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One of the most widely studied agent models is based on the notions of beliefs, desires
and intentions (or BDI) as mental attitudes that guide the selection of courses of actions.
However, BDI agent languages have been used mostly in the context of single agents based
on a plan library of behaviours invoked reactively and, though they provide a theoretically
sound basis for agent development, they offer limited support for multiagent systems with
dynamic plan libraries.

In particular, when new plans not foreseeable at initial design time are required, the agent
must be redesigned. Moreover, when designing multiagent systems, agent languages provide
at most a communication language with no other consideration of interaction.

This thesis aims to address these limitations by introducing a new agent language and
architecture that includes a mechanism for processing goals in a manner that decouples goal
achievement from plan execution, as well as generating new plans to cope with unforeseen
situations at design time. It bridges the gap between agent languages and multiagent
systems by introducing a simple cooperation mechanism together with a norm processing
mechanism aimed to providing some degree of societal control.
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Chapter 1

Introduction

1.1 Computing and Interaction

As computer science has evolved during the last century, our understanding of computa-
tion has expanded from a mathematics-centred model focused on data processing to one
based on interaction among distributed entities [Wegner and Goldin, 2003]. This evolution
of the notion of computation has come about not only through advances in hardware but
also through advances in abstraction mechanisms needed in the development of ever more
complex programs. As researchers and developers departed from the scripted batch calcu-
lations of early computers, the need for higher-levels of abstraction became more and more
important to insulate developers from the complexities of lower level hardware control. This
process of evolution was initiated with the very first programming languages, which dele-
gated decisions about lower level machine instructions to a compiler, and have now reached
a level of sophistication that is difficult for a human to beat in terms of efficiency.

This tendency of delegating more and more activities to computer systems continues today.
Computers no longer exist to be used exclusively for batch processing, but instead exist in a
large networked environment as entities that interact not only with other computers but also
with human users. As a consequence, the traditional understanding of computation as data
processing-centred has to be revised to cope with its more interaction-oriented contemporary
usage.

While low level machine instructions are the objects of abstraction in traditional computing,
interaction-based computing requires that other elements be abstracted. Such a need was
identified very early in the history of artificial intelligence by Alan Turing, whose Turing
Test is an eminently interactive computing exercise. Turing stated:

“Our problem then is to find out how to programme these machines to play
the game. At my present rate of working I produce about a thousand digits
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of programme a day, so that about sixty workers, working steadily through the
fifty years might accomplish the job, if nothing went into the wastepaper basket.
Some more expeditious method seems desirable.”

[Turing, 1950]

We agree that it is desirable for appropriate methods and tools to be developed if computing
based on interacting entities is to succeed. Indeed, many researchers today argue that the
notion of autonomous agents is the most intuitive way of describing interactive systems
[Jennings et al., 2006; Wegner and Goldin, 2003]. From a software engineering perspective,
agents can be seen as the evolutionary successor to objects [Odell, 2002]. In a rough analogy
one could say that while objects have attributes and methods, agents have mental states
and plans to achieve their objectives. From a practical perspective, agents are a better
abstraction because they encapsulate not only data (mental state), but also the process of
selecting which behaviours are needed and when.

Before we start a discussion of how agents can be used to help solve the problem of designing
interactive systems, we must review the notion of agent. The most widely accepted, though
vacuous, concept of agents states that an agent is an entity that perceives a certain environ-
ment through sensors and acts upon it through actuators. Within the artificial intelligence
community, a more elaborate view is that of Wooldridge and Jennings [Wooldridge, 2002;
Wooldridge and Jennings, 1995], which state that an agent is a computer system situated in
an environment, and that is capable of autonomous action in this environment in order to
meet its design objectives. This view is further refined, attributing to agents the following
characteristics:

• autonomy;

• social ability;

• reactivity; and

• pro-activeness.

Autonomy means that agents have control over their internal state and behaviour and
thus operate without intervention from external entities, be they humans or other agents.
Social ability means that agents interact with other agents (including humans) using some
kind of agent communication language. Reactivity means that agents respond in a timely
fashion to events in their environment. Finally, pro-activeness means that agents take the
initiative to act instead of just reacting to events in the environment. Thus, an autonomous
software agent is expected to take the initiative (autonomous action) in doing some useful
computation on behalf of a human user, interacting with other software and human agents
to further whatever goal it is assigned to achieve (its design objectives).
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When considering concrete agent implementations, these four characteristics have interest-
ing implications if taken together. Autonomy and reactiveness imply that an agent not
only has to choose its own behaviours, but must do so in a timely fashion. That is, an
agent must not take so long to make a decision that the decision is no longer relevant. In
particularly busy environments this poses a challenge since, with no further information,
an agent must react in a timely fashion to relevant events. Furthermore, if an agent must
not only be reactive, but also proactive in trying to achieve long term goals, instead of
just addressing immediate needs, it needs to prioritise certain activities. Social ability, in
Wooldridge’s view [Wooldridge, 2002], seems to be limited to the use of some agent com-
munication language, implying the need for just the means of communication, rather than
the ability to autonomously and pro-actively seek out help when necessary and supplying
help when convenient. We believe that the tools used in the creation of interacting agents
need more than that to be useful abstractions for agent design.

The study of agents includes many aspects both theoretical (e.g. philosophy of beliefs and
truth, societal dynamics) and practical (e.g. architectures, languages). Two of the most
important aspects of the study of practical agents are: understanding the organisation
and internal processes required for agents to operate in real computer systems (i.e. agent
architectures); and the abstractions through which a designer describes individual agents
while avoiding the need to deal with complexity from the underlying agent processes (i.e.
agent languages). In this thesis, we will chiefly be concerned with the disconnect between
these practical issues and the theoretical properties of agents.

1.2 Multiagent Systems

Agent-based software has been advocated as an ideal technique for the development of large,
distributed applications, viewing them as a number of independently controlled parts that
interact and cooperate to achieve their design objectives. Much research dealing with agent
languages has focused on the description of plans used by an individual agent to interact
with the world [Bordini et al., 2007; Brooks, 1986; Dastani et al., 2005; Howden et al.,
2001]. Although in multiagent systems, agents are assumed to be able to use interaction
to achieve goals, agent languages seldom provide mechanisms to do so, and cooperation is
generally developed in an ad hoc fashion. Even when cooperation is involved, it tends to use
a highly specialised version of any of a number of existing cooperation techniques, assuming
a distributed but ultimately predefined set of abilities in the society.

Cooperation is often cited as one of the main characteristic properties of multiagent sys-
tems [d’Inverno et al., 1997; Doran et al., 1997], yet there are several different modes of
cooperation that can be identified:

• multiple agents acting towards a common joint goal;
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• one agent acting to achieve goals for another agent; and

• agents synchronising their actions so as to avoid negative interference.

The first, and most common mode of cooperation in agents consists of a group of agents
sharing a possibly implicit joint goal and acting to achieve this goal in a coordinated way.
This goal might be negotiated at runtime or exist in all agents by design. The second
possible mode of cooperation consists of one or more agents performing actions that are
not directly related to their own goals, but rather support the achievement of the goals of
another agent. The third and final mode of cooperation commonly considered consists of
agents agreeing on some coordination of their individual actions towards their individual
goals in such a way that no agent jeopardises the operation of another. In order to address
cooperation, however, we need to consider individual agents themselves, thus taking into
consideration existing single agent languages.

1.3 Declarative Goals

Research on agent architectures has yielded a number of models for individual agent opera-
tion, among which one of the most popular is inspired by a philosophical model of reasoning
based on the three mental components of beliefs, desires and intentions (BDI) [Bratman,
1987]. This model postulates that autonomous agents have a model of the world repre-
sented as beliefs, as well as a set of desires constituting potential objectives, and intentions
representing commitment to particular courses of action to achieve particular desires.

BDI architectures and models tended to avoid including many of the declarative aspects
of desires/goals in support of practicality. More specifically, the first instances of complete
BDI logics [Rao and Georgeff, 1995b] assumed an agent able to foresee all of the future
ramifications of its actions as part of the process of deciding which courses of action to take
[Schut and Wooldridge, 2001]. This assumption was clearly too strong if computationally-
bounded BDI architectures were to be constructed. Therefore, when designing practical
architectures based on specific BDI logics, modifications were necessary to avoid unbounded
computations.

As a consequence, such architectures have tended to use plans with implicit goals for prac-
tical reasons. In these architectures goals are implicit in the sense that instead of actually
evaluating the world and predicting which of its behaviours will bring about a desired out-
come, an agent associates certain events in the environment with the enaction of particular
behaviours. This approach results in very good performance as far as computational ef-
ficiency is concerned, but moves away from the ability to adapt responses to unforeseen
events in the world. The idea here is that, since an agent cannot look directly into future
world-states and then select the sequence of actions that leads to the desired future (as this
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would imply omniscience), the inverse approach is taken; that is, an agent selects, from a
set of known courses of action, the one that would lead to the desired future. In practice,
this means that an agent no longer selects directly what it desires to achieve, but rather
what it desires to perform under the assumption that its actions ultimately bring about the
desired state of affairs. These goals are commonly known as goals to do or procedural goals
[Winikoff et al., 2002].

Alternatively, it is possible to design agents that select a desired state of affairs directly, using
some process to find plans that achieve this desired state of affairs. These explicitly desired
states of affairs are commonly known as goals to be [Winikoff et al., 2002] or declarative
goals. As a consequence, the actions required by the agent to reach such a state of affairs
are decoupled from the ultimate goal. This gives rise to the problem of discovering which
actions will have to be taken by the agent to realise its goals. The most widely known
BDI agent implementations bypass this problem through the use of plan libraries where
the courses of action for every possible objective are stored [d’Inverno et al., 2004; Ingrand
et al., 1992; Rao, 1996], and which we have seen are associated with goals to do. The near
absence of pragmatic architectures that implement the notion of goals to be represents a
gap that current research is trying to address.

1.4 Research Objectives

It should be clear that agents are a powerful abstraction for describing interactive systems,
and that the BDI model is a very natural abstraction of reasoning, and therefore inter-
action, involving human agents. It is also the case that, in order to build agent systems,
adequate tools must be provided that allow the theoretical properties of agent systems to be
implemented in concrete computer systems. However, there seems to be a pronounced dis-
connect between agent theory and the existing architectures and languages, and the systems
resulting from these tools do not fully reflect the potential afforded by the agent paradigm.

In response to the above issues, this thesis aims to provide a general purpose agent language
by bridging the gap between the possibilities postulated by agent theory and their avail-
ability in existing agent languages. It is important for flexible agent languages to provide
mechanisms that allow agents to select their desired state of affairs, allowing an agent to
achieve goals independently from particular courses of action. Moreover, if an agent is to
achieve its goals flexibly and autonomously, it must be able to generate new plans beyond
those defined initially by the designer. Thus, our aim is to include mechanisms that facil-
itate the development of each of the four characteristics of agency: autonomy, reactivity,
pro-activeness and social ability. The mechanisms we propose to develop are summarised
in Table 1.1.
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Characteristic Mechanism
Autonomy Planning
Reactivity Meta-reasoning

Pro-activeness Declarative Goals
Social Ability Cooperation and Norms

Table 1.1: Summary of agent characteristics and associated proposed mechanisms.

Declarative goals allow a designer to create agents that decouple the execution of its plans
from goal achievement, thus enabling the resulting agents to try different strategies at
runtime without the need to consider every possible event happening in the environment. We
argue that declarative goals are the best way of representing long-term objectives, without
which no pro-activeness can exist. Therefore, the representation of declarative goals is a
vital component of any general purpose agent language. Processing of declarative goals,
however, requires some changes in the way in which traditional BDI-style agent languages
operate. In particular, an agent needs to choose a plan of actions to achieve the desired
world-state, which is traditionally done using a library of predefined plans. However, for an
agent to be truly able to operate autonomously, it must be able to handle new situations
without assistance, so the ability to generate new plans at runtime is crucial for an agent
language interpreter.

In order to act effectively in any complex environment, autonomous agents must have control
over their internal state and behaviour. To exercise this control an agent needs some means
of reasoning about its internal state, often in a process known as meta-level reasoning (or
meta-reasoning). This is higher level reasoning about the reasoning process itself, and in
agent systems it is commonly used in enforcing rationality in the choice of goals and actions
performed by an agent, ensuring that it behaves as effectively and efficiently as possible.
Through meta-reasoning an agent is able to explicitly consider goals before committing to
them, and consider courses of action before executing plans, in opposition to simply reacting
to events in the environment.

A truly autonomous agent has a broad spectrum of options when deciding what goals to
achieve and how to achieve them. However, traditional agent languages tend to simplify
the process of goal selection and subsequent plan selection to a trigger-response mechanism.
This trigger response mechanism is tightly coupled with a plan-library based approach to
agent design. Any prioritisation is implicit in the plan library through carefully crafted
event triggers and possibly some additional contextual information. This results in an
agent having behaviour patterns set at design time, limiting runtime flexibility. If too many
of the triggers in a plan library are activated at the same time, an agent can easily become
overwhelmed and lose reactivity. In procedural languages, specifying meta-reasoning sepa-
rately from the plans removes the need to replicate internal management code throughout
the plan library, facilitating development. By contrast, declarative architectures are defined
by desired states to be achieved, and capabilities with which an agent can achieve them,
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where an interpreter selects capabilities to achieve goals, and goal conflict resolution must
be performed by this interpreter. In declarative languages, the lack of some goal selection
policy means that goals and plans are selected arbitrarily, since in theory the designer does
not specify precisely how goals are to be achieved. We argue that models of motivated
behaviour [Mele, 2003] can provide a valuable abstraction for the specification of meta-
reasoning, specifically in the context of the BDI model. Furthermore, if an agent needs to
quickly prioritise goals and actions, motivation-based rules provide an efficient and rational
way of doing this. We thus aim to address this limitation in the selection of goals by adding
a meta-reasoning component to an agent’s description, leveraging it as both a mechanism
of goal generation and of prioritisation.

Finally, although social ability is a key characteristic in multiagent systems, agent languages
are notoriously poor in providing mechanisms to facilitate the development of cooperative
systems. We aim to address this shortcoming by providing a language-level mechanism that
supports an agent in carrying out plans on behalf of another. Now, if an agent is able to
request for another agent to execute plans on its behalf, the abilities of the requesting agent
are effectively expanded to include those of the both agents. These new capabilities can thus
be used to compose new multiagent plans. Moreover, systems of autonomous agents need
some degree of behavioural predictability, and to this effect, a general purpose language
for multiagent systems requires some basic norm processing ability. Although normative
systems have received a lot of attention at the macro level, that is at the level of society, the
concrete effects of deciding to follow norms within an agent’s reasoning cycle have received
comparatively little attention. Thus, it is important to investigate how norms must affect
the reasoning of complying agents.

In summary, therefore, our aims are as follows.

• To provide agent architectures with practical plan generation capabilities, allowing
them to adapt to new circumstances not foreseen at design time.

• To provide a meta-reasoning component for agent architectures so they are capable of
autonomously prioritising goals and adjusting priorities at runtime.

• To introduce language-level support for agent cooperation that takes into considera-
tion plan generation capabilities allowing non-scripted cooperation.

• To develop a means to consider societal constraints in order to bound an agent’s
possible behaviours resulting from non-scripted cooperation.
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1.5 Research Contributions

In carrying out the research necessary to accomplish the objectives of Section 1.4, we have
made a number of contributions to the field of agent systems. Thus, the contributions of
this thesis can be enumerated under different areas.

Action-directed reasoning: In terms of our aim of adding plan generation capabilities,
we have taken a traditional agent language, namely AgentSpeak(L), and extended it to
allow agents to generate new plans by combining existing plans within their plan libraries.
The resulting contributions are the following.

1. Development of a declarative-goals enabled BDI agent, based on AgentSpeak(L). This
allows agents to be defined in terms of desired goals that are decoupled from the means
through which they are achieved, facilitating the design of pro-active and autonomous
agents.

2. Development of AgentSpeak(PL), consisting of AgentSpeak(L) enriched with planning
capabilities geared towards the achievement of these declarative goals, allowing agents
to compose new plans at runtime.

3. Construction of a mechanism to allow an agent to reuse newly created plans through
the generation of a context condition, thus amortising the computational effort ex-
pended in planning. This provides a further refinement of the AgentSpeak(PL) sys-
tem.

The contributions on plan generation and declarative goals have been published as:
[Meneguzzi and Luck, 2007a] Felipe Meneguzzi and Michael Luck. Composing high-level
plans for declarative agent programming. Proceedings of the Fifth Workshop on Declarative
Agent Languages, pages 115–130, 2007.

The work on plan reuse has been published as:
[Meneguzzi and Luck, 2008b] Felipe Meneguzzi and Michael Luck. Leveraging new plans in
AgentSpeak(PL). In Matteo Baldoni, Tran Cao Son, M. Birna van Riemsdijk, and Michael
Winikoff, editors, Proceedings of the Sixth Workshop on Declarative Agent Languages, pages
63–78, 2008.

Meta-reasoning: Creating new plans at runtime introduces the problem of managing
plans at the meta-level; that is, multiple plans may interact in the agent’s reasoning cycle,
and cause difficulty from their interactions. In particular, when a plan library is statically
specified by a designer, interaction among plans can be predicted and accounted for in the
plans themselves, but when new plans can be created at runtime, the decision to execute a
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certain plan needs to take into consideration its effects on other plans. Thus, our work in
this area consists of the specification of meta-reasoning through a motivation abstraction,
including the following contributions.

1. Construction of a new model for motivations in a declarative goal-based architecture.
This work builds on existing work to tie in to a wealth of prior research, making the
resulting mdBDI model widely applicable.

2. Development of a new, generic, language for specifying meta-reasoning strategies as
motivational functions, that enables motivation-based meta-reasoning to be addressed
in a domain-independent fashion.

3. Development of a mechanism that uses the specified motivations to prioritise goals at
runtime, ensuring reactivity. This mechanism is used to provide a further architecture,
AgentSpeak(MPL), as a refinement of the previous architecture.

The work on motivation-based meta-reasoning has been published as:
[Meneguzzi and Luck, 2007b] Felipe Meneguzzi and Michael Luck. Motivations as an ab-
straction of meta-level reasoning. In Hans-Dieter Burkhard, Gabriela Lindemann, Rineke
Verbrugge, and László Z. Varga, editors, Proceedings of the 5th International Central and
Eastern European Conference on Multi-Agent Systems, volume 4696 of LNAI, pages 204–
214. Springer, 2007.

Cooperation: Concerning our goal of addressing the lack of agent language-level co-
operation mechanisms, we develop a cooperation mechanism based on the willingness of
cooperating agents to execute plans on behalf of other agents. This cooperation mechanism
leverages the planning mechanism from the previous contributions to create multiagent
plans, by isolating the distributed aspects of the plans from cooperating agents from the
planner. As a result, this ensures that the same basic architectural components can be used,
increasing applicability. It includes the following contributions.

1. Development of an AgentSpeak(L)-based mechanism to discover the capabilities of
cooperating agents.

2. Creation of a method of using the discovered capabilities in cooperative plans through
the use of local proxy plans that abstract communication and coordination with other
agents.

3. Generation in AgentSpeak(PL) of cooperative plans based on these proxy plans.

4. Provision of a failure handling mechanism to eliminate unreliable cooperative plans.
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The work on this cooperation method has been published as:
[Meneguzzi and Luck, 2008a] Felipe Meneguzzi and Michael Luck. Interaction among agents
that plan. In Bernhard Jung, Fabien Michel, Alessandro Ricci, and Paolo Petta, editors,
Proceedings of the Sixth International Workshop: From Agent Theory to Agent Implemen-
tation, pages 133–140, 2008.

Normative reasoning: Now, creating new plans at runtime, both by single and by co-
operating agents, creates the possibility of undesired behaviours emerging in a society, ne-
cessitating a mechanism of societal control to bind the agents to acceptable behaviours. We
address this issue by extending our agent language to cope with societal constraints through
the provision of norm processing capabilities. The ensuing contributions are the following.

1. Development of a mechanism to enable an agent to dynamically suppress plans that
lead to prohibited behaviours when such prohibitions come into force.

2. Similarly, provision of a mechanism to restore previously suppressed plans once pro-
hibitions cease to be in force.

3. Development of a mechanism, leveraging the planning capability to create new plans,
to achieve the stipulations of obligations, thus complying with them.

The work on normative reasoning has been accepted for publication as:
[Meneguzzi and Luck, 2009] Felipe Meneguzzi and Michael Luck. Norm-based behaviour
modification in BDI agents. In Proceedings of the Eighth International Conference on Au-
tonomous Agents and Multiagent Systems, page (to appear), 2009.

1.6 Methodology

The research carried out to achieve the various contributions enumerated in Section 1.5 relies
on different methodological approaches, reflecting the type of contribution being sought.
The contributions relating to plan generation consist of not only new language constructs,
but also a modification to the agent’s reasoning cycle; as a consequence, the validation of
this contribution includes examples of how the resulting language can be used as well as
empirical tests to assess the impact on computational cost of the planning process within the
agent reasoning cycle. Likewise, our contributions towards the inclusion of meta-reasoning
in AgentSpeak(L) result in the introduction of language constructs and modifications to the
agent’s reasoning cycle, and thus their validation consists of examples of language use, and
an empirical evaluation of the efficiency gains that can be attained through the use of such
meta-reasoning.
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Unlike the two previous contributions, however, the introduction of a cooperation mecha-
nism in AgentSpeak(L) is difficult to evaluate quantitatively, or to compare quantitatively
with the original architecture. In consequence, our validation effort consists of example
applications of the techniques developed, demonstrating what can be achieved using them.
Similarly, the norm processing mechanism is also difficult to evaluate in a quantitative em-
pirical analysis, and we therefore demonstrate it through examples of the effects of the
mechanism on concrete AgentSpeak(L) agents.

