned to SOL when INT 𝑝,𝒐  
was called. Action 𝑎𝑐𝑡𝐹𝑎𝑖𝑙! 𝒐  is not associated with any such function because its 
action-rule is only chosen when there is no viable motion plan. Thus, the rule's pre-
condition confirms that ¬INT 𝑝,𝒐  still holds, just in case there was a relevant 
change in the environment after INT 𝑝,𝒐  was last checked, causing INT 𝑝,𝒐  to 
now hold (in which case there are no failure-related facts to include). 

We assume that 𝑒𝑥𝑒𝑐(  ) always succeeds, and that if necessary the programmer 
will check whether the action was actually successful by explicitly testing its desired 
goal condition. This is exemplified by the !𝑚𝑜𝑣𝑒 𝑅,𝐹,𝑇  achievement goal in Sec-
tion 2, where ? 𝑎𝑡 𝑅,𝑇  checks whether the 𝑛𝑎𝑣𝑖𝑔𝑎𝑡𝑒 𝑅,𝐹,𝑇  action was successful. 
One property of the described encapsulation is that looking for motion plans and then 
executing them and/or applying the associated symbolic facts are one atomic opera-
tion—no other step can be interleaved to occur between those steps. This ensures that 
a motion plan found while evaluating an action's precondition cannot be invalidated 
by an interleaved step while the action is being executed. 

Once all geometric predicates have been encapsulated as described, we may then 
use their corresponding achievement goals from within plan-rules. Since we cannot 
include them in context conditions (logical formulae) they can instead be placed as 
the first steps of plan bodies. This allows such achievement goals to be ordered so that 
the ones having the most computationally expensive geometric predicates are checked 
only if the less expensive ones were already checked and they were met. 

5 Symbolic Abstractions of Geometric Elements 

There are certain elements in the geometric representation that are worth abstract-
ing out into their corresponding symbolic entities so that they may be exploited by the 
agent. Our first abstraction is a user-defined surjection from a subset of the geometric 
bodies (defined as a sequence of boundary points, for example) onto a subset of the 
constant symbols occurring in the agent. This allows multiple bodies—such as the 
individual pieces of a Kuka arm—to simply be identified by a single constant symbol 
such as 𝑘1, but also for certain geometric bodies (e.g. an unknown box on the floor) 
and symbolic constants (e.g. the name of a customer) to be ignored. Indeed, while 
every rigid body is crucial for geometric reasoning, it does not necessarily need a 

                                                             
3  For simplicity we omit the last parameters of INT(𝑝,𝒗), which may be 𝑛𝑢𝑙𝑙 constants. 



corresponding symbolic representation, and likewise, every constant symbol occur-
ring in the agent does not necessarily represent a geometric body. 

Our second abstraction is represented by logical literals, whose ground instances 
are obtained and applied via the function 𝑝𝑜𝑠𝑡(  ). Formally, these literals are a con-
sistent subset of 2!∪!, where 𝑃 = {¬𝑝  |  𝑝 ∈ 𝑃} and 𝑃 is the set of ground instances of 
predicates occurring in the agent, obtained by replacing each predicate's vector of 𝑛 
terms with an arbitrary vector of 𝑛 constant symbols. Thus, while these literals will 
only mention predicate symbols that occur in the agent, they might mention constant 
symbols (objects) that do not occur in the agent. This leaves room for discovering 
new, previously unknown objects “on the fly”. For instance, if the agent senses from 
one of its RFID readers that there is a new object on the tool rack, the agent might 
then look up the tag's associated globally unique electronic product code (EPC) on the 
web, recognise the object as a certain type of gripper, and assign it with the new sym-
bol 𝑔𝑟7. This might then become associated with new symbolic facts returned by 
𝑝𝑜𝑠𝑡(  ), such as 𝑔𝑟𝑖𝑝𝑝𝑒𝑟 𝑔𝑟7 , 𝑖𝑛𝑇𝑜𝑜𝑙𝑅𝑎𝑐𝑘(𝑔𝑟7) and 𝑛𝑒𝑎𝑟 𝑔𝑟7,𝑔𝑟1 . 