1.7 Thesis Overview

This thesis is structured as follows: Chapter 2 reviews literature relevant to the work de-
veloped in this thesis with an emphasis on agent systems, motivated reasoning, meta-level
control and norms, ending with a discussion of how these topics establish a set of require-
ments for this thesis; Chapter 3 expands on Section 1.3 introducing the notion of declarative
goals in traditional agent languages and the use of planning to allow flexible goal achieve-
ment; Chapter 4 expands on the notion of meta-level reasoning discussed in Section 1.3 and
describes the motivations-based meta-reasoning mechanism we introduce into our agent lan-
guage; Chapter 5 expands on Section 1.2 detailing the cooperation strategy supported by
our agent language; Chapter 6 elaborates the notion of social ability provided in Chapter 5
and describes the norm processing mechanism introduced in our language; and Chapter 7
concludes this thesis by summarising our contributions pointing out limitations and direc-
tions for further research.
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Agent languages and architectures

As stated in Chapter 1 existing agent languages and architectures are very limited and do
not typically address issues of plan generation, meta-reasoning and multiple self-interested
agents in non-scripted cooperation in an adequate fashion. Our aim in this thesis, therefore,
is to seek to find ways to augment agent languages and their underlying architectures with
such qualities by providing a means to generate new plans dynamically (for flexibility and
reuse), to cooperate with other agents (for multi agent systems), to constrain agent actions
for societies (to ensure stability in multi agent systems), and to do all this in a self-motivated
and autonomous manner.

In this chapter, we are therefore concerned with reviewing agent languages and architectures
and elements that have been considered in isolation to be important for autonomous agents.
We start by reviewing notions of agents in Section 2.1, followed by a number of notable
agent architectures in Section 2.2 and languages in Section 2.3. Clearly, there is a very
large body of work on agent architectures and languages, with far too many different types
to review exhaustively here. In what follows, therefore, we concentrate on reviewing a
representative selection of architectures, to cover the broad range and give an indication
of the kind of work that has been previously undertaken to identify achievements and
limitations. When relevant to the specifics of our work, however, we provide more substantial
coverage as appropriate. Having laid down the basics of agent systems and languages, we
proceed to describe models of meta-reasoning in Section 2.4 and multiagent systems in
Section 2.5. After considering the state of the art in terms plan generation, meta-reasoning
and multiagent systems, we conclude the chapter with a discussion of the shortcomings
encountered in individual languages, architectures and techniques, pointing to requirements
for agents to be developed throughout the remainder of the thesis.

27
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2.1 Agents

In recent years, use of the term agent has become widespread in computer science, while
the notion of autonomous agent has also received some attention in modelling complex
systems. Regardless of the popularity of the term, loose definitions of agent are abundant.
However, the only widely accepted definition of an agent is that of an entity that perceives
a certain environment through sensors and acts upon it through actuators, as illustrated
in Figure 2.1. Through this definition almost any computer program or device can be
considered an agent, and this has been done by many. For example, a thermostat can be
seen as an agent [Franklin and Graesser, 1996], without improving the understanding of the
system in any way, and therefore being used trivially [Shoham, 1993].

Environment Agent

Sensor

Actuator

Figure 2.1: Less than helpful definition of an agent.

We can consider agents as a higher-level of abstraction than traditional software engineering
techniques that facilitates the construction of complex systems, but this simple definition of
agent provides no explanation as to how the agent box in Figure 2.1 processes perception
and generates action. By contrast, we have seen that Wooldridge and Jennings provide
a more comprehensive view [Wooldridge and Jennings, 1995], stating that an agent is “a
computer system that is situated in some environment, and that is capable of autonomous
action in this environment in order to meet its design objectives.” This later definition
puts together two key characteristics that we shall explore further in this chapter: first,
the emphasis on the association of an agent to an environment; and second, the idea that
agents have certain objectives that they must attain using autonomous action. Autonomy,
in a very broad sense, means freedom of action [Soanes and Hawker, 2005], and in the agent
literature it generally means that an agent initiates its actions without direct prompting of
a user or programmer intervention [Luck et al., 2004].

In order to make the concept of agent more helpful in allowing us to build these complex
systems, agents need to have architectures based on some theoretical grounding rather than
ad hoc programming. These architectures should contain a somewhat intuitive process that
leads from sensor input to actuator action while abstracting a lot of the lower level concerns
needed in the creation of traditional systems, otherwise the resulting agent abstraction is
no better than traditional software engineering techniques. Therefore, a number of agent
architectures have been proposed in order to allow the creation of agents that are not simply
ad hoc implementations, but general frameworks for describing and building autonomous
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agents. In the following sections we survey a number of agent architectures as well as
programming languages based on the notion of autonomous agency.

2.2 Agent Architectures

In this section we review some of the most important agent architectures in relation to this
thesis. We start by providing a taxonomy of agent systems that allows us to pick represen-
tative architectures of each type of agent system. We then briefly review key characteristics
of these architectures in the following sections.

2.2.1 Taxonomy

A number of taxonomies have been proposed in order to classify the many existing agent
theories and implementations. Such typologies are based on diverse criteria, one of the most
common of which is the purpose of an agent. For example, Nwana [Nwana, 1996] classifies
agents as interface agents (to create a flexible GUI), information agents (to filter news or
email for a user), among others. In contrast, others, such as Franklin and Graesser [Franklin
and Graesser, 1996], use the most notable capability in an architecture as their criterion:
for instance, an architecture in which learning plays a predominant role makes it a learning
architecture, an architecture that can change its set of behaviours at runtime is a flexible
architecture, or an architecture in which considerable emphasis is given to moving agents
among computers is a mobile architecture, and so on.

These types of taxonomies are limited because they are connected to the particular attribute
being emphasised at the time the classification was developed. Thus, such taxonomies are
vulnerable to obsolescence together with the technologies that justified them. For example,
mobility is no longer a defining aspect of an agent architecture, and though this does not
invalidate them completely, it shortens the time in which they are relevant.

On the other hand, there are classifications in which the criterion is the internal agent
architecture, of which perhaps the best known classification was articulated by Wooldridge
[Wooldridge, 1999]. In this classification agents are organised according to their architecture,
enumerating abstract and concrete architectures. As abstract architectures, Wooldridge
lists:

• purely reactive agents, whose actions at any given time are determined simply by
the sensor input at that time; and

• agents with state, which maintain an internal state that is modified by sensor input
at each point in time and whose actions are the result of a function over this internal
state.
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This classification is interesting, but it does not give enough emphasis to individual types of
state-storing architectures, which encompass a very large class of agents. Agent architectures
with state have a number of notable ways of encoding and manipulating their internal states.
Therefore, refining this into more concrete architectures, Wooldridge [Wooldridge, 1999]
enumerates:

• logic-based architectures, in which aspects of the world are modelled in logic and
where decision-making occurs through a theorem prover;

• reactive architectures, in which decision-making is achieved through some sort of
direct mapping between situation and action;

• belief-desire-intention architectures, in which decision-making is the result of
the manipulation of data structures representing mental states in an agent, especially
beliefs, desires and intentions; and

• layered architectures, in which control and reasoning is distributed through various
software layers that reason at different levels about the environment and the agent’s
knowledge.

Such a categorisation is interesting as it follows the chronological evolution of architectures.
However, we disagree with a specific category being given to logic-based architectures, since
most belief-desire-intention architectures use logic at some point, and even layered architec-
tures use some form of logical representation, at least of a database. Thus, the category of
logic-based architecture seems to be a part of other architectures. In consequence, we use
the principles of Wooldridge’s taxonomy to organise agents into three different categories,
namely: reactive, deliberative and hybrid agents, as illustrated in Figure 2.2. Reactive
agents include the subsumption architecture and Pengi, among others; deliberative agents
include all BDI-architectures as well as BOID; and hybrid agents include TouringMachines
and InteRRaP.

We outline key aspects of reactive architectures in Section 2.2.2, while deliberative archi-
tectures include the large class of belief-desire-intention inspired architectures, described
in Section 2.2.3, as well as BOID agents, described in Section 2.2.4. Finally, significant
hybrid architectures described in this chapter include TouringMachines and InteRRaP in
Section 2.2.5.

2.2.2 Reactive Architectures

Reactive architectures were created as an attempt to overcome certain limitations perceived
by some researchers [Brooks, 1986] towards traditional symbolic architectures, among which
that:
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Figure 2.2: Our taxonomy.

• it is not necessary to create a symbolic representation of the world, nor are syntax-
based inference methods necessary for decisions to be made;

• intelligence is not disembodied, but is instead a result of an agent’s interaction with
the world; and

• intelligent behaviour emerges from the interaction of many simpler behaviours.

The resulting reactive architectures, including the Subsumption architecture [Brooks, 1986]
and Pengi [Agre and Chapman, 1987], demonstrate the possibility of achieving fairly com-
plex behaviour without using symbolic models in the reasoning process. Nevertheless, more
complex applications are not trivial to design using the reactive model, mainly due to intel-
ligent behaviour having to emerge from a set of simpler behaviours. Reactive architectures
are also lacking when proactive behaviour, in which an agent seeks to achieve longer-term
objectives, is necessary, since it must avoid being constantly diverted from its aims by
responding to environmental changes.

2.2.3 BDI Architectures

In contrast to reactive architectures, one of the most widely studied agent models is based
on the notions of beliefs, desires and intentions (or BDI) as mental attitudes that guide the
selection of courses of action. In this model, beliefs describe knowledge about the world,
while desires are states of affairs to achieve, and intentions are commitments to achieving
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a particular subset of desires. The BDI model has its origins in the philosophical work of
Bratman [Bratman, 1984] to explain the way in which humans select a series of actions
directed at the achievement of a larger goal while avoiding spending time considering less
important ones.

This philosophical model inspired the idea of intelligent agents using the same mental ab-
stractions of beliefs, desires and intentions to describe the operation of computer systems.
The first concrete BDI agent architecture was the Intelligent Resource-bounded Machine
Architecture (or IRMA) developed by a team including Bratman himself [Bratman, 1987],
and was created to demonstrate the viability of the BDI model of practical reasoning. IRMA
subsequently evolved into formalisations [Cohen and Levesque, 1990] and a more complete
computational theory [Rao and Georgeff, 1995a].

Following IRMA, Georgeff and Lansky created the Procedural Reasoning System (PRS)
aiming at a BDI architecture suited for real world applications [Georgeff and Lansky, 1987].
It was first used in the implementation of a task control system for a NASA spacecraft
simulator.

A PRS agent or module consists of four components:

• a database containing the current system’s beliefs about the world;

• a set of current goals;

• a procedure or plan library (knowledge area (KA) library); and

• an intention structure.

KAs describe action and test sequences intended to achieve the proposed goals or to react
to specific situations [Ingrand et al., 1992] while the intention structure maintains the set of
plans chosen at runtime for execution. PRS integrates these components via an interpreter,
which functions as an inference mechanism that manipulates them and selects an adequate
plan based on the system’s beliefs and goals, putting this plan into the intention structure
and executing it. Here, the idea of real world applications implies that an agent needs to
react quickly to a dynamic environment, and PRS emphasises computational efficiency in
execution. In order to accomplish this and, just as in reactive architectures, PRS drops the
ability to generate new plans, relying instead on a library of procedural plans. PRS and its
successor, the distributed Multi Agent Reasoning System (dMARS) [d’Inverno et al., 2004],
were subsequently used to create various practical applications [Georgeff and Ingrand, 1989b;
Ingrand et al., 1992]. Finally, the language used to describe the agents was formalised by
Rao [Rao, 1996] in AgentSpeak(L), which we shall go in further detail in Chapter 3.

In this way, BDI agent architectures have been used mostly in the context of single agents
based on a fixed plan library of behaviours invoked reactively. These architectures provide
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a theoretically sound basis for agent development but offer limited support for developing
multiagent systems with dynamic plan libraries; that is, an agent has no way of adapting
its plan library after being deployed. In particular, when an application requires agents to
create new plans to cope with circumstances not foreseeable at design time, a designer is
required to develop an ad hoc solution to the problem.

2.2.4 BOID Architecture

The Beliefs-Obligations-Intentions-Desires architecture (BOID) was created by Broersen et
al. [Broersen et al., 2001] aiming at the construction of normative agents (i.e. agents in which
some of its goals are adopted as a result of commitment to social norms). The architecture
is based around a framework in which each mental attitude is represented as a component
that processes generic logical formulas in a sequential loop until an agent commits to an
action. An initial set of formulas is generated as a result of observation from the sensors
and supplied as input to the first component, which processes the formulas in a loop until
no modifications are made. The component then passes the formulas onwards until the
last component does its processing, which ultimately results in commitments. Each set of
formulas processed by a mental-attitude component is called an extension [Broersen et al.,
2001].1 These components take as input one set of logic formulas and provide as output
another set of formulas that have been calculated based on a set of inference rules encoded
in the component.

Broersen et al. make an extensive evaluation of the potential conflicts among the mental
attitudes (for example, desires may conflict with obligations) concluding that, depending
on the type of agent being considered, a different priority of conflict resolution is necessary.
So, the idea behind the component-based calculation in BOID is that mental-attitudes (or
components) that have higher priority in the conflict resolution hierarchy perform their
calculations first, feeding the output to the subsequent component. A component is said
to be without conflict regarding a previous component in the chain if the set of formulas
it receives as input remains unmodified as the output. If the set is modified, it is fed back
to the beginning of the chain. Ultimately, this processing of formulas occurs so that BOID
agents consider all effects of actions before committing to them.

The sequence in which the mental components are organised for processing these formulas
determines a different type of agent so, for example, an agent in which the desires component
comes before the obligations component is called a selfish agent, because desires have priority
over obligations. Similarly, realistic agents are those that consider beliefs the most important
component, where the initial set of formulas is first given as input to the beliefs component
and then to the other components. Agents of this kind typify BOID agents, which are also
endowed with a planning component that takes a set of formulas as input and generates a set

1Since an extension in BOID is just an opaque nomenclature for sets of logic formulas, we use the term
set of formulas here for clarity.
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Figure 2.3: Variations of BOID [Broersen et al., 2001].

of actions scheduled to be performed. This organisation is illustrated in Figure 2.3(a), where
B represents the beliefs component, D the desires component, O the obligations component,
P the planning component and I− represents the set of previous intentions, or the actions
to which the agent has committed in the previous processing cycle. Figure 2.3(b) shows a
modification of the basic BOID architecture that allows multiple sets of formulas to be used
in the generation of plans. Here, all new intentions are processed by I+ (emphasising that
these are newly selected intentions) ordered by some preference relation, and then given as
input to the planning component. If for any reason the selected formulas (i.e. intentions)
cannot be translated into a feasible plan, the I+ component sends the next best formulas
to the planning component.

Although BOID contains an interesting experiment on the logics driving many types of
reasoning within a BDI architecture, it is a very difficult architecture to understand, limiting
its attractiveness as a tool for the development of practical agents. Moreover, the very nature
of the processes used by an agent to select and commit to courses of actions can easily lead
to unbounded computations, further limiting its applicability to practical problems.

2.2.5 Hybrid Architectures

Hybrid architectures were created in an attempt to reconcile the characteristics of reactive
and deliberative architectures [Wooldridge, 2002]; two very representative architectures of
this kind are TouringMachines and InteRRaP. The TouringMachines architecture was cre-
ated by Ferguson [Ferguson, 1995] to address a number of possibly conflicting issues, namely
[Ferguson, 1995; Luck et al., 2004]:

• deal with unexpected events in the real world;

• deal with dynamism in the environment created by actions of other agents;

• pay attention to environmental changes;

• reason about temporal constraints in the context of resource-bounded computation;
and
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• reason about the impact of short-term actions on long-term goals.

Like Brooks’s subsumption architecture described in Section 2.2.2, the TouringMachines ar-
chitecture is organised in layers, but their interaction and operation are completely different.
In TouringMagines, each layer represents a different level of abstraction, and can commu-
nicate with every other layer. Behaviour is generated by each of the three layers, with
a reactive layer containing reactive behaviours needed for quick responses to a dynamic
environment, a planning layer responsible for generating and executing plans to achieve
long-term goals, and a modelling layer responsible for constructing a model of other agents
and predicting their behaviour. These layers are illustrated in Figure 2.4.

Subsystem

Perception

Subsystem

Action

Reactive Layer

Planning Layer
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Control Rules

Output

Action

Input

Sensory

Figure 2.4: TouringMachine architecture [Ferguson, 1995].

InteRRaP, in turn, is an architecture developed by Müller [Müller et al., 1995], and con-
sists of three vertically organised layers: behaviour-based, plan-based and cooperation. The
behaviour-based layer performs reactive reasoning, and has rules concerning instant reac-
tions and the execution of actions in the world. The plan-based layer is concerned with
achieving longer term goals and planning to achieve them, whereas the cooperation layer
deals with social behaviour. InteRRaP agents also have a knowledge base in the form of a
hierarchical blackboard split into three layers corresponding to the reasoning layers. The
lowest-level layer in the knowledge-base contains object-level beliefs about the world (i.e.
the world model), while the middle layer contains information about the current goals and
the adopted plans, and the topmost layer contains a model of the beliefs of other agents.
These components, and their organisation are illustrated in Figure 2.5.

2.2.6 Discussion

As we have seen, research on agent architectures shifted emphasis initially from deliberative
models to the reactive approach advocated by Brooks (among others) in his subsumption
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Figure 2.5: The InteRRaP architecture [Müller et al., 1995].

architecture, mainly because these initial deliberative approaches failed to result in practical
systems. Although the reactive approach yielded initial successes in creating robots that can
perform a number of low-level reasoning tasks, such as avoiding obstacles, reactive agents do
not scale well for higher-level reasoning tasks, such as buying plane tickets. This limitation
can be attributed to the difficulty in modelling and foreseeing the interactions among the
large number of reactive rules required for these complex behaviours. Deliberative agents
had a resurgence with the advent of the BDI model, which provides a folk psychology-based
abstraction for describing and specifying agent systems, facilitating the design of more
complex behaviours. Even though the BDI model assumes some kind of plan generation
capability, the creators of PRS chose not to use it for reasons of efficiency, resulting in
a system with characteristics of both reactive and deliberative architectures. This hybrid
approach was also adopted by other systems such as InteRRaP and TouringMachines, trying
to reconcile reactivity with deliberation.

2.3 Agent Languages

Given the number of architectures developed to realise agent systems, several researchers
have sought to develop specific abstractions to allow designers to express these systems
[Bordini et al., 2007; Dastani et al., 2004; Rao, 1996]. By specific abstractions, we refer
to languages aimed at the description of agent systems. Therefore, in this section we
review a number of significant agent languages created to facilitate the construction of agent
systems. Although less extensive than agent architectures, the number of agent languages
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is large enough that a thorough listing of all existing languages is not feasible in the scope
of this thesis. We therefore focus on languages that represent significant milestones in
the chronology of agent languages. This section starts with the initial AGENT0 and its
successor PLACA in Section 2.3.1, followed by AgentSpeak(L) in Section 2.3.2, and ending
with 3APL in Section 2.3.3.

2.3.1 AGENT0 and PLACA

The first attempt at defining a programming language specifically using the notions of men-
tal states and agency resulted in the AGENT0 programming language by Shoham [Shoham,
1993], who also coined the term Agent Oriented Programming (AOP). AOP is a program-
ming model that requires a designer to create a set of transition rules defining how mental
states change as a result of input received by an agent’s sensors. AGENT0 agents comprise
a set of beliefs, capabilities and obligations, and can communicate with other agents to
either send information or to request that actions be carried out.

From domain simulation

Mental−Change

Output Buffer

Rule Checker

Mental−Change

Input Buffer Agent Program

Executor

Intentions, Plans)

(Beliefs, Capabilities,

Mental State

Planner/Scheduler

To domain simulation

Specified by user

Rule Applier

Figure 2.6: The PLACA interpreter [Thomas, 1995].

AGENT0 was succeeded by PLACA [Thomas, 1995]2, which extends AGENT0’s expressiv-
ity with the addition of a planning component, and whose agents are defined in terms of
an initial mental state and a list of mental-change rules. The initial state consists of a list
of capabilities, and consistent lists of initial beliefs and intentions. From this initial state,
a PLACA interpreter processes agent information together with perceptual data in order
to generate actions. Thus, an agent starts its execution with an empty list of initial plans
and, as it commits to intentions through its mental-change rules, new plans are created

2An acronym for PLAnning Communicating Agents.
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by the planner and added to this list and eventually executed through the executor. This
summarised execution cycle is illustrated in Figure 2.6.

2.3.2 AgentSpeak(L)

From a different perspective, the AgentSpeak(L) language [Rao, 1996] was created to bridge
the gap between the theory behind BDI architectures and their implementation in systems
like PRS [Georgeff and Lansky, 1987] and dMARS [d’Inverno et al., 2004]. This gap can be
attributed to a number of factors [d’Inverno and Luck, 1998]: on the one hand, implemen-
tations are generally conceived in a simplified manner, resulting in the weakening of their
theoretical underpinnings, while on the other hand, the logics used to build the theoretical
basis seldom have a strong relationship with practical problems. To address this shortcom-
ing, it is argued by Rao [Rao, 1996], it is necessary to provide a formal specification of the
agents that are to be implemented. This formal specification can be achieved using a for-
mally grounded agent language, and as a result, the AgentSpeak(L) language was created to
provide a strong association to an underlying formal model. Rao claims that the semantics
of AgentSpeak(L) should correspond to a formally defined version of the way in which the
implementations of PRS and dMARS operate [Rao, 1996], thus bridging the gap between
theory and concrete implementation.

AgentSpeak(L) is thus a programming language based on a restricted first order logic with
BDI abstractions in which an agent is defined in terms of its initial beliefs and a plan library.
Plans in a plan library are characterised first by an invocation condition indicating when
plans can be adopted, and second by a context condition that represents the circumstance
in which these plans are to be adopted. It hence avoids using the traditional modal logics
of its theoretical origin. However, some of the BDI components are represented in a no-
tably implicit way: in particular, the desires that a certain plan satisfy are not represented
explicitly. As we shall see in more detail in Chapter 3, a plan invocation condition does
not necessarily correspond to a particular desire an agent needs to satisfy, but rather a
particular event in the world that may or may not have any connection with state an agent
aims to achieve. In this way, an agent does not reason about its set of desires choosing
plans to accomplish them. Rather, plans imply the goals they are expected to achieve in
their invocation condition, so a desire is implied by the occurrence of some event expressed
as this invocation condition.

2.3.3 3APL

3APL3 is an agent programming language created to incorporate some of the concepts from
agent logics [Hindriks et al., 1999] into an agent interpreter. The specification language of

3Pronounced “triple-a-p-l.”
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Figure 2.7: General architecture of a 3APL agent and platform [Dastani et al., 2005].

3APL separates mental attitudes (data) and the deliberation process (programming instruc-
tions). Regarding the specification of mental states, 3APL agents need a definition of beliefs,
goals, actions, plans and reasoning rules. Beliefs and goals are specified using logic formulas
following the Prolog standard [Nilsson and Maluszynski., 1995], so that beliefs can either
be static facts about the world or derivation rules, and goals specify desired world-states.
This way of specifying goals makes 3APL one of the first agent languages to incorporate the
notion of declarative goals, or explicitly specified target world-states. Capabilities define the
preconditions and effects of actions in a format similar to STRIPS, which can then be used
in plans in the agent’s plan base. Besides these data structures, a 3APL agent contains two
rule-bases, one called goal planning rules (or PG-Rules) for “generating” plans (though not
in the planning sense) to achieve goals and another called plan revision rules (or PR-Rules)
to revise plans from the plan base. These elements are illustrated in Figure 2.7(a). PG-
Rules are in a sense analogous to the invocation conditions of AgentSpeak(L) plans, while
PR-Rules provide a mechanism to modify plans that fail to achieve their designated goals.

In addition to these components, 3APL includes a meta-language that allows customisations
to the process of selecting which plans to execute, which goals to pursue and which rules to
apply. In principle, this meta language allows a designer to use constructs similar to those
available for plans in the plan base to redefine the way in which the deliberation process
operates.

In order to program multiagent systems, Dastani et al. [Dastani et al., 2005] in a further de-
velopment presuppose two programming languages: one to implement single agent systems
and another to implement multiagent aspects. Here, the function of the multiagent language
is fulfilled by a Java-based platform, in which a shared environment is programmed directly
in Java. The multiagent platform used by 3APL, illustrated in Figure 2.7(b), allows the
deployment of multiple agents, whose management is controlled by an agent management
system (AMS) that includes a directory service to locate agents.
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2.3.4 Discussion

Throughout the evolution of agent languages, emphasis has been given to a strong as-
sociation of the language with some formal semantics, which is the case with AGENT0,
AgentSpeak(L) and 3APL. Each of these languages focused on particular properties, with
AGENT0 focusing on simply describing a distributed system using mentalistic notions,
AgentSpeak(L) focusing on correspondence with a popular implementation of an agent in-
terpreter, and 3APL focusing on realising a particular BDI logic. It is interesting to note
that AGENT0’s successor, PLACA, included the notion of planning as an essential capa-
bility of the agents created using that language, which other, more recent, languages have
omitted.

AGENT0 and PLACA are admittedly initial approaches to agent programming, and as
such they did not aim to be definitive solutions for agent programming. AgentSpeak(L),
conversely, follows the tradition of pragmatic agent implementations, but this also reflects on
its simple mechanism for action selection geared towards execution efficiency. Unlike both
PLACA and AgentSpeak(L), 3APL focuses on mixing logical aspects of agent languages with
bindings to Java to provide a more programmer-oriented language, but like AgentSpeak(L),
it relies on predefined plans to solve problems at runtime. Unlike the previous languages,
however, 3APL contains a meta-language that allows aspects of the reasoning process to be
manipulated at runtime, which is a concept we will explore in Section 2.4.

2.4 Meta Level Control

As we have seen, 3APL was one of the first languages to incorporate an auxiliary language
to manipulate the reasoning process at runtime. This manipulation follows the idea that in
order to act effectively in any complex environment, autonomous agents must have control
over their internal state and behaviour [Jennings, 2000]. To exercise this control, an agent
needs some means of reasoning about its internal state, often in a process known as meta-
level reasoning (or meta-reasoning). This is higher level reasoning about the reasoning
process itself, and in agent systems it is commonly used in enforcing rationality in the
choice of goals achieved or actions performed by an agent, ensuring that the agent behaves
as effectively and efficiently as possible. Conversely, traditional agent architectures often
reason only at the object level ; that is, their reasoning is limited to collecting perceptions
from the environment (or ground level) and acting upon this environment. We illustrate
the differences between these levels of reasoning in Figure 2.8.

Through meta-reasoning, an agent is able to explicitly consider goals before committing to
them, and consider courses of action before executing plans, in contrast to simply reacting
to events in the environment. Meta-reasoning is typically considered in two distinct ways:
as a behaviour optimisation process, or as a behaviour scheduling mechanism. First, in
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Figure 2.8: Reasoning and meta-reasoning [Cox and Raja, 2008].

the context of optimising agent behaviour, meta-reasoning improves behaviour over time
by observing the results of previously selected courses of action and adjusting the selection
mechanism. This optimisation process is only possible when there is some objective method
of assessing action effectiveness, so it is mostly suitable to domains in which there is some
natural way of determining whether a certain behaviour is good or bad. Alternatively, meta-
reasoning has been used in architectures based on continuous planning, which consists of a
planning process that can arrive at a plan quickly, but can improve this plan given more
time. In these architectures [Ambros-Ingerson and Steel, 1988], meta-reasoning is used to
decide when enough planning has been performed and initiate action execution. From a
BDI perspective, this latter type of meta-reasoning can be used to select an intention to
execute from among a set of concurrent intentions. For both applications of meta-reasoning,
there must exist an objective criterion to assess the quality of an agent’s reasoning, such as
resource consumption in the environment or the failure rate of selected plans.

In this section, we examine research on models of meta-level control comprising both be-
haviour optimisation and scheduling architectures. We end with a discussion on how meta-
reasoning can be incorporated into an existing agent architecture and indicate possible
abstractions for this type of reasoning.

2.4.1 Meta-level control in deliberative agents

Raja and Lesser [Raja and Lesser, 2004] describe an approach for meta-level reasoning with
bounded computational overhead, which can be dynamically constructed and improved
through reinforcement learning. This approach is intended to improve agent performance
in complex domains where there is a need for dynamic decision-making about tasks. Here,
meta-level control is described in terms of meta-level actions that can be used whenever
a new task arrives. Among the available options for meta-level tasks is the execution of
two types of scheduler, a simple scheduler, that uses pre-computed information to arrive at
an acceptable execution schedule, and a detailed scheduler, which takes into consideration
several optimisation metrics and calculates rewards in soft real-time. A meta-level controller
(MLC) selects one such action, which can do one of the following:
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• drop the task;

• use the simple scheduler on the new task;

• use the detailed scheduler on the new task;

• use the detailed scheduler on the new task and all tasks including partially executed
ones;

• add the new task to the agenda; or

• gather more information about the task and try to decide again.

During this decision process, the MLC compares the deadline of the new task with the
available time and spends this time in trying to maximise the utility obtained and satisfy
the deadline. This decision of which meta-level action to take is made using a decision
tree which has information regarding the expected utility of each meta-level action given
a certain agent state. The learning process described by Raja and Lesser uses a domain-
independent abstract representation of the agent state to refine the decision tree used by
the MLC.

It is unclear how the abstract representation used by Raja and Lesser can be used to design
meta-level strategies, and how the utility of meta-level actions relate to the utility of the
action-directed plans being scheduled for execution. This latter problem is of great concern,
since it is generally not the meta-level actions of an agent that cause utility gains, but rather
the actions an agent execute upon the environment.

2.4.2 Thangarajah’s Detection of Goal Interactions

Given the possibility that goals being pursued in parallel may result in the execution of
plans which may interact, Thangarajah et al. [Thangarajah et al., 2003a,b] state that a
rational agent should be able to detect these interactions and avoid negative ones while
exploiting positive ones. Negative interactions occur when the satisfaction of one goal pre-
vents the achievement of another goal. Positive interactions may occur when two goals have
overlapping dependencies or subgoals, and a rational agent can achieve these dependencies
only once in the process of achieving both goals.

Positive interactions are exploited by plan merging during scheduling. This means that if
two goals have the same subgoal, only one plan to achieve the subgoal will be scheduled
for execution, so it will be achieved only once for both goals. In order to reason about
plan and goal interactions, Thangarajah et al. [Thangarajah et al., 2003b] developed a
representation of goals and plans called Goal-Plan Tree (GPT) that structures goals as
nodes having all possible plans to achieve it as children, while each subgoal included in
these plans is, recursively, a node down this tree.
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Plan templates (or plan types) are described in terms of an identifier, pre-conditions, in-
conditions, post-conditions and a plan body. Pre-conditions specify when a plan can begin
execution, analogously to AgentSpeak context conditions. In-conditions are conditions that
must be true throughout the execution of a plan, otherwise the plan fails. Post-conditions
or effects are the conditions that will hold after the plan has been executed to achieve a
certain goal. Finally, a plan body contains actions and subgoals. Goal types are represented
in a similar way to plans, i.e. with an identifier, and in-condition, effects and plans. Here,
effects are the success condition sought by the goal, and the plans are an enumeration of
the possible plan-types that can satisfy this goal. It is important to note that plans are
explicitly associated with goals in this representation, and a distinction is made between
plan effects and goal effects, so that the effects of a plan that are not the effects of an
associated goal are viewed as side-effects.

The effects of goals are classified as either definite or potential. Definite effects occur in all
possible paths to achieving a goal, whereas potential effects are those that may occur in some
paths but not others. This information is summarised in effect summaries, which are built
by propagating the effects of a tree of potential paths to achieving a goal. Effect summaries
are used to facilitate the process of recognising and exploiting positive goal interactions.
By analysing effect summaries of concurrent plan structures, it is possible to identify plans
that achieve the same goal and eliminate redundant plans, or to merge compatible plans to
minimise redundant steps.

This work by Thangarajah et al. shows an interesting application of meta-reasoning to
improving the efficiency of an agent at runtime. Importantly, this approach underlines
the importance of being able to deduce the declarative effects of plans in traditional agent
architectures in order to detect when plans may interfere with each other. In this particular
work, this information is supplied in the form of effect summaries, which is an approach
that can be leveraged in this thesis.

2.4.3 Pokahr’s Goal Deliberation

Though most agent languages allow for the execution of multiple plans in parallel, the un-
derlying systems ignore the issues relating to actually executing conflicting plans in parallel,
as there is no framework for deciding how goals interact and how to choose them. The as-
pect of goal deliberation dealt with here is how to deliberate on possibly conflicting goals
to decide which ones are to be pursued. Since Pokahr et al. [Pokahr et al., 2005a] aim to
integrate this type of deliberation into an agent architecture, the underlying infrastructure
has to provide a clear interface for goal handling, conflict resolution and exploitation of
positive interactions. Moreover, meta-level strategies regarding goal deliberation have to
take into account at least three issues:

• the important influence factors that can be used to drive the decision process;
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• when and how often to deliberate about goals; and

• about which goal sets to deliberate.

In order for goal deliberation to take place, an explicit representation of goals is necessary,
i.e. goals must have some sort of declarative representation. This framework is implemented
in an architecture that uses a modified version of the traditional BDI interpreter cycle,
which includes a set of meta-actions invoked as needed. In this particular architecture,
goals are defined as having three properties, or conditions, which are monitored throughout
their lifecycle: a creation condition, a context condition (which when not true entails the
suspension of the associated goal), and a drop condition. This goal representation follows
the ideas for goal modelling from Braubach et al. [Braubach et al., 2004].

The influence factors used to drive the decision process considered by Pokahr et al. are
cardinalities and inhibition arcs. Cardinalities restrict the number of active goals of a
specific type (each goal description constituting a type), while inhibition arcs are used to
declare negative interactions between two goals. Deliberation occurs on demand, as a result
of new goals being adopted or existing goals needing to be suspended, and the goal set
considered for deliberation is the subset of the active goals related to the goal that triggered
deliberation.

Pokahr’s efforts underline the importance of a declarative representation for goals in per-
forming meta-level reasoning. Thus, without a representation of the expected results of
plans and actions, an agent cannot prioritise goals unless a designer introduces arbitrary
reward values for specific plans.

2.4.4 VHD++

De Sevin and Thalmann [de Sevin and Thalmann, 2005a,b] describe a model of motivated
action selection for simulated humans that uses multiple motivations (e.g. hunger, thirst)
and their intensities to provide a hierarchy of preferences for the triggering of goal adoption
rules. This additional level of abstraction between raw sensor data and goal adoption using
motivations is called a hierarchical classifier system. It is intended to reduce the search
space analysed in the action selection process by the use of weighted rules corresponding to
motivations that lead certain goals to be prioritised. In turn this can improve the modelling
of complex systems with large numbers of rules for the selection of goals and actions.

The evaluation of motivations relies on two threshold values that define three zones of
motivation: a comfort zone below the first threshold; a tolerance zone between the threshold
values; and a danger zone beyond the second threshold. This evaluation is non-linear in
that intensity levels increase slower in the tolerance zone, with no action being taken by the
agent, while if the intensity lies in the danger zone its evaluation is amplified to increase
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the odds of action towards its satisfaction. These zones of motivation and an example of
how motivational intensity might increase through them is illustrated in Figure 2.9.
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Figure 2.9: The three zones of motivation [de Sevin and Thalmann, 2005a].

A complete agent architecture, including this model of motivated control, is implemented
in VHD++ [de Sevin and Thalmann, 2005b], which is used in various simulation scenarios
involving human needs, modelled as motivations such as hunger, thirst and rest. Here, the
motivation model is able to modify an agent’s internal state, leading it to adopt certain
behaviours for the achievement of long-term goals, and also causing it to carry out actions
directly, in order to react to some immediate need or opportunity.

The model also includes a learning module to allow motivation thresholds to be adjusted to
optimise behaviours, as well as a social component to allow the agent to infer the motivations
of other agents and respond to them. Since this method of motivated behaviour is used
directly for action selection, it includes a simulation of hysteresis4 to prevent abrupt changes
in behaviour and to allow for the agent to persist in certain behaviours before considering
alternatives. While this particular mechanism is interesting if the only mechanism for action
selection is the motivational model, it is unnecessary in a BDI architecture, since intentions
provide the means for persistence of plan-long behaviours.

2.4.5 Motivational quantities and organisations

In order to allow agents to weight the rewards of certain behaviours and actions, Wagner and
Lesser [Wagner and Lesser, 2000] define a simplified model of motivational quantities (MQ),

4Hysteresis is the lagging of an effect behind its cause; in this case, the motivations start to change
slightly after the events that cause their change.
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inspired by more traditional views of motivational dynamics in agents [Decker, 1998]. In this
model, interacting agents belong to distinct organisations, and information regarding the
relationships between these organisations is used by agents to reason about the rewards of
providing or utilising services from agents across organisations. Agents with an augmented
understanding of the organisational context affect the control of a multiagent system in two
primary ways:

• information about the structure of an organisation narrows the scope of an agent’s
horizon of interaction, preventing a combinatorial explosion of interaction possibilities;
and

• information about the value of interactions and actions affects the choice of actions
and goals of an agent.

When choosing which task to carry out next, socially situated agents using the MQ model
consider three classes of task:

• local concerns with no value to others;

• tasks that others wish the agent to perform; and

• tasks that others may perform for the agent.

Agents have a set of MQs that they accumulate and exchange with other agents, and which
may be based either on common intrinsic MQs or on MQs acquired dynamically. Task
execution produces MQs of one or more types, representing the benefit of performing a given
task. Conversely, some tasks may cause the loss of MQs, representing a negative outcome
to the agent. In addition, organisational information affects an agent’s representation of
MQ production and loss, steering the agent to choosing actions that are valuable not only
for itself but for the organisations in which it is a participant.

2.4.6 Other

In addition to the control systems explored in this section, a number of other, less recent,
architectures are also reviewed, and we mention them briefly in this section.

First, the Alarms architecture allows agents to generate goals asynchronously to focus re-
sources on the accomplishment of important goals [Norman and Long, 1995]. This process
of asynchronous goal generation entails that new goals can be generated before current ones
are accomplished, so that it is possible for an agent to adopt more goals than it can effec-
tively work on at the same time. Moreover, adopted goals require processing resources for
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scheduling and planning, and since any agent has a limit on its processing resources regard-
less of its efficiency, there must be an upper bound for the number of goals it can pursue
simultaneously. When this bound is exceeded, the agent will no longer function effectively.

Next, the Will architecture was created by Moffat and Frijda [Moffat and Frijda, 1995] as a
means to integrate multiple AI techniques as isolated components within a complete mind
using the simplest possible working model. A Will agent comprises a set of components
that operate asynchronously with no awareness of each other, organised around a memory
component upon which they read and write information, similarly to a Blackboard architec-
ture [Hayes-Roth, 1985]. These components are responsible for perceiving the environment,
reacting to events, planning for goals and executing the actions selected by the agent in an
asynchronous manner.

More recently, the Abbot architecture proposed by Cañamero [Cañamero, 1997] is based
on motivational and emotional states modelled as Society of Mind (SoM) agents [Minsky,
1986] that influence each other trying roughly to emulate the operation of the emotional
and basic hormonal system. The Abbot architecture was tested in an abstract world in
which some agents interact, aiming to satisfy their urges.

2.4.7 Discussion

While the systems and models considered above provide some valuable solutions to the
problem of meta-level control, ranging from simple reaction rules to more refined behaviour
selection processes, they have some shortcomings that have prevented their mainstream
adoption in agent development.

The first three efforts reviewed in this section focus on abstract models of meta-reasoning:
Raja and Lesser [Raja and Lesser, 2004] (in Section 2.4.1) use meta-reasoning to allow
the scheduling of existing tasks based on a pre-defined preference relation; Pokahr et al.
[Pokahr et al., 2005a] (in Section 2.4.3) and Thangarajah et al. [Thangarajah et al., 2003b]
(in Section 2.4.2), rely on a technique that summarises the effects of plans considered for
adoption and analyse positive and negative interactions to avoid conflicts and maximise
opportunities. These efforts improve agent efficiency by focusing on specific areas of the
reasoning process to optimise. However, such optimisations rely on detailed knowledge of
their underlying architectures [Pokahr et al., 2005a; Thangarajah et al., 2003b], or on some
abstract notion of utility to allow prioritisation [Raja and Lesser, 2004], and all use a single,
static strategy to improve agent efficiency.

The efforts we reviewed afterwards focus on a particular abstraction for meta-level reasoning,
but in the context of a customised agent architecture. VHD++ and MQ lack a complete
agent architecture and language, and are therefore ad hoc methods for building agents.
In two of these models some of the features of previous agent models (namely BDI) are
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replicated in an ad hoc way. The model of de Sevin and Thalmann (in Section 2.4.4) allows
a degree of hysteresis to prevent switching too fast between behaviours, which is equivalent
to the notion of commitment in BDI, but it is not clear how much hysteresis any given
behaviour or agent requires in order to achieve an acceptable degree of commitment.

It is clear that the Abbot, Will and Alarms architectures (outlined in Section 2.4.6) were
designed as testbeds for specific notions of motivation, hence they lack the tooling for
the generic development of agents. Abbot agents use motivations in a Society of Mind
context, in which behaviours are expected to emerge from the interaction of multiple dis-
sociated components, but emerging behaviours are difficult to model in a predictable way
for complex scenarios. Will agents use a BDI-like approach in dividing the architecture
into multiple mental abstractions, but they lack the tools and a language to allow generic
agent development. Finally, the Alarms architecture demonstrates a series of advantages
that motivation-based meta-level control can provide, but its abstractions for motivations
and their relation to the choice of actions is somewhat confusing.

More generally, it appears that meta-level control is more easily applied to domains in which
agent behaviour can be easily evaluated as being effective through some existing criterion.
When there is no such criterion, it is necessary to create some way in which to evaluate an
agent’s mental state to provide guidance for plan selection. As a consequence, most of the
meta-reasoning architectures discussed in this section use the abstraction of motivation to
allow evaluation criteria to be specified regardless of the domain. In this context, it seems
that motivations can provide an elegant solution for modelling meta-level control in an
agent system. Motivations are regarded by many as an orientation towards certain classes
of goals [Luck and d’Inverno, 1998; Morignot and Hayes-Roth, 1996], and are used in various
theories of animal behaviour to explain why animals behave in certain patterns [Balkenius,
1993]. Motivations are also used to provide a mechanism of lateral inhibition, suppressing
unnecessary behaviours in order to give priority to more urgent ones. Motivations have
not been explicitly advocated as a mechanism for meta-level control, but given the above
review, motivations appear to be a natural mechanism for meta-level control, as they can
be used analogously to such control mechanisms.

2.5 Multiagent Systems

Considering our research objective of a planning-capable agent architecture that is able to
operate in a society, and having already reviewed efforts in agent architectures, languages
and meta-reasoning, we now focus on the societal aspects of agent systems. In this section,
we review a number of important efforts in the field of multiagent systems that are critical
to the creation of effective agent societies. However, as before, due to the immense amount
of work in this area we must limit our review to a representative sample of work. We start
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in Section 2.5.1 by considering a basic element in multiagent systems, which is the commu-
nication language required for agents to interoperate, and since our focus is on being able to
deal with situations not envisaged at design time, we review aspects of multiagent planning
in Section 2.5.2. Finally, in order to provide a mechanism to ensure that undesirable be-
haviours do not arise in a system of autonomous flexible agents, we review the application
of norms to agent systems in Section 2.5.3.

2.5.1 Communication Languages

Considering the interactive nature of agent systems, communication is naturally an impor-
tant concern. Regardless of the similar origins between distributed systems and agent sys-
tems, communication between agents occurs at a higher level, requiring some sort of higher
level abstraction surrounding communication. Unlike lower-level interprocess communica-
tion in which messages either provide irrefutable information and undeniable commands to
execute code, agents may accept or reject the validity of new information, as well as deny
requests for action.