One useful domain-independent predicate inferable from the geometric representa-
tion concerns pairs of bodies that are “attached” to one another in the geometric mod-
el. For example, suppose that the vision test in the testing station builds a detailed 3D 
model of the partially assembled hinge on the pallet carrier, and then checks that it 
was assembled correctly. If this test fails because a part (e.g. one of the leaves) is 
absent in the partial hinge, facts such as 𝑎𝑡𝑡 𝑝𝑐, 𝑙𝑒𝑎𝑓1  and 𝑎𝑡𝑡 𝑙𝑒𝑎𝑓1, 𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑟 , 
indicating which pairs of parts are nonetheless successfully attached to each other in 
the partial hinge, will enable the agent to reason about which parts will move together 
when the pallet carrier is transferred onto the conveyer belt. Formally, a possible defi-
nition of 𝑎𝑡𝑡 𝑜, 𝑜!  for two objects 𝑜, 𝑜! is the following (we use 𝐴,𝐴! and 𝐶!,𝐶!! in 
𝐶 to respectively denote their bodies and configuration spaces): 𝑎𝑡𝑡 𝑜!, 𝑜!  holds if 
there is a 𝑘 ∈ ℝ and 𝑚 ∈ 1,… ,3  such that for any two poses 𝑎!, 𝑎!, 𝑎!, 𝑎! ∈ 𝐶! 
and 𝑎!! , 𝑎!! , 𝑎!! , 𝑎!! ∈ 𝐶!!, we have 𝑎! = 𝑎!! + 𝑘, i.e. at least one degree of freedom 
of one of the objects is constrained by the other. Other useful domain-independent 
predicates include 𝑣𝑜𝑙(𝑜, 𝑣) and 𝑐𝑜𝑙𝑙(𝑜, 𝑜!), where the former is the volume 𝑣 of 
object 𝑜 calculated from its geometric representation, and the latter indicates that 
there is a pose in which 𝑜  and 𝑜!  (e.g. the two arms) will collide; formally, 
𝑐𝑜𝑙𝑙 𝑜, 𝑜!   holds if there exist bodies 𝐴,𝐴! associated respectively with objects 𝑜, 𝑜!, 
and poses 𝑐 ∈ 𝐶! and 𝑐! ∈ 𝐶!! such that 𝐴 𝑐 ∩ 𝐴! 𝑐! ≠ ∅, i.e. when 𝐴,𝐴! are trans-
formed and ‘placed’ into world 𝑊, at least one of their points overlap. Such a fact 
might eventuate in the agent taking precautions to ensure the tool rack is only used by 
one arm at a time. 

There are also geometric elements that are too ‘fine grained’ to be modeled as 
symbolic elements, such as absolute 𝑥 and 𝑦 coordinates, and orientations of objects 
in 3D space; doing so may well lead to an explosion in the symbolic state space [3]. 
Moreover, as pointed out in [2], there are also relevant symbolic facts that do not 
depend on a pose, such as the number of products assembled so far and the weight of 
a new part. These facts can be managed directly by the agent, for example by directly 
sensing the environment. 



In the situation where there was no viable motion plan when the precondition of an 
action-rule above was checked, the facts applied by 𝑝𝑜𝑠𝑡(  ) instead “describe” the 
reason. To this end, two useful domain-independent predicates, inspired by [3], are 
𝑜𝑏𝑠𝑆𝑜𝑚𝑒 𝑘2, 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑡1 , indicating arm 𝑘2 obstructs at least one trajectory of 
the task 𝑐𝑎𝑛𝑀𝑜𝑣 𝑘1, 𝑡1 , and likewise 𝑜𝑏𝑠𝐴𝑙𝑙 𝑘2, 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑡1 . The agent could 
exploit such information by, for instance, moving arm 𝑘2 out of the way. 

6 Conclusions and Future Work 

We have presented an approach to interfacing BDI agent reasoning with geometric 
planning in a way that uses some of AgentSpeak's existing constructs and semantics. 
We have also shown how interesting abstractions can be extracted from the detailed 
geometric model and then exploited during agent reasoning. We intend to study these 
abstractions further, e.g. how to compute 𝑜𝑏𝑠𝑆𝑜𝑚𝑒 𝑘2, 𝑐𝑎𝑛𝑀𝑜𝑣, 𝑘1, 𝑡1 , and to for-
malise the integration by extending the operational semantics of AgentSpeak. 
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