Agent communication generally follows the theory of speech acts proposed by Austin [Austin,
1962]. Speech act theory states that certain utterances can be considered actions in some
contexts, and Austin calls this class of utterances speech acts. Speech acts have three dis-
tinct aspects: the locutionary act, which is the act of vocalising a certain message; the
illocutionary act, which is the actual action performed as a result of the locutionary act;
and the perlocution, which is the effect of the illocutionary act. Speech act theory was later
extended by Searle [Searle, 1969], identifying several types of conditions for speech acts to
be performed, and classifying a number of possible speech act types, such as commitments
to the truth of information, requests and commitments for action, among others. In the fol-
lowing sections, we describe two concrete speech act-based agent communication languages,
representing an initial effort in adapting speech-act theory to agent communication and a
standardised evolution of this first effort, respectively.

The Knowledge Query and Manipulation Language (KQML) [Finin et al., 1994] and Knowl-
edge Interchange Format (KIF) [Genesereth and Fikes, 1992] are two languages developed
under a DARPA-funded initiative to provide communication protocols for autonomous in-
formation systems. KIF is not a communication language in itself, but rather a knowledge
representation format intended to be used as the content of messages in other languages,
such as KQML.

KQML is the message protocol counterpart to KIF, consisting of speech act-based messages.
Each message, therefore, has a performative (that is an illocutionary force) determining the
general purpose of the message and parameters. KQML includes performatives such as: ask
to request some information; achieve, to achieve a certain world-state in the environment;
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Table 2.1: Example of FIPA ACL message.

tell, to inform another agent of a certain belief; and several others. It became very popu-
lar among the agent community, but a lack of a formal semantics meant that it was hard
to ensure interoperability among agents communicating using different implementations of
KQML. This lack of semantics compounded with the existence of performatives of dubi-
ous utility led to the creation of a more formally defined language by the Foundation for
Intelligent Physical Agents.

In an attempt to create definite standards for agents, the Foundation for Intelligent Physical
Agents (FIPA) proposed its own version of an agent communication language (ACL) [Foun-
dation for Intelligent Physical Agents, 2000], which was significantly influenced by KQML
and with messages naturally similar to KQML, as illustrated in Table 2.1.

While KQML has a large number of loosely defined performatives, some of which can be
interpreted in many ways, and leading to possible problems in interoperation, the FIPA
standard contains a smaller number of performatives with a very precise meaning. Every
performative in FIPA is defined in terms of two basic performatives: request, used to request
that another agent perform some action; and inform, which means that an agent wants
another agent to believe in some information.

2.5.2 Multiagent Planning

In order to solve problems in a distributed manner, multiple agents need both group coher-
ence and competence [Durfee, 2001]. Coherence relates to agents deciding to work together,
while competence relates to agents knowing how to work together well. Perhaps the best
way of solving distributed problems is through planning, though planning in a distributed
fashion requires another problem to be solved, that of planning how to work together. This
activity of planning to plan involves decomposing problems into subproblems, allocating
these subproblems, exchanging the obtained solutions and synthesising overall solutions
[desJardins et al., 1999]. We consider two distinct phases of multiagent planning: plan
generation in Section 2.5.2.1 and distributed plan execution in Section 2.5.2.2. We then
examine two important distributed planning algorithms in Sections 2.5.2.3 and 2.5.2.4.
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2.5.2.1 Distributed plan generation

Distributed planning can be categorised according to whether distribution occurs at the
execution or planning stages, or both [Durfee and Lesser, 1991]. There are three possible
combinations of where the distributed part of planning occurs. When centralised planning
is employed to produce distributed plans for parallel execution, the problem is for a coordi-
nator agent to break a plan into separate threads, possibly adding synchronisation actions
throughout the plan in order to ensure that dependency constraints are observed during
plan execution. In order to distribute execution of a centralised plan, Durfee [Durfee, 2001]
proposes the following steps:

• create a plan using traditional planning, possibly biasing the planner to favour parallel
actions;

• decompose the ensuing plans trying to minimise ordering constraints between sub-
plans;

• insert synchronisation actions;

• allocate subplans to executing agents; and

• execute the subplans.

However, the overhead incurred by the communication required for subplan synchronisation
must be taken into account when deciding whether or not to distribute a centralised plan;
that is, there exists a minimum subplan size below which parallelisation is not worthwhile.

Distributed planning for centralised plans is associated with cooperative planning, in which a
complex planning problem is distributed among different specialised agents which contribute
parts of the solution to an overarching plan, in a very similar fashion to that of result sharing.

Finally, distributed planning for distributed plans is the mode of planning most representative
of problem solving in multiagent societies [Durfee, 2001]. In this case, a plan representation
for the whole plan is not required to exist at all, as long as the participant agents are not
in conflict during the planning and execution tasks.

2.5.2.2 Distributed plan execution

In addition to the planning process, distributed execution must be carried out in a coordi-
nated manner to ensure the originally intended sequence of actions occurs as planned. That
is, agents must somehow ensure that: agents execute their assigned actions at the appropri-
ate times; the actions of one agent do not jeopardise the actions of another agent working
for the same goal; and agents do not compete for control of critical resources. In turn,
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coordination might be interleaved between continuous planning and execution, such as in
partial global planning [Cox et al., 2005; Durfee, 1988], or might be guaranteed either before
or after the planning process is carried out. Moreover, when dealing with self-interested
agents, agents may be required to negotiate during distributed planning in order to resolve
conflicts. Failure to do so can lead to system collapse, so negotiation mechanisms that
facilitate the resolution of critical conflicts are an important component of a distributed
planning strategy.

One way of ensuring coordination after plans are created is through contingency planning
[Meuleau and Smith, 2003]. In this approach, an agent not only plans to satisfy the specified
problem, it also creates alternative plans to be resorted to in response to contingencies
occurring at execution time. Clearly, this entails more complex plans, as well as an overhead
to the execution and coordination process, which must now consider the possible threads
of plan execution. Aside from contingency planning, agents can monitor execution progress
and replan if problems arise. Nevertheless, too much replanning can become a liability, in
which case plan repair could be an advantageous approach [desJardins et al., 1999].

Pre-planning coordination, on the other hand, involves defining a set of constraints that are
enforced by the agents in the society during their individual planning processes [desJardins
et al., 1999]. If the appropriate set of constraints is defined, agents can theoretically work
on any part of the problem, since conflicts can be avoided by carefully abiding by these
constraints. Another way of viewing these constraints is as social laws, which encode pro-
hibitions against particular choices of actions in particular contexts. This in turn implies
the design of combinations of laws that curtail undesirable states, yet are flexible enough
to allow for the desired states to arise from the agents, and we examine such normative
approaches in Section 2.5.3.

2.5.2.3 Partial Global Planning

Partial Global Planning (PGP) [Durfee and Lesser, 1990] is a distributed planning frame-
work that adopts a strategy where coordination is a matter of explicitly planning cooperative
interactions [Durfee and Lesser, 1991]. In this approach, all agents maintain a partial rep-
resentation of the global plan, and no agent is assumed to be able to see the entirety of
the global plan. Here plans detail an agent’s problem-solving strategy and its expectation
about the actions of neighbouring agents, and although agents attempt to follow their par-
tial plan as closely as possible, they can also make changes to their plan or propose changes
to the plans of other agents. The PGP framework integrates organisational principles by
introducing two types of organisation: the first specifies the long-term problem-solving roles
and responsibilities of agents (i.e. a plan of actions); the second, or metalevel organisation,
gives agents a framework for deciding how to solve coordination problems (i.e. a plan of
communication). Agents are expected to exchange information about the state of their
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plans to a certain extent, sharing only high-level information deemed relevant to the agents
being informed. They can also perform task-sharing by proposing (and counterproposing)
the transfer of a part of their local plans to other agents that might be underutilised.

2.5.2.4 Generalised Partial Global Planning

Generalised Partial Global Planning (GPGP) [Lesser et al., 1998] shares with PGP the idea
that agents construct their own local view of the tasks they intend to pursue and the rela-
tionships among them. This local view can then be augmented with information from other
agents, allowing agents to create a partial view of the global plan. The generalised frame-
work extends PGP by including individual coordination mechanisms used in the creation of
such partial views, detecting relations between task structures and ensuring coherent and
coordinated behaviour by making commitments to other agents. In turn, these commit-
ments are used by a domain-independent scheduler included in GPGP to create a schedule
of activities for the agent to follow.

GPGP incorporates a representation of task structures from the TAEMS [Wagner et al.,
1997] framework to drive the coordination mechanisms, including information about:

• top-level goals an agent intends to achieve;

• one or more of the ways in which these goals could be achieved;

• a precise quantitative specification of the degree of achievement of goals; and

• task relationships indicating how tasks contribute to the achievement of goals.

GPGP uses the basic TAEMS task structure representation and adds the partial representa-
tion of the task structures held by other agents as well as local and non-local commitments
to task achievement. Moreover, the quantitative definition of the degree of achievement for
goals and tasks indicates that GPGP deals with worth-oriented domains rather than the
boolean representation of achievement often used by planning algorithms.

2.5.3 Norms

We have seen that agents in a society might be able to generate new plans to address
unforeseen situations, but agents capable of generating new plans at runtime might lead to
undesirable behaviour, requiring some means to ensure that new behaviours abide by certain
constraints. Moreover, in open dynamic societies, agents are required to work with others
that do not necessarily have the same set of objectives. If left unchecked, self-interested
agents will try to accomplish their individual goals without regard for others. Thus, in
order to minimise conflict between self-interested agents, systems of prescriptive norms can
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be used to specify permissions, prohibitions and responsibilities within a system. In this
section, we examine a number of views of normative systems, but unlike previous sections
we do not focus on specific systems or techniques, since practical agent architectures have
generally not considered or facilitated the possibility to include reasoning about norms.

Norms can be explicitly represented and reasoned about by agents to which they apply.
Though the precise semantics of norms varies through different research efforts, Lopez y
Lopez [Lopez y Lopez, 2003] identifies six different perspectives.

• regulation of human societies, where research focuses mainly on the sociological aspects
of human normative bodies;

• patterns of behaviour, used to foster coherent group behaviour without the need for
explicit planning of coordination actions;

• constraints on actions, used to specify permitted and forbidden actions [Shoham and
Tennenholtz, 1995];

• social commitments, where norms express obligations among agents;

• mental states, focusing on the influence exerted by norms upon the adoption of goals
by an agent; and

• norm modelling, focusing on the definition of the concept of norms and the specification
of models of norms.

2.5.3.1 Levels of normative behaviour

Dignum [Dignum, 1999] argues that even agents said to be autonomous are assumed to
obey standard protocols, so are predictable in some ways, implying some level of knowledge
of the internal mechanisms of these agents. Here, predictability is the result of a set of
conventions hard-wired into an agent, undermining the actual autonomy of the agent and
consequently its ability to react to a dynamic environment. Dignum states that in order
for an agent to be truly autonomous, it must be able to reason about the norms to which
it should abide, and occasionally violate them if they are in conflict among themselves or
with the agent’s private goals. Thus, Dignum [Dignum, 1999] defines logical modalities
for obligations and permissions (i.e. a deontic logic), distinguishing between three levels at
which agent behaviour is influenced by these norms:

• the conventions level;

• the contract level; and

• the private level.
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This division into levels allows the definition of rules for the different social interactions
of an agent. The conventions level covers obligations that constitute a default background
against which agents interact. These obligations hold under normal circumstances unless
higher priority concerns intervene. Norms in the conventions level are generally fixed when
the system is initialised and represent general rules for agents in a system to follow (termed
prima facie norms), such as agents should not overprice their goods. Modalities at this level
specify obligations, prohibitions and permissions that hold between a given agent in relation
to an undefined or abstract counterpart (i.e. the agent society). Since there is no specific
counterpart towards which the norm is directed, it is assumed that agents follow the rule
either due to a commonsense benefit, or due to agents in charge of enforcing conventions.

The contract level covers commitments between agents, in the form of either directed obli-
gations or authorisations. Contracts express the expectation of one agent towards another
as well as the conditions for these contracts to hold and the consequences of failing to fulfill
them. Directed obligations express a commitment from one agent to another that either a
world-state will hold or an action will be executed. Authorisations express the justification
of an agent to perform an action involving another agent; for example, if an agent is to
demand payment from another (implying that the latter agent is obliged to pay), it must
be authorised to do so.

The private level is used to translate the influences received from the other levels into
something that directs an agent’s future behaviour. For example, in a BDI setting, external
influences and their conditions can be translated into conditional desires for an agent.

2.5.3.2 Norm types

Following the view of Dignum [Dignum, 1999] regarding the requirements of norms for
autonomous agents, Lopez y Lopez and Luck [Lopez y Lopez and Luck, 2003; Lopez y
Lopez et al., 2004] define a formal model of norms whose constructs are reasoned about by
autonomous agents. In this model, norms are prescriptive in that they specify how agents
should behave, and social as they are used in situations where multiple agents might come
into conflict. Moreover, given the possibility that norms might conflict with an agent’s
individual goals and that punishments are defined for non-compliance, norms also represent
a form of social pressure upon the agent.

Depending on their purpose, norms are classified as obligations, prohibitions, social com-
mitments and social codes [Lopez y Lopez and Luck, 2003], where:

• obligations and prohibitions are norms aimed at ensuring coordination among agents
in a society, non-compliance of obligations entails punishment, and the manifestation
of behaviours targeted by prohibitions leads to punishment;
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• social commitments are norms created as a result of agreements or negotiations be-
tween a group of agents in order to force them to comply with the agreement or
settlement; and

• social codes are norms whose compliance is seen as an end in itself, as it is understood
that these are principles accepted in a given society.

2.5.3.3 Norms for autonomous agents

Because norms in a given system are rarely isolated from each other, in Lopez y Lopez and
Luck’s model, systems of norms are created to ensure that agents comply with whole sets
of norms rather than choosing individual norms with which to comply. Systems of norms
can also be used to maintain consistency among constituent norms. The association of
multiple norms can be attained by relating the activation of a given norm to the violation
(or fulfilment) of another through activation triggers. Such triggers can be based on agents
failing to comply with a norm (i.e. non-compliance), in which case a secondary norm is
activated to punish the non-compliant agent. Alternatively, agents can be encouraged to
comply with certain norms if other norms are created to trigger rewards to compliant agents.
These triggers may serve the purpose of either punishing norm violators or rewarding norm
followers. In case a violator requires punishment for a transgression, an enforcer norm might
be activated following the transgression. Alternatively, achievement of a prescriptive goal
might trigger a reward norm so that the compliant agent will be rewarded. Finally, norms
may be used to provide for the evolution of the normative system itself. In this context,
legislation norms are used to permit actions to issue new norms or abolish existing ones.

Since normative systems are maintained within the society employing them through delega-
tion of punishment, reward and legislative goals, the effect of these systems upon prospective
members of these societies can also be reasoned about by autonomous agents. When decid-
ing whether to voluntarily join or leave a society regulated by norms, Lopez y Lopez et al.
[Lopez y Lopez et al., 2004] advocate that an autonomous agent must have an additional
set of characteristics to include ways of reasoning about the advantages and disadvantages
of abiding by the norms, thus leading to the possibility of norm infringement. Transgression
of norms might occur for three main reasons [Lopez y Lopez et al., 2004]:

• individual goals can conflict with society norms;

• norms might conflict among themselves; and

• agents might be members of more than one society.

In light of the possibility of norm infringement and the need for autonomous agents to
reason about normative societies, Lopez y Lopez et al. [Lopez y Lopez et al., 2004] also
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define reasoning mechanisms over the effects of norm compliance and violation, as well as
rewards and punishments. Their model proposes methods for evaluating the benefits of
joining a society as well as methods for evaluating whether to stay in a society or to leave
it. An agent is seen as staying in a society for two main reasons: due to unfulfilled goals
within the society or social obligations. Here, a social obligation might be that of complying
with agreed norms, to reciprocate or help a fellow agent, or even coercion from another
member of the society. The autonomy advocated by this model also includes mechanisms
for an agent to voluntarily adopt norms; that is, an agent recognises itself as an addressee
and starts following the appropriate norms. This mechanism is important, for instance in
situations in which societal laws change dynamically. Finally, the model defines processes
through which an agent complies with the norms by adopting or refraining from adopting
intentions to achieve normative goals.

2.6 Discussion

Agent systems research has gone through a number of phases in its history, starting from a
deliberative stance that put too little emphasis on interaction with the real world, focusing
instead on logics and planning. This approach has been proven limited in many respects,
some of which have been addressed by reactive architectures, which demonstrated that in
many real-world scenarios it is imperative for agents to have simple mechanisms to deal
with quick decisions (e.g. [Schut and Wooldridge, 2001; Wooldridge and Jennings, 1995]).
This has been the main drive behind reactive architectures, which provide this property by
relying on very simple rules of behaviour, virtually guaranteeing quick responses.

Here, the ability to adopt goals in reaction to changes in the environment allows an agent
to be independent from others [Steels, 1994], whereas the ability to independently choose
future-directed actions [Luck et al., 2003] allows an agent to deal with unforeseen situations
and adapt to these changes without supervision. The behaviour of a truly autonomous agent
must thus not be limited to immediate responses to a stream of events in order to start its
future directed behaviour. For instance, it is not straightforward to model a Mars rover agent
that has to cover multiple waypoints supplied by mission control using a simple reactive
approach. Since the rover cannot go to multiple waypoints simultaneously, it must somehow
queue the events notifying it of the waypoints in order to navigate them sequentially. This
behaviour is not easily described in terms of immediate reactions. Moreover, when reacting
immediately to every relevant event in the environment, there is no choice from alternate
goals or courses of action, since the rover is carrying out an imperative script defined at
design time.

However, we have seen that these architectures fail when an agent needs to accomplish
more elaborate tasks, especially those requiring long term planning. They are thus limited,
and effective architectures must be able to perform a mixture of reactive and deliberative
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behaviour. This problem led to the creation of a number of hybrid architectures that try to
integrate reactive reasoning with longer term plans; in addition to the ability to adopt goals
in a reactive way, proactive goal adoption is required by autonomous agents to pursue long-
term goals [Norman and Long, 1994] using an agent’s ability to anticipate the environment.

The BDI model stands in an interesting position regarding these architectures, as its philo-
sophical underpinning is clearly deliberative, but its corresponding implementations are
based on reactively activated rules. A number of autonomous agent architectures have been
proposed based on the BDI model of reasoning claiming that this is enough to endow agents
with autonomy, due to the fact that it provides a mentalistic mechanism for the selection of
goals and commitment to their achievement. Although the BDI model is widely accepted
as descriptive of the way in which humans make decisions about their actions, the agent ar-
chitectures that have arisen using this model are also limited. In particular, agents created
with these architectures are only able to select goals from a predefined set as a reaction to
events in the environment, sometimes using additional constraints to filter irrelevant goals.
This type of reactive goal adoption [Norman and Long, 1994] results in inflexible behaviour,
dictated only by triggering conditions. As a result, such simple precondition-based goal
selection not only represents an oversimplification of autonomous behaviour but, according
to Luck et al. [Luck et al., 2003], is also misleading about how to achieve autonomy in agent
architectures, since there is no architectural support for reasoning at runtime about the
goals being pursued.

A commonly quoted statement regarding agent behaviour in a computer system is that
“objects do it for free; agents do it for money” [Jennings et al., 1998]. However, this statement
is misleading since the trigger-response description used almost without exception in agent
languages for goal adoption entails that agents will do “for free” whatever actions they
are scripted to do immediately after perceiving certain events, little different to method
invocation in object programming. In contrast, we believe that agents must be able to
generate their own plans at runtime or order to adapt to new situations not foreseen at
design time, thus achieving this elusive ideal of autonomy in the sense of an agent freely
choosing its actions. We do not, however, disregard the importance of predefined behaviours
that allow an agent to quickly deal with frequent situations, but an agent architecture must
also be equipped to deal with infrequent and unforeseen ones.

Now, these increasingly complex architectures, both hybrid and BDI, demand further con-
sideration. For example, as hybrid architectures such as InteRRaP and TouringMachines
(in Section 2.2.5) have very explicitly shown, integrating many types of behaviour requires
some sort of internal control mechanism, able to prioritise certain types of behaviour to
ensure fundamental tasks are performed first. Similarly, the vast majority of recent BDI ar-
chitectures are not capable of planning, and in order for agents to generate new behaviours
not seen at runtime, we need to add planning capabilities in addition to the reactive plan
adoption capability that is typically already present. Moreover, we must provide agents
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with the means to explicitly reason about their goals so that an agent can rationally decide
between investing processing time in planning. We therefore include a requirement in an
architecture for such an internal control mechanism (also known as meta-level reasoning).
To this end, many approaches to meta-level control have been proposed, which we sur-
veyed in Section 2.4, and we argue that motivations provide an appropriate abstraction for
meta-reasoning.

Finally, we have to consider how an agent architecture fits within a larger multiagent sys-
tem, and most agent languages are focused on either the micro level (single agent action),
or macro level (multiagent interaction). Languages like AGENT0 (in Section 2.3.1), for
example, focus on systems that are composed of extremely simple agents whose cooper-
ation is intended to deliver more complex functionality, whereas BDI-type architectures
focus on single agent plan execution. Moreover, when designing multiagent systems, such
architectures provide at most a communication language with no other support or guideline
for creating dynamically collaborating agents. Even among these architectures, coopera-
tion between agents largely assumes that a designer knows all the agents in a system at
design-time, which limits the potential flexibility of open and dynamic agent systems.

An important requirement for flexible agents in a dynamic society, then, is that this flex-
ibility also spans multiagent interaction. One way of affording this flexibility is to use
multiagent planning such as PGP and GPGP (reviewed in Section 2.5.2), but these algo-
rithms rely on a particular type of agent architecture, as well as joint goals that are to
be satisfied through planning. PGP and GPGP also do not take advantage of many new
planning techniques developed in recent years. Moreover, if agents are to be flexible in their
dealings with other agents, one must consider that flexible agents are also assumed to be
self-interested, thus requiring some form of societal control. We have reviewed norms (in
Section 2.5.3) as a possible mechanism to achieve this.

The architectures we have seen, therefore, do not have the ability to take advantage of agents
containing capabilities not foreseen at design time by creating new plans including them.
Existing efforts on distributed planning algorithms usually assume shared knowledge of all
possible tasks and actions for the agents involved. What is needed, therefore, is a mechanism
that allows agents to discover new capabilities and compose new plans at runtime that use
them, thus increasing the flexibility of the system as a whole. Furthermore, the increased
flexibility afforded by these new plans means that it is impossible to foresee all potential
new behaviours resulting from the composition of multiple agent’s capabilities. This in
turn leads to a requirement for some societal control mechanism that ensures undesirable
behaviours are either not possible, or if possible, that agents engaging in them are penalised
to ensure an overall positive outcome for the system.



Chapter 3

Plan Generation in AgentSpeak(PL)

3.1 Introduction

As we have seen in the discussion of Section 2.6, in order to adapt to situations not initially
foreseen by the designer, agents need the ability to generate new plans at runtime, in
addition to a set of predefined plans to react to common situations. The ability to generate
new plans, however, requires a re-examination of the way in which goals are structured in
BDI agent architectures. There are two ways of considering goals:

• as desired states of affairs; or

• as procedures to be executed.

Conceptually, the desires component of the BDI model refers to a desired state of affairs,
regardless of the way in which this state of affairs is achieved, whereas the intentions cor-
respond to courses of action selected to achieve selected desires. When moving from the
conceptual level to practical agent architectures, this type of desire or goal is generally de-
nominated a goal to be [Winikoff et al., 2002] and is declarative in nature, since there is no
automatic commitment to a specific plan to bring it about. By contrast, in the latter case,
when an agent commits to achieving a goal, it commits to some plan that will bring about
this goal to be; this plan commitment is generally called a goal to do [Winikoff et al., 2002],
because it implies commitment to a procedure. As we have seen in Chapter 2, most agent
architectures consider only this latter procedural approach to goals.

Such a procedural response to goal achievement has generally been favoured to enable the
construction of practical systems that are usable in real-world applications. However, it
also makes agents inflexible in cases of failure. When a procedural agent selects a plan to
achieve a given goal it is possible that the selected plan may fail, in which case the agent
typically concludes that the goal has also failed, regardless of whether other plans to achieve
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the same goal might have been successful. By neglecting the declarative aspect of goals in
not considering the construction of plans on-the-fly, agents lose the ability to reason about
alternative means of achieving a goal, making it possible for poor plan selection to lead to
an otherwise avoidable failure.

Typically, agents select plans using more or less elaborate algorithms, but these seldom
have any knowledge of the content of the plans, so that plan selection is ultimately achieved
using fixed rules, with an agent adopting black box plans based solely on the contextual
information that accompanies them. For example, in PRS and AgentSpeak(L) [Georgeff
and Lansky, 1987; Rao, 1996], plans consist of procedures with a header indicating when
these procedures are to be executed. Alternatively, rather than selecting from existing plans,
some agent interpreters use plan modification rules to allow plans to be modified to suit the
current situation [van Riemsdijk et al., 2003], but this approach still relies on a designer
establishing a set of rules that considers all potentially necessary modifications for the agent
to achieve its goals. The problem here is that for some domains, an agent description must
either be exhaustive (requiring a designer to foresee every possible situation the agent might
find itself in), or will leave the agent unable to respond under certain conditions.

Our aim in this chapter is to address this problem and create an agent architecture that
can generate new plans at runtime to deal with new situations not foreseen at design time.
We call this architecture AgentSpeak(PL), for planning AgentSpeak(L). Besides generating
new plans, this architecture must be able to perform common tasks, foreseeable at design
time, quickly without the need to spend time planning to achieve each goal, as well as
reusing previously generated plans. In this architecture, plans are built by chaining existing
fine-grained plans from a plan library into high-level plans. We ensure the practicality of
the architecture by building it on top of an existing procedural agent architecture, and the
resulting architecture provides for a combination of declarative and procedural aspects. Our
approach relies on an underlying planning component, which requires us to examine how
the agent architecture and the planning component interoperate, resulting in a new agent
architecture, but with minimal modification of the original one. Moreover, this modification
requires no change to the plan language, allowing designers to specify predefined procedures
for known tasks under ideal circumstances, but also allowing an agent to form new plans
when unforeseen situations arise. The key contribution of the system lies in its runtime
flexibility, allowing an agent to use its plan library to respond to new situations without the
need for the designer to specify all possible combinations of low-level operators in advance.

We start the chapter by introducing the building blocks of our approach through a descrip-
tion of the planning formalism used throughout, setting up the theoretical basis for planning,
and the planning language used in the connection between agent and planner in Section 3.2.
We then proceed to describing the AgentSpeak(L) architecture in Section 3.3, and the nota-
tion of its associated programming language. After these concepts are presented, we proceed
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to explain the rationale of our approach by comparing AgentSpeak(L) plans to planning op-
erators in Section 3.4, followed by the two key processes in our technique that connect an
agent to a planner and vice versa in Sections 3.5 and 3.6. The validation of our approach
is achieved through experiments described in Section 3.7 that compare planning agents to
traditional ones, as well as a comparison with related work in Section 3.8. Finally, we draw
some conclusions about our planning architecture, its limitations and possible improvements
in Section 3.9.

3.2 AI Planning

When needing to accomplish complex tasks that involve more than one step, humans make
plans to determine which steps are needed to accomplish a task and which step to take first,
as well as the order of subsequent steps. Although it is relatively easy to select actions for
immediate execution, or to execute predetermined plans in response to events, generating
new plans is not a simple process. Indeed, early AI research was concerned with this problem
of how to concatenate individual actions to achieve a particular objective, in a process also
known as means-ends reasoning [Ghallab et al., 2004], or planning from first principles.
This resulted in a number of approaches that eventually led to the development of generic
planning systems (or planners) [Fikes and Nilsson, 1971].

Since our goal is to add plan generation capabilities to an agent architecture, it is necessary
to understand the process through which plans are created, and we therefore review AI
planning in this section. We start with a discussion of the background of planning techniques
and follow with a description of the formalism used to describe planning problems and a
description of the planning process, finishing with a planning example.

Initial approaches to general purpose planning include the Stanford Research Institute Prob-
lem Solver (STRIPS) [Fikes and Nilsson, 1971], whose notational concepts are still used as
the basis for the specification of planning problems, as well as multiple approaches to Par-
tial Order Planning (POP) [Ambros-Ingerson and Steel, 1988]. These approaches to generic
planning were very limited in the size and type of problems that could be handled in a
reasonable amount of time, due to their method of navigating the search-space. After a lull
in new approaches to planning, several new algorithms were developed, such as Graphplan
[Blum and Furst, 1997], SATPlan [Kautz and Selman, 1992] and HTN [Erol et al., 1994],
representing a significant leap of efficiency, and allowing more complex planning problems
to be computed in reasonable time [Weld, 1999].

3.2.1 Planning Problem Specification

Most planning formalisms are derived from the problem description language used by
STRIPS [Fikes and Nilsson, 1971]. In general, a planner takes three inputs, with these
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three inputs constituting a planning problem specification: a description of the initial state
of the world; a description of the goal state that should be true after a plan is executed;
and a description of the domain in terms of the set of available operators (actions), in some
formal language (such as the language of STRIPS). States are generally represented as logic
atoms denoting what is true in a certain world, and the planner tries to generate a sequence
of actions which, when applied to the initial state, modifies the world so that the goal state
becomes true. This process is illustrated in Figure 3.1, which shows how a problem descrip-
tion, consisting of an initial and a goal state, and a domain description, consisting of the
operators, are supplied to a planning process to generate a plan.

Domain 

Description

Problem 

Description

Planner Plan

Figure 3.1: Summary of the planning process.

A planning algorithm solves a problem by finding a sequence of instantiated operators that
transform the world from an initial state to a goal state. The specification is used to
generate the search-space over which the planning system searches for a solution, where this
search-space consists of all possible instantiations of the set of operators using the Herbrand
universe1 derived from the symbols contained in the initial and goal state specifications.

This sequencing process is usually based on selecting operators whose preconditions are valid
in the initial state or were made valid by the effects of previous operators until a partially
ordered set of operators is selected, such that their application transforms the initial state
into the goal state. In STRIPS, the effect of an operator is described in terms of add lists
denoting the atoms that become true as a result of the operator being executed, and delete
lists denoting the atoms that cease to be true as a result of the operator being executed.
For example, if an operator has an add list that contains the atoms a and b, and a delete list
that contains the atom c, the execution of this operator will result in a and b being true and
c being false in the following world-state. An illustration of how operators are sequenced
and ordered is shown in Figure 3.2.

The original version of the STRIPS language was later extended for more expressivity in
various ways, with no preoccupation of formally relating all the extensions, resulting in
languages like the Action Description Language (ADL) [Pednault, 1989] and the Planning

1Any formal language with symbols for constants and functions has a Herbrand universe, which describes
all of the terms that can be created by the application of all combinations of constant symbols as parameters
to all functional symbols.
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Figure 3.2: Overview of a plan as a sequence of partially ordered operators.

Domain Description Language (PDDL) [Fox and Long, 2003]2. Nebel, however, defined
a formal framework in which all STRIPS-related planning specifications could be related
[Nebel, 2000], and we adapt this formalism in our work [Meneguzzi et al., 2007]. We de-
scribe this formalism in the following sections, starting with the logic language that un-
derpins the formalism in Section 3.2.1.1 followed by the formalism itself, with the states in
Section 3.2.1.2, and operators and plans in Section 3.2.1.3.

3.2.1.1 The logic language (Literals, Terms, Negation)

Let us consider a first-order logic language consisting of an infinite set of symbols for pred-
icates, constants, functions and variables, obeying the usual formation rules of first-order
logic. For simplicity of presentation, we refer to well-formed atomic formulas as atoms. Let
Σ be the infinite set of atoms and variables in this language and let Σ be any finite subset
of Σ. From these sets, we define Σ̂ to be the set of literals over Σ, consisting of atoms and
negated atoms, as well as constants for truth (>) and falsehood (⊥). We denote the logic
language over the logical connectives of conjunction (∧) and negation (¬) as LΣ. Further-
more, considering a set L of literals, we denote the positive literals in this set as pos(L),
meaning that all literals in this set are explicitly true, and the negative literals as neg(L),
meaning that all literals in this set are explicitly false. We summarise the notation used in
this section in Table 3.1.

2The original version of PDDL was created by McDermott, but not published in any public forum.



Chapter 3 Plan Generation in AgentSpeak(PL) 65

Notation Meaning
⊥ falsehood
> truth
pos(L) positive literals in L
neg(L) negative literals in L
pre(o) preconditions of operator o
post(o) post-conditions of operator o
A |= B A entails B

Table 3.1: Summary of notation for Section 3.2.1.

3.2.1.2 States

In order to describe the world, we use the logic language to represent what is true and
what is not true at any given time. A state s is a truth-assignment for atoms in Σ, and a
state specification S is a subset of Σ̂ specifying a logic theory consisting solely of literals.
S is said to be complete if, for every literal l in Σ, either l or ¬l is contained in S. A
state specification S describes all of the states s such that S logically supports s. For
example, if we consider a language with three atoms a, b, and c, and a state specification
S = {a,¬b}, this specification describes the states s1 = {a,¬b, c}, and s2 = {a,¬b,¬c}. In
other words, a state specification supports all states that are a model for it, so a complete
state specification has only one model.

The specification formalism we use allows incomplete state specifications and first-order
literals on the preconditions and effects of planning operators (incomplete state specifications
can omit predicates that are not changed by an operator from its preconditions and effects, as
opposed to requiring operators to include every single predicate in the language’s Herbrand
base3).

3.2.1.3 Operators and Plans

Planning is concerned with sequencing actions, and in a planning specification, actions are
generated by instantiated abstract operators. Operators describe state transformations, and
following Nebel [Nebel, 2000], we define them as pairs o = 〈pre, post〉, for each operator o,
where pre(o) ∈ LΣ and post(o) ∈ LΣ respectively denote pre-conditions and post-conditions
of o. The result of applying an operator o with post-conditions post(o) to a consistent state
specification S is a new state specification S′ in which the post-conditions pos(post(o)) are
true. In terms of set operations, S′ is the result of adding the literals of pos(post(o)) to S,
while removing neg(post(o)), as formally stated in Definition 3.1. This is roughly equivalent
to add and delete lists from STRIPS, with the main difference being that, in our formalism,

3Any formal language with a Herbrand universe and predicate symbols has a Herbrand base, which
describes all of the terms that can be created by applying predicate symbols to the elements of the Herbrand
universe.
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it is possible to explicitly assert the falsehood of a given term, e.g. regardless of the existence
of a literal a, we may have an operator that asserts that a becomes explicitly false after its
execution, resulting in ¬a.

Definition 3.1 (Function R). The result of applying an operator o to a state specification
S is defined by:4

R : 2Σ̂ ×O→ 2Σ̂

R(S, o) =



S \ ¬neg(post(o)) ∪ post(o), if S |= pre(o)

and S 6|= ⊥

and post(o) 6|= ⊥;

⊥, otherwise.

Using function R, it is possible to specify the result of applying finite sequences of operators
O∗ to an initial state specification, in which elements ∆ of O∗ are plans, formally stated in
Definition 3.2.

Definition 3.2 (Function Res). The result of successively applying operators to an initial
state is defined by:

Res : 2Σ̂ ×O∗ → 2Σ̂

Res(S, 〈〉) = S

Res(S, 〈o1, o2, . . . , on〉) = Res(R(S, o1), 〈o2, . . . , on〉)

As we have seen, a planning problem following the STRIPS paradigm comprises a domain
specification, and a problem description stating the initial world-state and the goal world-
state. By using the definitions introduced in this section, we can define a planning instance
formally, as stated in Definition 3.3. Here, the solution for a planning instance is a sequence
of operators ∆ which, when applied to the initial state specification using the Res function,
results in a state specification that supports the goal state. The solution for a planning
instance or plan is formally defined in Definition 3.4.

Definition 3.3 (Planning Instance). A planning instance is a tuple Π = 〈Ξ, I, G〉, in which:

• Ξ = 〈Σ, O〉 is the domain structure, consisting of a finite set of atoms Σ and a finite
set of operators O;

• I ⊆ Σ̂ is the initial state specification; and
4We use the notation 2S to denote the power set of S [Weisstein, 1999].
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• G ⊆ Σ̂ is the goal state specification.

Definition 3.4 (Plan). A sequence of operators ∆ is said to be a plan for a planning
instance Π, or the solution of Π, if and only if Res(I, ∆) 6|= ⊥ and Res(I, ∆) |= G.

A planning function is a function that takes a planning instance as its input and returns a
plan for this planning instance, or else returns an empty set indicating that no plan exists
for this instance. This is stated formally in Definition 3.5.

Definition 3.5 (Planning Function). A planning function that takes a planning instance
Π as input is defined as:

Plan : Π→ O∗

Plan(Π) =

∆, if ∃∆ and ∆ is a solution of Π;

〈〉, otherwise.

Now that we have formally described the notion of a plan and a planner, we need to
understand the agent formalism in order to establish a link between an agent reasoning
cycle and a planning function, which we do in Section 3.3.1. First however, it is useful to
see how these concepts are actually used in a real planning problem, which we do next.

3.2.2 Planning Example

To illustrate how problems are described using a STRIPS-like specification, we consider a
hypothetical postman robot agent responsible for delivering packets when they arrive in a
warehouse through loading bays, as illustrated in Figure 3.3. Whenever a packet arrives,
the robot picks up the new packet and delivers it to the relevant pigeonhole on the opposite
side of the warehouse. The robot operates on battery power, which is expended as it moves
through the warehouse; whenever its charge reaches a critical level, the robot moves to a
charger located in a corner of the warehouse in order to replenish its charge. Given such a
postman robot, we can specify a potential set of operators that would enable this robot to
plan to achieve the various objectives of this scenario.

Throughout this thesis, we use a textual representation of STRIPS problems in which op-
erators are preceded by the keyword operator, preconditions by the keyword pre and post-
conditions by the keyword post. Operator headers may contain variables following the Prolog
notation [Nilsson and Maluszynski., 1995] where constants are written with a lower-case first
character, while variables are written with an upper case first character, so that position1
is a constant and Position is a variable. All variables used in the preconditions and effects
must be declared in the operator header, so that when an operator is instantiated, precon-
ditions and effects become ground. Thus, an operator called op(X), with preconditions a(X)

and b(X), and an effect c(X), would be represented as shown in Table 3.2.



Chapter 3 Plan Generation in AgentSpeak(PL) 68

BayBay

LoadingLoading

BayBay

Loading

Charger

Loading

Pigeon Holes

Figure 3.3: Postman robot scenario.

1 op e r a t o r op (X)
2 p r e : a (X) & b (X)
3 p o s t : c (X)

Table 3.2: Textual representation of a STRIPS operator.

We start by defining the operator associated with movement, shown in Lines 1-3 in Table 3.3,
which is defined in the usual way for STRIPS problems, specifying that the robot must be
at an initial position, different from the destination and, at the end of operator execution,
ceases to be at this position and reaches the destination. We add the additional constraint
that the robot’s battery must not be empty.

The next two operators refer to picking up and dropping packets, shown in Lines 5-11 in
Table 3.3. These operators are complementary in representing the robot’s hold of a certain
packet, and require the agent to be positioned at the same place as the packet for the pickup
and at the target location for the drop.

Finally, we represent the operator that allows the agent to charge its battery in Lines 13-15
in Table 3.3, requiring the agent to be at the charger, and resulting in the agent’s battery
being replenished.

It is important to note that Table 3.3 shows our example in a language commonly used by
implementations of planners, and the correspondence of this language with the formalism
introduced in Section 3.2.1 should be fairly straightforward. However, to make this corre-
spondence explicit, we summarise the formal components of each operator in Table 3.4.

Using the domain specification of Table 3.3, we can now specify a planning problem for
which a plan should be generated. We use the scenario of the arrival of a new packet at
a loading bay, with the agent’s goal being to deliver that packet to the pigeonholes. This
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1 op e r a t o r move (A,B )
2 p r e : a t (A) & not at (B) & not ba t t ( empty )
3 p o s t : a t (B) & not at (A)
4
5 op e r a t o r p i ckup ( Packe t , P o s i t i o n )
6 p r e : a t ( P o s i t i o n ) & ove r ( P a c k e t , P o s i t i o n ) & not he l d (_)
7 p o s t : h e l d ( Packet ) & not ove r ( P a c k e t , P o s i t i o n )
8
9 op e r a t o r drop ( Packe t , P o s i t i o n )
10 p r e : a t ( P o s i t i o n ) & he l d ( Packet )
11 p o s t : not he l d ( Packet ) & ove r ( P a c k e t , P o s i t i o n )
12
13 op e r a t o r cha rge
14 p r e : a t ( c ha r g e r )
15 p o s t : ba t t ( f u l l )

Table 3.3: Postman robot STRIPS specification.

Operator Preconditions Post-Conditions
move(A,B) at(A) at(B)

not at(B) not at(A)
not batt(empty)

pickup(Packet, Position) at(Position) held(Packet)
over(Packet,Position) not over(Packet,Position)
not held(_)

drop(Packet, Position) at(Position) not held(Packet)
held(Packet) over(Packet,Position)

charge at(charger) batt(full)

Table 3.4: Postman robot STRIPS specification.

situation is expressed in the initial state (start) of Line 1 and the goal state of Line 2 in
Table 3.5.

1 s t a r t : a t ( p o s i t i o n 1 ) & ba t t ( f u l l ) & ove r ( p a c k e t 1 , bay1 )
2 g o a l : ove r ( p a c k e t 1 , p i g eonHo l e s )

Table 3.5: Example problem.

Given this planning problem specification, one possible plan involves: moving the agent from
its initial position at bay1; picking up packet1; moving to the pigeonholes; and dropping the
packet, as shown in Table 3.6.

1 move ( p o s i t i o n 1 , bay1 ) .
2 p i ckup ( packe t1 , bay1 ) .
3 move ( bay1 , p i g eonHo l e s ) .
4 drop ( p a c k e t 1 , p i g e onHo l e s ) .

Table 3.6: Plan for the problem of Table 3.5.
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3.3 AgentSpeak

Now that we have specified planning, we need to examine the agent architecture, language,
and interpreter used as the basis for our work. As outlined in Chapter 2, AgentSpeak(L)
[Rao, 1996] is an agent language that allows a designer to specify a set of procedural plans
which are then selected by an interpreter to achieve the agent’s design goals. It evolved
from a series of procedural agent architectures originally developed by Rao and Georgeff
[Rao and Georgeff, 1995a]. In AgentSpeak(L), an agent is defined by a set of beliefs and
a set of plans, with each plan encoding first a procedure that is assumed to bring about
a desired state of affairs, and second a header that says when the plan is to be adopted.
Goals in AgentSpeak(L) are implicit, and plans intended to fulfil them are invoked whenever
some triggering condition is met in a certain context, notionally the moment at which this
implicit goal becomes relevant.

Monitor

Sensors

Environment

Effectors

KA Library
(Plans)

Intention
Structure

Goals

Generator
Command

Interpreter
(Reasoner)

Database
(Beliefs)

Figure 3.4: Overview of the PRS architecture.

Concrete AgentSpeak(L) agents follow the same architecture as the Procedural Reasoning
System (PRS) [Georgeff and Ingrand, 1989a], from which its operational semantics is de-
rived. The architecture is illustrated in Figure 3.4, which shows the main data components
of a PRS agent, where circles represent data structures and rectangles represent processes.
The four data structures are:

• beliefs, comprising the information known by the agent, and regularly updated as a
result of agent perception;

• plans, representing the behaviours available to the agent, as well as the situations in
which these plans are applicable;

• goals, representing situations to which the agent will react by adopting plans, corre-
sponding to desired world-states; and
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• intention structures, comprising the set of partially instantiated plans currently adopt-
ed by the agent.

These data structures are used by the interpreter during its control cycle, as described in
Section 3.3.2.

3.3.1 Language

AgentSpeak(L) agents (or agent programs [Rao, 1996]) are specified as a set of initial beliefs
and a set of plans that comprise the agent’s plan library. The AgentSpeak(L) language
uses first-order logic predicates (as well as constants for truth and falsehood) as building
blocks for the specification of belief formulae, plan headers, and action invocations. If p is
a predicate symbol and t is a (possibly empty) set of terms t1, . . . , tn, then p(t1, . . . , tn) is
an AgentSpeak(L) predicate. Terms can be either constant (representing elements in the
world) or variables to be bound during agent execution, and follow the Prolog convention
[Nilsson and Maluszynski., 1995]. If a predicate contains only constants, the predicate is
said to be ground.

3.3.1.1 Beliefs

Individual predicates representing beliefs are called belief atoms, and can be combined to
form beliefs using the logic connectives of negation (not) and conjunction (∧ or &). For
example, at( position1 ) is a belief atom, and not at( position1 ) & at(position2) is a belief.

3.3.1.2 Goals and Events

There are two types of AgentSpeak(L) goal: achievement goals, represented by a predicate
preceded by an exclamation mark (e.g. !move(A,B)); and test goals, represented by a pred-
icate preceded by a question mark (e.g. ?at(Position )). Test goals are used by an agent to
verify whether a given belief is true, whereas achievement goals are used by an agent to
achieve a certain state of affairs. Though Rao [Rao, 1996] describes AgentSpeak(L) goals
as representing world-states that an agent wants to achieve, as we have discussed above
they can more precisely be described as intention headers used to identify groups of plans
intended to achieve an implicit objective.

An agent is notified of changes perceived in the environment as well as modifications to its
own data structures through triggering events, which may trigger the adoption of plans by
an agent. There are four types of events, consisting of the addition and deletion of beliefs
and goals. Addition is denoted by the plus (+) sign, while deletion is denoted by the minus
(−) sign so, for example, +!move(home,office) denotes the addition of a goal to move from
home to the office, and −at(home) denotes the deletion of the belief that an agent is at home.
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3.3.1.3 Actions and Plans

An agent interacts with the environment through atomic actions, which are executed in the
environment in order to achieve some effect. Actions are invoked by an agent during the
course of executing a plan using predicates comprised of an action name and its parameters.
Thus if walk is an action to walk from one place to another and takes two parameters, an
AgentSpeak(L) invocation of this action to walk from home to the office would be denoted
by walk(home, office ).

Finally, an agent’s behaviours are expressed through plans which specify the means for
achieving particular (implicit) goals whenever certain events occur under certain circum-
stances. Plans comprise a head describing the conditions under which the plan should be
adopted, and a body describing the actions that an agent should carry out to accomplish the
plan’s goal. A plan head contains two elements, an invocation condition, which describes
when the plan becomes relevant as a result of a triggering event; and the context in which
the plan is applicable, specified as a formula over an agent’s beliefs. A plan is specified as fol-
lows: if e is a triggering event (that should match a certain invocation condition), b1∧· · ·∧bn

are belief literals, and h1, . . . , hn are goals or actions, then ‘e : b1 ∧ · · · ∧ bn ← h1; . . . ; hn.’5

is a plan. If a plan is to be invoked whenever its invocation condition occurs, the context
part of the plan contains only the true literal. The structure of an AgentSpeak(L) plan
specification is illustrated in Figure 3.5.

Figure 3.5: Components of an AgentSpeak(L) plan specification.

3.3.1.4 Intentions

Plans that are instantiated and adopted by an agent are called intentions, and are stored
by an agent in its intention structure. Here, when an agent adopts a certain plan, it is
committing itself to executing the plan to completion. For example, Table 3.7 illustrates an
AgentSpeak(L)6 plan to walk between two locations (From and To) under certain conditions.

5We use quotation marks here to emphasise that a plan finishes with a full stop.
6In this chapter, we use AgentSpeak and AgentSpeak(L) in distinct ways: when explicitly referring

the programming language we always use AgentSpeak(L), whereas AgentSpeak refers to any AgentSpeak
interpreter.



Chapter 3 Plan Generation in AgentSpeak(PL) 73

The plan is considered by the agent whenever it generates an event to adopt a goal !move(

From,To), and carried out if the agent believes it is not already at its destination and does
not have a car. The plan itself consists of one subgoal to find its shoes before carrying out
an action to walk between the desired locations. As illustrated in Figure 3.6, adopting a
subgoal entails the execution of another plan (and in turn the addition of this new plan to
the same intention as the one containing the original plan to move), in this case a plan with
an invocation condition of +!find(shoes), while the action to walk is executed directly by the
agent.

1 +!move ( From,To ) : at (From) & not at (To) & not has ( ca r )
2 <− ! f i n d ( shoe s ) ;
3 walk ( From,To ) .

Table 3.7: Example of an AgentSpeak(L) plan.

Goal Addition Event

Execute Plan Step

Execute Action Update Beliefs

Execute Subplan

Plan Adopted

Subgoal

Atomic Action

Belief Update

Subplan successful

Action succeeded

Beliefs Updated

Figure 3.6: Executing AgentSpeak plan steps.

It is important to note that the intention structure may contain multiple intentions, or-
ganised in a hierarchical way. Each individual intention is a stack of steps that must be
executed, with the next executable step at the top of the stack. Intentions adopted as a
reaction to events in the environment are said to be at the top of the intention structure,
so their steps can be immediately executed. Intentions adopted to achieve subgoals of an
existing intention are stacked on top of the subgoal, so that their steps are executed before
the rest of the original intention.
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3.3.2 Interpreter and Control Cycle

At every control cycle, a list of events is generated by the interpreter, which may originate
from changes in the environment or the execution of intentions. Changes in the environment
are handled by the belief revision function (shown as the BRF component in Figure 3.7),
which is responsible for modifying the belief database to reflect the state of the world.
The events generated by the environment are passed to the agent, which invokes the event
selection function (shown as the SE component in Figure 3.7) to select one of these events.
Once an event has been selected by SE , AgentSpeak tries to match the event with the
invocation condition of plans from the plan library (shown as the Unify Event process in
Figure 3.7) yielding a set of relevant plans. AgentSpeak then attempts to match the context
condition of these plans with the current beliefs (shown as the Unify Context process in
Figure 3.7) to determine a set of applicable plans, which are sent to the plan selection
function (shown as the SO component in Figure 3.7) to select one of these plans to be
added to the agent’s intention structure. New plans are added to the top of the intention
structure if they were adopted as a result of an external event (arising from changes in the
environment), or to the intention that generated the internal event that triggered this plan’s
adoption.

Figure 3.7: AgentSpeak control cycle [Bordini et al., 2005a].

As there can be multiple external events happening simultaneously in the environment,
multiple parallel intentions can be created at the top of the intention structure. Thus,
at the end of the control cycle, an agent inspects its intention structure and selects an
intention using the intention selection function (shown as the SI component in Figure 3.7)
for execution. Since each intention consists of a stack of partially instantiated plans, the
execution of an intention consists of taking the next step of the topmost plan in the stack
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and either executing it (if the step is an atomic action), generating an internal event (if the
step is an achievement goal), or querying the belief base (if the step is a test goal). Once a
plan step is executed, it is removed from the intention. When an intention has no further
steps remaining to be executed, it is removed from the intention structure and is considered
to have been accomplished by the agent. If any step of a plan fails to be executed, such as
an action failing to execute, a test goal not unifying with any predicate in the belief base,
or a subgoal failing, the intention containing that step is considered to have failed. Thus, if
a subgoal at the end of a chain of other higher-level goals fails, this failure cascades all the
way through to the initial plan, invalidating all the plans adopted in the chain. Figure 3.7
illustrates this control cycle in detail, with rectangles representing sets or databases, circles
representing processes, and diamonds representing selection functions.

Now, as we have seen, multiple events may occur simultaneously in the environment, and
multiple intentions may be created by an agent as a result of these events leading to multi-
ple plans becoming applicable and being adopted by the agent. So two execution outcomes
are possible: interleaved or atomic execution. In the former, plans in different intentions
alternate the execution of their steps, in which case care must be taken to ensure that any
two plans that may execute simultaneously do not have steps that jeopardise the execution
of one another. Conversely, if plans are executed atomically, it is not possible for one plan to
interfere with another. AgentSpeak(L) provides no explicit mechanism to deal either with
multiple plans or with the possible interference among them that may arise as a result of
interleaving their execution. However, specific AgentSpeak(L) interpreter implementations
may try to address this problem, and in this thesis we adopt the convention of the Jason
interpreter [Bordini et al., 2007], which provides a plan directive that instructs the inter-
preter to execute any given plan in its entirety before considering other intentions. This
allows critical plans to be executed atomically without interference from other plans, thus
avoiding plan interference. Throughout the rest of this thesis, we use the Jason interpreter,
and provide details as needed, at the relevant time.

3.3.3 Postman Scenario

Returning to our postman example (from Section 3.2.2), a possible AgentSpeak(L) speci-
fication for it is shown in Table 3.8, in which the robot has plans to move to the relevant
loading bay, pick up the packets and move them to the pigeonholes where they are delivered
(Lines 10 through 17 in Table 3.8). Moreover, the robot has a limited amount of battery
power, which is expended whenever the robot moves (Lines 1 through 8 in Table 3.8), and
must be recharged when it reaches a critical level (Lines 19 through 24 in Table 3.8).

So, for example, if an agent detects that a new packet (packet1) has been deposited in a
loading bay (bay1), represented by the event +over(packet1, bay1), the agent immediately
adopts a plan that contains the goal of delivering this packet (the achievement goal in Line
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8 of Table 3.8). Since the plan has an external event as its invocation condition (i.e. +over

(packet1, bay1)), when the plan is added to the agent’s intentions, it becomes the root of a
new intention, whereas the goal (and plan) to deliver the package, when adopted, is pushed
on top of the former intention structure. The agent accomplishes this goal by executing
the plan (the only plan for this goal, in Line 10 of Table 3.8), which consists of moving
from its current location to the loading bay (through another goal that deals with agent
movement), picking up the packet (through the atomic action pickup(Packet)), and moving it
to the pigeonhole where the packet is dropped (through another atomic action, drop(Packet)).

1 +!move (A,B ) : A = B %Plan 1
2 <− t r u e .
3 %Plan 2
4 +!move (A,B ) : at (B)
5 <− t r u e .
6 %Plan 3
7 +!move (A,B ) : at (A) & not at (B) & not ba t t ( empty )
8 <− move (A,B ) .
9 %Plan 4
10 +over ( Packet ,Bay ) : t r u e
11 <− ! d e l i v e r ( Packet ) .
12 %Plan 5
13 +! d e l i v e r ( Packet ) : packet ( Packet ) & ove r ( Packet ,Bay ) & at (A)
14 <− !move ( A,Bay ) ;
15 p i ckup ( Packet ) ;
16 !move ( Bay ,p i g eonHo l e s ) ;
17 drop ( Packet ) .
18 %Plan 6
19 +batt ( c r i t i c a l ) : t r u e
20 <− ! c h a r g e .
21 %Plan 7
22 +!charge : at (A)
23 <− move ( A , cha r g e r ) ;
24 cha rge .

Table 3.8: Postman robot specification.

As mentioned earlier, the robot can only move to perform its delivery activities when its
battery charge is not empty (expressed in the context condition of the plan to achieve the
!move goal, in Line 7 of Table 3.8). If the agent reaches a condition in which its battery
charge becomes critical, the agent adopts the goal of charging it (through the plan in Line 19
of Table 3.8), which causes the agent to move to the charging station (charger), and invoke
the atomic action charge.

Although our postman specification now seems fine, closer inspection reveals that it contains
a significant limitation that manifests itself whenever the battery becomes critical during a
delivery operation. This will cause the agent to adopt the plan to charge its battery, thus
interfering with any existing intention that requires the agent to be in a certain position. In
order to solve this problem, the plans must be carefully tailored to cater for interference from
the remainder of the plan library. We illustrate this problem in Table 3.9, which depicts the
stream of events from the environment in the left-hand side against the resulting response
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Environment Stream

1 +over ( packe t1 , bay1 )
2
3
4
5 +batt ( c r i t i c a l )
6
7
8
9 %Agent i s no l o n g e r i n bay1

Agent Stream

1 +! d e l i v e r ( packet1 )
2 +!move ( p o s i t i o n 1 , b a y 1 )
3 move ( p o s i t i o n 1 , b a y 1 )
4 p i ckup ( packet1 )
5 +!move ( bay1 , p i g e onHo l e s )
6 +!charge
7 move ( b a y 1 , c h a r g e r )
8 cha rge
9 move ( bay1 , p i g eonHo l e s )

Table 3.9: Plan interference trace.

from AgentSpeak(L). Here, the arrival of packet1 in bay1 triggers the adoption of the plan
to deliver it to the pigeonHoles. However, during the execution of the steps from this plan,
the robot’s battery reaches a critical level, triggering the plan to charge its batteries, and
jeopardising the assumption of a fixed position from the plan to deliver the packet.

3.3.4 Summary

As we have seen in Section 3.3, the behaviour of traditional AgentSpeak(L) is based on
inflexible rules. If we wish to create complex plans to be carried out in a dynamic world,
then we must foresee every possible interaction for these plans, or risk harmful interference,
since no modification or analysis of the plan library is expected at runtime. This limitation
can be seen, for instance, in the example of Table 3.8, where the execution of a plan to move
a postman robot to a certain position is interrupted by a plan to address the near depletion
of its battery charge. However, by expanding AgentSpeak(L) with planning capabilities, we
allow an agent to refine its plan library at runtime as needed.

As described previously, an AgentSpeak(L) interpreter is driven by events on the agent’s
data structures, in the form of belief or goal additions or deletions. These events function
as triggers for the adoption of plans in certain contexts, causing plans to be added to
the intention structure from which the agent handles the plan’s steps. Plan steps may
include the execution of an atomic action, causing some change in the environment, or
the addition of new goals, causing new plans to be added to the intention structure. In
both situations, the agent might fail, either to execute an atomic action or to accomplish
a subgoal, resulting in the failure of the original plan in the intention structure. If a plan
selected for the achievement of a given goal fails, the default behaviour of an AgentSpeak(L)
agent is to conclude that the goal that caused the plan to be adopted is not achievable.

This control cycle (summarised in Figure 3.8) strongly couples plan execution to goal
achievement. It also allows for situations in which the poor selection of a plan leads to
the failure of a goal that would otherwise be achievable through a different plan in the plan
library. While such limitations can be mitigated through meta-level constructs that allow
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Find applicable plans

Push plan into Intentions

Process Intention

Goal FailedGoal Achieved

Goal addition/deletion

Applicable plan found

No plan found

Plan failed

Plan executed

Figure 3.8: Simplified AgentSpeak(L) control cycle.

goal addition events to cause the execution of applicable plans in sequence [Georgeff and
Ingrand, 1989b; Hübner et al., 2006], and the goal to fail only when all plans fail, in Agent-
Speak(L) goal achievement is an implicit side-effect of a plan being executed successfully.

3.4 AgentSpeak(PL): Planning

Having identified limitations in the AgentSpeak(L) architecture reviewed in Section 3.3 re-
garding an agent’s adaptability to new situations, we conclude that the ability to generate
new plans at runtime is needed to address this limitation. Thus, in this section we intro-
duce a planning capability to AgentSpeak(L), calling the resulting system AgentSpeak(PL).
However, introducing a procedural plan-based agent language into the inherently declarative
formalism of classic planning poses a number of subproblems that we need to address before
a concrete system can be realised. We start by analysing the way in which agents are usu-
ally designed using AgentSpeak(L), detecting parallels between lower-level AgentSpeak(L)
plans and planning operators in Sections 3.4.1 and 3.4.2. The next problem that needs
consideration is the more pragmatic one of fitting planning within AgentSpeak’s reasoning
cycle, which we address in Section 3.4.3. Furthermore, we consider the encoding of planning
problem goals within the context of AgentSpeak(L) goals and the invocation of the planner
as a result of these AgentSpeak(L) goals in Sections 3.4.4 and 3.4.5. Finally, we deal with
the problem of potential failures of plans generated through planning in Section 3.4.6.

3.4.1 Low-level plans versus high-level plans

The design of a traditional AgentSpeak(L) plan library follows a similar approach to pro-
gramming in procedural languages, in which a designer typically defines fine-grained actions
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to be the building blocks of more complex operations. These building blocks are then assem-
bled into higher-level procedures to accomplish the main goals of a system. Analogously, an
AgentSpeak(L) designer traditionally creates fine-grained actions to be the building blocks
of more complex operations, typically defining more than one plan to satisfy the same goal
(i.e. sharing the same invocation condition), while specifying the situations in which it is
applicable through the context part of each plan. For example, an agent that has to move
around in London could know many ways of going from one place to another depending
on whether a vehicle is available to it, such as by walking or driving a car, as shown in
Table 3.10. We call these plans lower-level plans.

1 +!move ( A, B) : a v a i l a b l e ( ca r )
2 <− get ( ca r ) ;
3 d r i v e (A,B ) .
4
5 +!move ( A, B) : not a v a i l a b l e ( ca r )
6 <− walk ( A, B) .

Table 3.10: Movement plans.

High-level plans, on the other hand, use these lower-level plans. For example, if an agent
needs to move to a succession of places to accomplish a number of other goals, a high-level
plan uses the low-level move plans as illustrated in Table 3.11.

1 +!h i ghLeve l : t r u e
2 <− !move ( home, p l a c e1 ) ;
3 ! g o a l 1 ;
4 !move ( p l a c e 1 , p l a c e2 ) ;
5 ! g o a l 2 .

Table 3.11: High-level plan that uses the movement plans.

3.4.2 Low-level plans as analogues of STRIPS operators

Now that the details of the planning process and of the AgentSpeak reasoning cycle are
clear, we can consider the relation between low-level plans and STRIPS operators in order
to establish a link between these two formalisms and allow AgentSpeak plans to be composed
into high-level plans through planning. Modelling STRIPS7 operators to be supplied to a
planning algorithm is similar to the definition of the building-block procedures discussed in
Section 3.4.1. In both cases, it is important that operators to be used sequentially fit. That
is, the results from applying one operator should be compatible with the application of the
possible subsequent operators, matching the effects of one operator to the preconditions of
the next operator.

7PDDL [Fox and Long, 2003] could be used instead, but we use STRIPS for a simpler description. More
importantly, AgentSpeak(L) plans do not have conditional effects encoded explicitly, rendering PDDL an
overly complex language for our purposes.
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Once the building-block procedures are defined, higher-level operations must be specified
to fulfil the broader goals of a system by combining these building blocks. In a traditional
AgentSpeak(L) plan library, higher-level plans to achieve broader goals contain a series of
subgoals to be achieved by the lower-level plans. This construction of higher-level plans
that make use of lower-level ones is analogous to the planning performed by a propositional
planning system. However, unlike the automated process of planning, the connections
between lower-level plans are made only in the mind of the designer.

By doing the planning themselves, designers must cope with every foreseeable situation
an agent might find itself in, and generate higher-level plans combining lower-level tasks
accordingly. Moreover, the designer must make sure that the subplans being used do not
lead to conflicting situations. This is precisely the responsibility we intend to delegate to a
STRIPS planner.

Plans resulting from propositional planning usually consist of a sequence of instantiated
operator headers (e.g. move(bay1,pigeonHoles);pickup(packet1)), which is not a format directly
useable by an AgentSpeak(L) agent. The planning module has to establish the correspon-
dence of operator headers back to AgentSpeak(L) low-level plans and hence convert the
STRIPS plan into sequences of AgentSpeak(L) achievement goals to comprise the body of
new plans available within an agent’s plan library. In this approach, an agent can still have
high-level plans pre-defined by the designer, so that routine tasks can be handled exactly
as intended. At the same time, if an unforseen situation presents itself to the agent, it has
the flexibility of finding novel ways to solve problems, while augmenting the agent’s plan
library in the process.

3.4.3 Integrating the planner component

Our aim is to provide an extension to AgentSpeak(L) that allows a designer to explicitly
specify the world-state that should be achieved by an agent. In order to transform the world
to meet the desired state, we need a propositional planner to form high-level plans through
the composition of plans already present in its plan library.

This planner component must be integrated into the reasoning cycle somehow so that when
the need arises, an agent invokes the planner to generate new plans. Agent interpreters are
generally divided between: a kernel containing the basic processes needed for the reasoning
cycle, following any theoretical model for an agent architecture; and external capabilities
or actions that can be invoked by the kernel and can be implemented by a designer to
provide an interface with a particular aspect of the environment. In this light, there are
two alternatives to integrating the planner into the reasoning cycle:

• introduce the planning process as part of the interpreter kernel; or
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• introduce the planning process as an action within plans.

Introducing the planning process as part of the interpreter kernel implies modifications to
the agent interpreter, and entails expanding the interpreter cycle of Figure 3.7 with an
additional process; that is, a planning process. Given the potentially high computational
cost of planning from first principles, this process must be a last resort option for when a
certain event fails to yield applicable plans. In this situation, the planner can be invoked
to resolve the impasse.

Introducing the planning process as an action invocable in a regular AgentSpeak(L) plan
requires the planning process to be encapsulated in an action implementation. It follows the
practice of integrating external capabilities using specialised internal actions [Bordini et al.,
2007; Padgham and Winikoff, 2004], in this case a meta-level one. Like in the previous
option, planning must be a last resort, and therefore the plans containing the planning
action should be positioned after all predefined plans have been attempted.

Prima facie, these options are functionally equivalent, with the second option being simpler
in terms of implementation effort. However, using planning as an internal action affords
greater flexibility, as a designer can position plans with this action wherever it is most
desirable in a plan library. Conversely, if planning is an interpreter-level process, this
flexibility can only be achieved through new constructs in the AgentSpeak(L) language
indicating where planning should be applied.

Therefore we choose to integrate it through a special AgentSpeak(L) internal action, requir-
ing no change in the language definition. The only assumption we make is the existence of
plans that abide by certain restrictions in order to be able to compose higher-level plans
taking advantage of planning capabilities introduced in the interpreter.

3.4.4 Goal conjunctions

The notion of planning is closely related to that of goals to be (or declarative goals) [Winikoff
et al., 2002]. As planning problems are specified in terms of a desired world-state, it is an
inherently declarative form of reasoning. Therefore, the addition of a STRIPS-like planning
capability to an AgentSpeak(L)-based architecture requires the consideration of how to link
the notion of goals in AgentSpeak(L) to the definition of planning problems.

As we have seen in Section 3.3, plans in AgentSpeak(L) are procedural, and their adoption
is a result of either events from the environment or procedural invocations from other plans
rather than an explicit desire to achieve a certain world-state. This creates an integration
problem, since AgentSpeak goals and traditional planning goals use different notions of
goals. We solve this problem by introducing a notation for declarative goals, representing
them as regular AgentSpeak(L) goals encoding a conjunction of literals that must be true
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after a sequence of operators is applied to an initial state. Since goals in this kind of
architecture are procedural, in that they refer to the execution of procedural plans rather
than specific world-states to be achieved, we need to define a way to link these two methods
of goal description.

Therefore, in addition to the traditional way of encoding goals (to do) for an AgentSpeak(L)
agent implicitly as triggering events consisting of achievement goals (!goal), we allow de-
sires including multiple beliefs (b1, . . . , bn) describing a desired world-state in the form
!goalconj([b1, . . . , bn]) as goals to be. An agent desire description thus consists of a conjunc-
tion of beliefs that an agent wishes to be true simultaneously at a given point in time. Here,
the execution of the planner component is triggered by an event +!goalconj([b1, . . . , bn]).

Based on this, events of the type +!goalconj([b1, . . . , bn]) are used to trigger the execution
of a special planning action, denoted plan(G), where G is a conjunction of desired goals,
through a regular AgentSpeak(L) plan, shown in Table 3.12. This action is bound to a
planning component (formally the function of Definition 3.5), and allows the conversion
between formalisms to be encapsulated in the action implementation, making it completely
transparent to the remainder of the interpreter.

+!goalconj([g1, g2, . . . , gn]) : true← plan([g1, g2, . . . , gn]).

Table 3.12: Planner invocation plan.

3.4.5 The planning action

Figure 3.9 illustrates how the internal action to plan takes as an argument the desired
world-state, and uses this, along with the current belief database and the plan library, to
generate a STRIPS [Fikes and Nilsson, 1971] planning problem. This action then invokes a
planning algorithm; if a plan is found, the planning action succeeds, otherwise the planning
action fails. If the action successfully yields a plan, it converts the resulting STRIPS plan
into a new AgentSpeak(L) plan to be added to the plan library, and immediately triggers
the adoption of the new plan.

This representation of goal conjunctions is the key to our approach, as it keeps the principle
of procedural execution of plans from AgentSpeak(L) in that the planner itself is just like
a regular AgentSpeak(L) plan that is invoked by the agent whenever an event describing
the desire to achieve a certain world-state is generated. Furthermore, the plan generated by
the planning process is also a regular AgentSpeak(L) plan, invoked by the agent following
planner execution, as part of the intention to achieve that particular world-state.
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Planning Action

Create STRIPS Problem

Invoke Planner

Convert STRIPS Plan

Plan LibraryPlan Library BeliefsBeliefs

Trigger Plan Execution

plan(Goals)

(Strips Problem)

Planner succeeded

Planner failed

Plan Created

Trigger Added

Figure 3.9: Operation of the planning action.

3.4.6 Failure in plan execution

As it stands, the achievement of the conjunction of goals is still tied to the first execution of
any plan generated by the planner. To address this, the planning action of Figure 3.9 must
be redesigned to allow recovery from any potential failure when executing generated plans,
and renewed attempts at planning must be made until no new plans can be generated (in
line with Figure 3.10).

We thus describe the invocation of the planner as a contingency alternative when all existing
plans are proven inadequate to achieve an agent’s goals. In this view, when an agent invokes
the planner, the planner is expected to either generate a plan that successfully achieves its
designated goals or prove that no plan exists to achieve such a goal given the current world-
state. However, it is possible that the planner generates a plan which fails to execute to
completion due to a number of factors, for example because circumstances change from the
moment the plan is created to the moment the plan starts execution. In these types of
situation, it may be desirable for an agent to persist attempting to generate a plan to cope
with the changing circumstances until the planner too reaches an impasse, as illustrated in
Figure 3.10.

In order to accomplish this, it is necessary to use the notion of a plan-dropping event
introduced by Bordini et al. in Jason [Bordini et al., 2007]. In Jason, when a plan adopted
as a result of an event +e fails for any reason, an agent receives a plan dropping event −e.
For example, if an agent adopts a plan to achieve a certain goal +!goal and this plan fails,
it causes the agent to receive an event −!goal signalling the failure. Using this construct, it
is possible to recover from a failed plan and reinvoke the planner through the plan shown
in Table 3.13, which is a plan analogous to the original plan to plan in Table 3.12.
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Planning Action

Create STRIPS Problem

Invoke Planner
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(Strips Problem)

Planner succeeded

Planner failed
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Trigger Added

Plan Executed

Plan Failed / Reassess Initial State

Figure 3.10: Operation of the planning action with failure recovery.

−!goalconj([g1, g2, . . . , gn]) : true← plan([g1, g2, . . . , gn]).

Table 3.13: Plan to handle plan failure.

3.5 From AgentSpeak(L) to STRIPS

Once the need for planning is detected, the plan in Table 3.12 is invoked so that an agent can
resort to a planner component. The process of linking an agent to a propositional planning
algorithm, illustrated in the diagram of Figure 3.10, includes converting an AgentSpeak(L)
plan library into propositional planning operators, declarative goals into goal-state speci-
fications, and the agent beliefs into the initial-state specification for a planning problem.
After the planner yields a solution, the ensuing STRIPS plan must be translated into an
AgentSpeak(L) plan in which the operators resulting from the planning process become
subgoals. In this way, the execution of each operator listed in the STRIPS plan is analogous
to the insertion of the AgentSpeak(L) plan that corresponded to that operator when the
STRIPS problem was created.

3.5.1 Extracting declarative information

As described in Section 3.4.2, plans in AgentSpeak(L) are represented by a header compris-
ing an invocation condition and a context, as well as a body describing the steps the agent
takes when a plan is selected for execution. The invocation condition of an AgentSpeak(L)
plan is equivalent to an operator declaration in STRIPS, as it identifies the aim of the plan
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and lists the relevant variables that are to be instantiated for a concrete invocation to be
created. Furthermore the context condition of an AgentSpeak(L) plan is analogous to the
preconditions of a STRIPS operator. These correlations can be observed in the move plans
of our postman robot example, in particular the plan that contains the action invocation,
shown in Table 3.14. In this plan the relevant variables are the starting position and the
final position, which must be defined in order to move from one location to the other. Fur-
ther, the context condition specifies that an agent should only try to move to a different
location from its current position, and when its battery is not empty. This correspondence
between AgentSpeak(L) plans and STRIPS operators is illustrated in Figure 3.11.

1 +!move (A,B )
2 : at (A) & not at (B) & not ba t t ( empty )
3 <− move (A,B ) .

Table 3.14: Movement plan from Table 3.8.

The example of Table 3.14 outlines a particularity of AgentSpeak(L) programming, which is
that the consequences of actions (such as the new position of a robot after it executes a move
action), from the agent’s point of view, are implicit, since there is no explicit representation
of them in the specification. Therefore, the responsibility of understanding the consequences
of executing atomic actions and how they can be used in a plan is delegated to the designer.
For an agent to be able to reason about how actions can be chained to achieve broader goals,
it must be able to analyse the consequences of these actions and how they fit together. In
our example, it is clear that once the agent executes the atomic action to move from A

to B successfully, the environment should update the agent’s sensor with its new position,
causing the agent to revise its belief base so that it no longer believes it is at position A but
believes it is at position B.

Figure 3.11: Correspondence between AgentSpeak(L) plans and STRIPS operators.

In order to allow our example agent to reason about how the actions available to it affect
its broader goals, explicit information regarding the outcome of actions must be included
in the building-block plans used by the agent. Therefore, we need to modify the plan in
Table 3.14 accordingly, by explicitly encoding in the plan the results of its execution (that
the agent is not longer at A and is now at B), as shown in Table 3.15.
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1 +!move (A,B )
2 : at (A) & not at (B) & not ba t t ( empty )
3 <− move (A,B ) ;
4 −at (A) ;
5 +at (B) .

Table 3.15: Alternative representation of Table 3.15.

Appropriately, this information about the consequences of a plan is what constitutes the
effects of a STRIPS operator, since the added information consists of an explicit list of
modifications to the environment, represented as belief additions and deletions. Therefore,
we define function belfilter to extract belief additions and deletions contained in the body
of the plans we intend to convert to STRIPS operators in Definition 3.6.

Definition 3.6 (Belief Update Filter). Let h1, . . . , hn be an AgentSpeak(L) plan body, in
which each hi can be a subgoal or an action, which may be either an atomic action, a
subgoal, or a belief update action in the form +b for a belief addition and −b for a belief
deletion. We define an abstract function belfilter(h1, . . . , hn) that takes an AgentSpeak(L)
plan body and returns the set Bu = {hi|(hi = +b) ∨ (hi = −b)} of belief update actions in
the plan body.

As an example, the application of function belfilter to the body of the plan in Table 3.15,
consisting of move(A,B), −at(A) and +at(B), results in a set containing only −at(A) and
+at(B).

3.5.2 Dealing with atomic actions

Clearly, lower-level plans defined by the designer can (and often will) include the invocation
of actions intended to generate some effect on the environment. Since the effects of these
actions are not usually explicitly specified in AgentSpeak(L) (another example of reasoning
delegated to the designer), an agent cannot reason about the consequences of these actions.
When designing agents using our technique, we need to explicitly define the consequences of
executing a given AgentSpeak(L) plan in terms of belief additions and deletions as well as
atomic action invocations. The conversion process can then ignore atomic action invocations
when generating a STRIPS specification.

3.5.3 Conversion process

Now that we have all the elements to establish a direct relation between the components
of an AgentSpeak(L) plan and a STRIPS operator, we define a generic mapping between
them in Definition 3.7.
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Definition 3.7 (AgentSpeak(L) to STRIPS mapping). Let e : b1& . . . &bm ← h1; . . . ; hn.

be an AgentSpeak(L) plan, in which e is a triggering event, b1, . . . , bm are belief literals rep-
resenting the context condition, and h1, . . . , hn are goals or actions, and let o = 〈pre, post〉
be a generic STRIPS operator with a declaration string o, preconditions pre and post-
conditions post. Further, let belfilter(h1, . . . , hn) be a function that returns only the belief
update actions from h1, . . . , hn. A new operator can be generated from the AgentSpeak(L)
plan where o← e, pre← b1, . . . , bm, and post← belfilter(h1, . . . , hn).

In our example, we have the following correspondence:

• e is !move(A,B);

• at(A) & not at(B) & not batt(empty) are belief literals; and

• move(A,B); −at(A); +at(B). is the plan body.

which can be translated into a new STRIPS operator using the mapping of Definition 3.7,
yielding the operator shown in Table 3.16.

1 op e r a t o r move (A,B )
2 p r e : a t (A) & not at (B) & not ba t t ( empty )
3 p o s t : a t (B) & not at (A)

Table 3.16: STRIPS operator created from the plan of Table 3.15.

3.6 From STRIPS to AgentSpeak

As we have seen in the description of the planning action in Section 3.4.5, STRIPS prob-
lems generated through the conversion process described in Section 3.5 are processed by a
propositional planner. If the planner fails to generate a propositional plan for that conjunc-
tion of literals (i.e. the goal to be), the planning action fails immediately and the goal is
deemed unachievable. If the plan is successful, the resulting propositional plan needs to be
converted into an AgentSpeak(L) plan before it can be added to the intention structure.

An AgentSpeak(L) plan is composed of an invocation condition, a context condition and
the actual sequence of steps comprising the plan body. These elements must, therefore,
be created when converting a STRIPS plan into an AgentSpeak(L) representation. Now,
as we have seen, the body of an AgentSpeak(L) plan is analogous to a STRIPS plan, as
they both represent the steps that must be taken for a certain goal to be achieved, whereas
the other elements (the conditions) are only necessary for retrieving a plan from the plan
library. In fact, this use of conditions to identify plans to retrieve from the plan library can
be considered a form of indexing. Consequently, when generating a plan to be added directly
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to the intention structure for execution, these indexing elements are not strictly necessary.
However, it might be advantageous for an agent to cache newly generated plans for future
use instead of having to replan from scratch. In this case, if a plan is to be added to the
plan library several issues must be addressed for the correct generation of these indexing
elements.

Given these considerations, we proceed to describe two approaches for the generation of
AgentSpeak(L) plans from the result of a STRIPS planner. The first approach, described in
Section 3.6.1, ignores most issues of integration with an existing plan library, and demon-
strates how a STRIPS plan can be easily converted into the body of an AgentSpeak(L) plan;
this approach can also be used when the generated plan is not intended to be integrated
into the plan library. The second approach, described in Section 3.6.3, builds on the first
one, and deals mainly with the generation of context information when a plan is intended
for integration with the plan library.

3.6.1 STRIPS actions to plan bodies

A plan from a STRIPS planner is in the form of a sequence op1, . . . , opn of operator names
and instantiated parameters. This sequence specifies the order in which operators should
be executed so that an agent can achieve the desired world-state (according to function
Res from Definition 3.2), which is functionally equivalent to the execution of plan steps in
AgentSpeak. By avoiding the issue of generating a context condition, we can define a new
AgentSpeak(L) plan in Table 3.17, where +!goalconj(Goals) is the triggering event that
caused the planning module to be invoked.

+!goalconj(Goals) : true

←!op1; . . . ; !opn.

Table 3.17: AgentSpeak(L) plan generated from a STRIPS plan.

Note that in this approach, we assume that the planning process is faster than the rate
of change of the environment, otherwise changes in the environment might endanger the
preconditions for the generated plan to be successful. We adopt this assumption here to
allow a more generic integration of the planning component to the agent model. The
assumption can be dropped, however, by leveraging the work of Ingrand and Despouys
[Ingrand and Despouys, 2001], which describes extensions to Graphplan that allow the
planning process to be updated as changes in the environment occur.
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3.6.2 Generating context information

The addition of the new plan to the intention structure raises the problem of how newly
formed plans can be integrated into an agent’s existing plan library, or indeed if they should
be integrated to the plan library at all. Modifying the plan library at runtime through the
addition of new plans effectively changes agent behaviour in at least two ways: first, new
plans may cause undesired interactions with the plans that are already part of the plan
library, possibly jeopardising the agent’s viability in the long term; and second, adding a
large number of plans with the same invocation condition may impair the agent’s ability to
respond in adequate time.

The issue of interference has been discussed in Section 3.3.2, and we have seen that it can
be avoided by executing new plans atomically. However, the issue remains of ensuring that
plans with the same invocation condition are only selected when their associated plans are
most useful. This, in turn, leads to the need for selecting a context condition that maximises
the utility of newly generated plans.

In order for a plan to be usefully added to the plan library, the context in which this plan is
relevant must be carefully described. If the context is too restrictive, for example by using
the entire belief base at the time of planning, the inclusion of a number of irrelevant beliefs
will severely limit the future applicability of the new plan. On the other hand, if the context
is minimised to include only the preconditions of the first operator, the plan may fail later
due to the requirements of subsequent operators.

3.6.3 Adding new plans to the plan library

We have seen that in order for newly generated plans to be added to an AgentSpeak plan
library in a way that maximises its future utility to the agent, contextual information should
be included in the new plan. Intuitively, the preconditions of any given plan step must have
either been made true during the execution of previous plan steps or must have been true
from the start of the plan. Therefore, the minimum context condition for any generated plan
must specify the preconditions of the first operator, plus the preconditions of any subsequent
operators that are not included in the effects of previous operators. We consider this process
in more detail below, after presenting Algorithm 1, which describes the generation of such
a context condition.

Algorithm 1 uses a Graphplan-like8 data structure consisting of a directed graph containing
alternating levels of propositions and actions. Nodes in an action level are connected to
nodes in a proposition level either through precondition edges, denoting that a proposition
is a precondition of a given action, or through effect edges, denoting that a proposition
is an effect of a given action. Besides the actions included in a planning problem, this

8For a more detailed description of Graphplan, see Appendix A.
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Algorithm 1 Propagation of preconditions.
Require: Plan ∆ = {a1, . . . , an}, with n steps
Require: Action descriptions O = {〈a1, P re1, Post1〉, 〈an, P ren, Postn〉}
1: create a proposition level P0 with no propositions;
2: for all ai ∈ ∆ do
3: create an action level Ai containing a node ai;
4: add the preconditions of ai to proposition level Pi−1;
5: connect all p ∈ Pi to ai−1 with precondition edges;
6: create a proposition level Pi containing the effects of ai;
7: connect all p ∈ Pi to ai with effect edges;
8: end for
9: for i = n to 1 do

10: for all p ∈ Pi−1 do
11: if p is not connected to any node in level Ai then
12: create an action noop(p) in level Ai;
13: connect noop(p) to p through an effect edge;
14: if p 6∈ Pi then
15: create a node p in Pi;
16: end if
17: connect p to noop(p) with a precondition edge;
18: end if
19: end for
20: end for
21: return P0

planning graph includes noop actions, which connect identical propositions between adjacent
proposition levels representing that their truth value remains unchanged between plan steps.

The algorithm initially builds a planning graph populated with the actions of the plan we
wish to create a context for, as well as the preconditions and effects of these actions, with
edges connecting actions to their preconditions in the previous level, and their effects in the
subsequent level. Once the initial graph is generated, proposition levels are iterated back-
wards and, for each proposition that is connected with a precondition edge to a subsequent
action level and not connected with an effect edge to the previous action level, a new noop
action is created, allowing a proposition to be propagated to the previous proposition level.
As the graph is traversed, propositions that are required at one action level are created at
the preceding proposition levels until they are either connected to an original action of the
plan, or they are propagated through noop actions, ensuring that the first proposition level
contains all of the preconditions that did not result from the actions in the plan.

To demonstrate the algorithm, consider the postman robot example, and the plan shown in
Table 3.6. When the graph for this plan is generated with Algorithm 1, we can see that the
only preconditions that are not generated by operators during the plan are −at(pigeonHoles),
−batt(empty), −held(packet1), and over(packet1,bay1), which are propagated to the beginning of
the graph using noop operators. The graph illustrating this run is illustrated in Figure 3.12,
with the propagated conditions and their connections shown as dashed nodes. Consequently,
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Figure 3.12: Graph for the execution of the postman robot example.

the plan generated for the event +!goalconj([over(packet1,pigeonHoles) ]) can be added to the
plan library with context information. The resulting plan, complete with context condition,
is shown in Table 3.18.

1 ! g o a l c o n j ( [ ove r ( p a c k e t 1 , p i g e onHo l e s ) ] )
2 : not at ( p i g eonHo l e s ) & at ( p o s i t i o n 1 ) & not at ( bay1 )
3 & not ba t t ( empty ) & not he l d ( packet1 ) & ove r ( packe t1 , bay1 )
4 <− !move ( p o s i t i o n 1 , bay1 ) ;
5 ! p i c k up ( packe t1 , bay1 ) ;
6 !move ( bay1 , p i g e onHo l e s ) ;
7 ! d r op ( p a c k e t 1 , p i g e onHo l e s ) .

Table 3.18: Plan with context information.

In terms of computational effort, this algorithm has similar complexity to the graph expan-
sion phase of Graphplan, which has polynomial complexity [Ghallab et al., 2004] in the size
of the planning problem for both the size of the graph and the time required to build it. If
a plan has m distinct steps, and n distinct propositions, the graph our algorithm creates
will have at most ((2 ∗ n) + 1) ∗m nodes, one node for each action and all possible noops
at each graph level, plus all possible propositions at each proposition level, indicating that
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the size and time complexity of our algorithm is on the low polynomial scale. Regarding
the correctness of the algorithm and its termination guarantee, since the graph building
part of the algorithm is a subset of Graphplan [Blum and Furst, 1997], for which a proof
of completeness and termination exists, and the rest of the algorithm is an iteration in a
directed acyclic graph, it is trivial to show that the algorithm does terminate for any input.

3.6.4 Plan interference

In the ensuing execution of the generated plan, multiple concurrent plans might be stacked in
an agent’s intentions structure, leading to the possibility of conflicts during their interleaved
execution. Plans created a priori by a human designer can be manually tailored to avoid any
such conflicts. However, when dynamically generated plans are added to the plan library,
potential conflicts must be resolved or mitigated somehow. There are multiple ways of
addressing this issue, namely:

• delegate the analysis and resolution of conflicting interaction between plans to the
designer;

• implement provisions to ensure that the plans used by the planning process are exe-
cuted atomically;

• drop the entire intention structure before plan adoption and prevent new intentions
from being adopted during plan execution; and

• analyse the current intention structure and prospective plan steps during planning to
ensure they do not interfere with each other.

Delegating the resolution of concurrency problems to the designer might not be realistic,
since the main goal of our work is to diminish the amount of designer tasks, and there is
an infinite number of possible combinations of concurrently executing plan steps. On the
other hand, analysing the whole intention structure whenever a new plan is added to it
involves the introduction of a complex analysis procedure to solve a very limited number of
potential conflicts. In this thesis, therefore, we have opted to enable the agent to execute
dynamically generated plans atomically (by preventing other intentions from being selected
from the stack while a dynamic plan is being executed). We also could have dealt with
interference on a corrective basis; that is, if conflicts are expected to arise from the adoption
of a new plan, any less important plans in the current intention structure are dropped in
favour of the new one. However, the former alternative stems from our goal of minimising
the amount of work delegated to the developer, as well as not overloading the reasoning
process, potentially sacrificing reactivity.
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3.7 Experiments

We have implemented the planning action described in Section 3.4.3 using Jason [Bordini
et al., 2005b], which is an open-source Java implementation of AgentSpeak that includes
a number of extensions, such as facilities for communication and distribution. In addition
to providing an interpreter for the agent language, Jason has an object-oriented API for
the development of actions available to the agents being developed. Since planning is to
be performed as part of a regular AgentSpeak plan, the planning action encapsulates the
conversion process of Section 3.5.3 using Jason’s internal actions.

This implementation was used in a number of toy problems, such as the Blocks World
used with the original STRIPS planner [Fikes and Nilsson, 1971], as well as some examples
from the AgentSpeak literature [Rao, 1996]. Solutions for these problems were created
using both a procedural approach characteristic of traditional AgentSpeak agents, and a
declarative one, in which high-level plans are omitted entirely and left to be derived by the
planning system. We provide three experiments: a concrete production cell with multiple
combinations of usage in its processing units and how it can be described using a planning
capable agent in Section 3.7.1, as well as an extension of this experiment showing the impact
of plan reuse in runtime performance in Section 3.7.2, and finally an abstract experiment
used to gather performance data on the computational effort gap between a planning and
a non-planning agent in Section 3.7.3.

3.7.1 Production cell example

Planning, in general, is a recognisably complex problem, hence it is important to evaluate
the performance penalty incurred by the use of state-space planning during the reasoning
process.

As a result, we have developed a production cell scenario, in which parts must be processed
by different processing units, depending on the type of part. Parts enter the production cell
for processing through the feed belt and, once processed by all the appropriate processing
units, they are removed from the cell through the deposit belt. Every processing unit is
responsible for performing a different kind of operation on the part being processed, and
can process only one part at a given moment. The general layout of this production cell is
illustrated in Figure 3.13, taken from [Meneguzzi et al., 2004].

Now, each part introduced into the cell can be processed by one or more processing units, as
determined by the type of component being processed. The control of the production cell is
entrusted to two different BDI agents using different types of AgentSpeak interpreter, one
using AgentSpeak(L) static plans developed for each possible situation in our experiment,
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Figure 3.13: Overview of the production cell.

and another using AgentSpeak(PL) planning capabilities to schedule the work of the pro-
duction cell through its newly created plans. For testing purposes, we consider a production
cell with four processing units, in which parts of three different types can be processed:

• Type One must be processed by Processing Units 1, 2 and 3;

• Type Two must be processed by Processing Units 2 and 4; and

• Type Three must be processed by Processing Units 1 and 3.

The experiment consists of simulating the arrival of parts of random types in a production
cell, once controlled by a traditional AgentSpeak(L) agent and once controlled by an Agent-
Speak(PL) agent. The original AgentSpeak(L) constitutes our baseline for the experiment,
since it has zero overhead due to planning. The time spent planning and achieving the final
processing of every part was measured for each agent for an increasing number of parts,
ranging from 10 to 100 in 10 part increments, and repeated 10 times to amortise fluctua-
tions in the underlying hardware and operating system the results of which can be seen in
the graph of Figure 3.14.
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Figure 3.14: Comparison of running times for Production Cell scenario.
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In this graph we can see that, though the planning version takes significantly more time
to perform its reasoning cycle, time overhead increases roughly linearly with the number
of parts, as the time spent in planning accumulates. This is, however, an expected result,
since planning from first principles is much more computationally expensive than the simple
unification process normally required of AgentSpeak(L) to match existing plans. However,
traditional AgentSpeak(L) cannot deal with situations for which no plans exist, which is
the main advantage of our approach. It is interesting to note that in this scenario no plan
reuse strategy was used, so these results can easily be improved using the reuse technique
of Section 3.6.3, as we see next.

3.7.2 Impact of plan reuse

In the above experiment, we saw that planning from first principles is a costly endeavour
and needs to be amortised through a plan reuse strategy, as described in Section 3.6.3. To
assess the impact of reusing plans in compensating for the computational effort spent in
planning we have developed a variant of the experiment of Section 3.7.1. This experiment
consists of simulating the arrival of parts of three types in three production cells, one
controlled by a traditional AgentSpeak(L) agent (AS), another controlled by a naive version
of AgentSpeak(PL) (NaiveAS) that does not reuse plans and one controlled by the complete
AgentSpeak(PL) (ASPL) capable of reusing plans. Here, whenever a new part arrives for
processing at the cell controlled by NaiveAS, the full planning process is invoked to generate
a new plan, regardless of previous instances of the same problem having been considered
in the past. The time spent planning and achieving the final processing of every part is
measured for each agent for an increasing number of parts, ranging from 10 to 100 in 10
part increments.
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Figure 3.15: Running times for the Production Cell scenario.

The results of this experiment can be seen in the graph of Figure 3.15, which shows that,
though NaiveAS takes significantly more time to perform its reasoning cycle, this overhead
is constant. Now, when the plan reuse strategy is used by ASPL, runtime performance
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AS ASPL
# plans 12 7

Table 3.19: Plan library size comparison.

improves considerably, approaching that of AS. With three different part types, the number
of possible world configurations at the time of planning is limited, and most of the planning
effort occurs at the beginning of the agent execution. As more parts of the same type are
introduced in the production cell, the plans generated previously are invoked rather than
the planning module, amortising the cost of the initial planning. Evidence of this effect is
provided by the ASPL curve approaching that of AS as the number of total parts increases.
Moreover, since the plans generated through planning are a linear sequence of actions, which
do not rely on the tests distributed throughout a branching structure of plans in the plan
library, they are inherently faster to be executed than the equivalent AS representation,
surpassing it in the long term.

It is important to note that, although ASPL can create plans for situations in which AS
would fail, we have avoided using these problems in our benchmark, focusing only on run-
time, by considering an AS agent with plans for all situations possible during testing. By
relying on a planning approach, we also diminish the size of the agent specification, since we
no longer need to create a procedural plan to cope with every world configuration relevant
to the accomplishment of an individual plan. The numbers of plans necessary in the (initial)
plan libraries are shown in Table 3.19.

3.7.3 Abstract example

One of the main advantages of specifying behaviour in a declarative manner is a more concise
specification. In order to demonstrate this, we designed an abstract scenario that shows
how an agent can be specified more concisely using an AgentSpeak(PL)-based declarative
specification than a traditional AgentSpeak(L) specification. The scenario is representative
of a number of real-world situations, for example a sandwich bar, in which the large number
of combinations of fillings for sandwiches makes it very hard to enumerate all combinations,
as well as the detailed plans for making these sandwiches. Another possibility is in the
assembly of new cars or computers, which use similar chassis but result in quite different
models depending on the parts that are mounted onto them. We keep this scenario abstract
to focus on the performance numbers.

Specifications in the scenario follow a traditional AgentSpeak(L) approach consisting of
defining low-level plans that achieve parts of higher-level goals, as well as the main event
reaction plans that define which high-level objectives need to be achieved when certain
events are perceived in the environment. The comparison focuses on the definition of plans
to achieve high-level goals in response to events in the environment, and demonstrates that
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using a procedural approach requires a larger plan-library in order to cope with all possible
combinations of low-level objectives that may need to be accomplished in pursuit of high-
level ones.

1 +!act i on1 : have ( r e s o u r c e 1 )
2 <− +goal1 .
3
4 +!act i on2 : have ( r e s o u r c e 2 )
5 <− +goal2 .
6
7 +!act i on3 : have ( r e s o u r c e 3 )
8 <− +goal3 .
9
10 +!act i on4 : have ( r e s o u r c e 4 )
11 <− +goal4 .
12
13 +!getResource ( Resource ) : not have ( Resource )
14 <− +have ( Resource ) .

Table 3.20: Low-level plans for the abstract scenario.

In this particular scenario, and common to both agent specifications, we consider four low-
level goals that can be achieved through corresponding low-level plans, named goal1, goal2,
goal3, and goal4. These low-level plans require a certain resource in order to accomplish
their goals, so a plan to obtain these resources is also included in the library of low-level
plans. The set of low-level plans used in this experiment is shown in Table 3.20.

Our experiment focuses on evaluating the runtime overhead of performing planning at run-
time to allow for a more concise plan library based on declarative goals. Here, high-level
goals require the achievement of one or more low-level goals, and a procedural specification
requires the steps to achieve each low-level goal and its pre-requisites to be stated explicitly,
as illustrated in Table 3.23. This specification must include contingency plans for every pos-
sible environment configuration in order to ensure that the right low-level plan is invoked.
This level of detail contrasts with the declarative specification shown in Table 3.22, which
relies on the underlying planner to select the necessary low-level plans.

Event High-level goal
event1 goal1
event2 goal2
event3 goal1, goal2
event4 goal3
event5 goal1, goal3
event6 goal1, goal2, goal3
event7 goal4
event8 goal1, goal4
event9 goal2, goal4
event10 goal1, goal2, goal4

Table 3.21: High-level goals for the abstract scenario.
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1 +!goa lConj ( Goa l s ) : t r u e
2 <− . p l an ( G o a l s , t r u e ) .
3
4 +event1 : t r u e
5 <− ! g o a lCon j ( [ goa l 1 ] ) .

Table 3.22: High-level plans for AgentSpeak(PL).

1 +!goal1 : goa l 1
2 <− t r u e .
3
4 +!goal1 : have ( r e s o u r c e 1 ) & not goa l 1
5 <− ! a c t i o n 1 .
6
7 +!goal1 : not have ( r e s o u r c e 1 ) & not goa l 1
8 <− ! g e tRe s ou r c e ( r e s o u r c e 1 ) ;
9 ! a c t i o n 1 .
10
11 +event1 : t r u e
12 <− ! g o a l 1 .

Table 3.23: High-level plans for AgentSpeak(L).
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Figure 3.16: Graphs for the abstract scenario.

As the number of potential subgoals increases, the size of a traditional AgentSpeak(L)
specification increases not only with the specification of the high-level plans, but also with
the contingency plans, whereas an AgentSpeak(PL) specification increases linearly, as il-
lustrated in the graph of Figure 3.16(a). For the runtime evaluation, we considered ten
possible combinations of the four low-level goals defined for this scenario, enumerated in
Table 3.21. One agent of each type (procedural and declarative) was then deployed in a
simulated environment having to cope with an increasingly large number of the events of
Table 3.21 and the time spent achieving the subgoals was measured, the results of which
are illustrated in Figure 3.16(b).

The results of the graphs in Figure 3.16 show that as the combinations of goals increase
in size, the number of plans needed to achieve them in a traditional plan library increases
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at a much faster rate than in AgentSpeak(PL). The ability to create new plans for each
combination of goals at runtime means that a designer does not need to specify a plan for
each combination of goals. Furthermore, the time spent planning to create these new plans
imposes an overhead at runtime, but as the graph of Figure 3.16(b) indicates, this overhead
increases at roughly the same rate as the time spent selecting preexisting plans in the larger
AgentSpeak(L) plan library.

3.8 Related Work

In this section we examine some of the efforts that are somehow related to our work. We start
with architectures that use declarative goals, which is one of the contributions of our work,
following with work related to the derivation of context conditions in Section 3.8.6. Work on
the declarative nature of goals as a means to achieve greater autonomy for an agent is being
pursued by a number of researchers. Here we consider the approaches to declarative goals
currently being investigated, namely those of Hübner et al. (Jason) [Hübner et al., 2006], van
Riemsdijk et al. [van Riemsdijk et al., 2005] and Meneguzzi et al. [Meneguzzi et al., 2004].
There are multiple interpretations as to the requirements and properties of declarative goals
for an agent interpreter, and while some models consist of an agent that performs planning
from first principles whenever a goal is selected, others argue that the only crucial aspect
of an architecture that handles declarative goals is the specification of target world-states
that can be reached using the traditional procedural approach. Besides the issue of how
declarative goals can be incorporated into practical architectures, other researchers have
investigated the issue of using planning modules to augment existing architectures, such as
in Propice-Plan [Ingrand and Despouys, 2001] and JADEX [Sardiña et al., 2006; Walczak
et al., 2006]. These efforts provide insight into many practical issues that may arise from
the integration of BDI with AI planners, such as how to modify a planning algorithm to
cope with changes in the initial state during planning [Ingrand and Despouys, 2001], and
how to cope with conflicts in concurrently executing plans [Walczak et al., 2006].

3.8.1 Propice-Plan

Propice-Plan [Ingrand and Despouys, 2001] is a PRS-based system that includes planning
capabilities through a modified version of the IPP planner [Köhler, 1998]. It includes re-
finements to allow an agent to anticipate alternative execution paths for its plans, as well
as the ability to update the state of the planning process in order to cope with a highly dy-
namic world. Propice-plan is very similar in principle to our AgentSpeak(PL) architecture
described here, but it differs in several key aspects, such as its reliance on a modified PRS
description formalism for agents as well as relying on a tailor-made planner implementation,
limiting the choice of planners to be used in tandem with the agent interpreter.
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3.8.2 Jason

The notion of declarative goals for AgentSpeak that takes advantage of the context part
of the plans (representing the moment an implicit goal becomes relevant) was introduced
by Hübner et al. [Hübner et al., 2006], and implemented in Jason [Bordini et al., 2005b],
which is the same AgentSpeak interpreter we use in our AgentSpeak(PL). More specifically,
plans that share the same invocation condition refer to the achievement of the same goal,
so that a goal can only be considered impossible for a given agent if all plans with the same
invocation condition have been attempted and failed. In Jason, these plans are modified so
that the last action of every plan consists of testing for the fulfilment of the declared goal,
and then the plans are grouped and executed in sequence until one finishes successfully. A
plan only succeeds if at the end of its execution an agent can verify that its intended goal has
been achieved. This approach retains the explicitly procedural approach to agent operation
(a pre-compiled plan library describing sequences of steps that an agent can perform to
accomplish its goals), but adding a more robust layer for handling plan-failure.

3.8.3 GOAL, Dribble and their extensions

Several researchers have worked on a family of declarative agent languages (including GOAL,
Dribble and their extensions) and investigated possible semantics for these languages [Hin-
driks et al., 2001; van Riemsdijk et al., 2005]. All of these languages have in common the
notion that an agent is defined in terms of beliefs, goals and capabilities, which are inter-
preted in such a way as to select and apply capabilities in order to fulfil an agent’s goals.
These approaches have evolved from GOAL [Hindriks et al., 2001] into a declarative seman-
tics very similar to that of X-BDI [Móra et al., 1999], in which an agent’s desires express
world-states that must be achieved by the selection and application of capabilities.

3.8.4 Planning in JADEX

The work of Walczak et al. [Walczak et al., 2006] is another recent approach to merging BDI
reasoning with planning capabilities, and is based on a continuous planning and execution
framework implemented in the JADEX agent framework [Pokahr et al., 2005b]. The system
uses a modified HTN state-based planner which uses domain-specific information to select
the actions to achieve goals or refine goals in an agent’s agenda. The emphasis in this system
is on performance and reaction time rather than generality, since JADEX uses a Java-like
representation for the agent’s data structures, such as goals and actions.
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3.8.5 HTN planning in BDI

Considering the many similarities between BDI programming languages and HTN planning,
Sardiña et al. [Sardiña et al., 2006] formally define how HTN planners can be integrated into
a BDI architecture. In this work, Sardiña shows that the HTN process of systematically
substituting higher-level goal tasks until concrete actions are derived is analogous to the way
in which a PRS-based interpreter pushes new plans into the intention structure, replacing
an achievement goal with an instantiated plan. Taking advantage of this almost direct
correspondence, an HTN planner is used to add lookahead capabilities to an agent, allowing
it to optimise plan selection and maximise an agent’s chance of successfully achieving goals.
By verifying beforehand the selection of plans for achieving subgoals, the agent minimises
the chance of failure as a result of poor plan selection.

The AgentSpeak(L) style, two-tiered approach to the definition of planning problems is
present in HTN planning and the similarities with a BDI interpreter are significant, both
in terms of advantages and limitations. Just as in an AgentSpeak intention structure, plans
generated by an HTN planner are limited by the set of substitution methods available
and constraints imposed on composite tasks. The relation between BDI agents and HTN
planners is explored by Sardiña et al. [Sardiña et al., 2006], and their research outlines the
fact that HTN planners can be employed by an agent to decide which plans to instantiate
in order to succeed, but does not allow the agent to create new plan structures.

3.8.6 Regression of Web Services

The idea of analysing one formalism to derive planning-like pre and post conditions has
been attempted previously in the context of web service composition through planning.
Initial efforts by McIlraith and Fadel [McIlraith and Fadel, 2002] at a theoretical level,
involved converting web services described by hand using Golog into PDDL and ADL.
However, this lacked generality due to its heavy reliance on human intervention in the
process, preventing it from being used in a completely automated fashion, as is needed by
our work. Later, this idea was refined by Pistore et al. [Pistore et al., 2005], converting
web services defined in BPEL4WS into PDDL, allowing for automation. However, BPEL
is much more complex than AgentSpeak(L), and understandably the conversion algorithm
has polynomial complexity, though on the exponential scale. In this respect, our approach
compares favourably by having non-exponential polynomial complexity.

3.8.7 Comparison and Discussion

In addition to the models described in this section, variations of the way an agent interpreter
handles declarative goals have also been described. These approaches advocate the use of
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fast propositional planners to verify the existence of a sequence of actions that fulfil a
declarative goal [Meneguzzi et al., 2004]. The planning process in this setting allows the
consideration of the entire set of available operators to create new plans, providing a degree
of flexibility to the agent’s behaviour.

The approaches in Jason, GOAL and Dribble deal with important aspects of declarative
goals in agent systems, such as the verification of accomplishment and logical properties of
such systems. However, support for declarative goals in Jason still requires a designer to
specify high-level plans, while the formalisms described by van Riemsdijk lack any analysis
of the practicality of their implementation. Jason, in particular, is more concerned with
exhaustively trying all high-level plans sequentially to accomplish a goal.

The addition of a planning component to a BDI agent model has recently been revisited
by other researchers, especially by Sardiña et al. [Sardiña et al., 2006] and Walczak et al.
[Walczak et al., 2006]. The former describes a BDI programming language that incorporates
Hierarchical Task Networks (HTN) planning by exploring the similarities between these two
formalisms, but agents in this approach are no more flexible than they would normally be,
since they still rely on the same plans originally designed prior to deployment. The latter
approach is based on a specially adapted planner to support the agent, preventing the model
from taking advantage of novel approaches to planning.

3.9 Conclusions

Recent approaches to the programming of agents based on declarative goals rely on mech-
anisms of plan selection and verification. However, we argue that a declarative model of
agent programming must include not only constructs for verifying the accomplishment of
an explicit world-state (which is an important capability in any declarative agent), but also
a way in which an agent designer can specify only the world-states the agent has to achieve
and the description of atomic operators allowing an underlying engine to derive plans at
runtime. In this chapter we have argued that propositional planning can provide one such
engine, drawing on agent descriptions that include atomic actions and desired states, and
leaving the derivation of actual plans for the agent at runtime.

As a consequence, we have developed an architecture for planning agents, which we used to
explore how the addition of a planning component can augment the capabilities of a plan
library-based agent. In order to exploit the planning capability, the agent uses a special
planning action to create high-level plans by composing new plans within an agent’s plan
library. This assumes no modification to the AgentSpeak language, and allows an agent
to be defined so that built-in plans can still be defined for common tasks, while allowing
for a degree of flexibility for the agent to act in unforeseen situations. Moreover, despite
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the inherent complexity of planning from first principles, we have addressed the increased
computation cost of planning through a plan reuse technique.

We have created a prototype to test our approach by extending an open source Agent-
Speak(L) interpreter. The prototype has been empirically tested on a number of scenarios,
allowing us to evaluate how the planning ability impacts the runtime performance of an
agent, as well as the size of a plan library. Moving from a traditional AgentSpeak design
method to one based on dynamically generated plans results in a reduction of the plan de-
scription size, as it is no longer necessary to enumerate relevant combinations of lower-level
plans for the agent to be able to react to different situations.

This system can be improved in a number of ways in order to better exploit the underly-
ing planner component. For example, the effort spent on planning can be moderated by a
quantitative model of control, so that an agent can decide to spend a set amount of compu-
tational effort into the planning process before it concludes the goal is not worth pursuing.
This could be implemented by changing the definition of the triggering condition composed
of a conjunction of literals used in our model to include a representation of a motivational
model, which can be used to tune the planner and set hard limits to the amount of planning
effort devoted to achieving that specific desire.

Our system can also be viewed as a way to extend the declarative goal semantics proposed
by Hübner et al. [Hübner et al., 2006], in that it allows an agent designer to specify only
desired world-states and basic capabilities, relying on the planning component to form plans
at runtime. Even though the idea of translating BDI states into STRIPS problems is not
new [Meneguzzi et al., 2004], our idea of an encapsulated planning action allows the usage
of any other planning formalism sufficiently compatible with the BDI model.



Chapter 4

Motivations in meta-reasoning

As we have seen, flexible agents need the ability to create new plans at runtime, allowing
them to overcome situations not covered by their original plan library. However, as a plan
library grows in size and complexity, the decision to adopt specific courses of action from
among multiple possibilities ceases to be as trivial as choosing the first plan that matches a
certain condition. Since autonomous agents are expected to have control over their internal
state and behaviour [Jennings, 2000] to be able to act effectively in a complex environment,
an agent must be capable of making this decision without direct human support. In turn,
control over an agent’s internal state requires reasoning about the reasoning process itself, in
what is commonly understood as meta-level reasoning (or meta-reasoning). However, most
agent architectures include plan libraries that contain only action-directed plans invoked
through a simple trigger-response mechanism. Thus, if there is a possibility of conflict
between any two plans in the plan library, a designer must make sure that these conflicts
are handled through extra steps within the plans themselves. As a consequence, the function
of meta-reasoning is not explicit, but mixed with the action-directed plans, and the ensuing
agent does not handle any conflicts that were not foreseen by the designer.

Meta-reasoning enables an agent to explicitly consider goals before committing to their
achievement, as well as consider courses of action before executing plans, as opposed to
simply reacting to events in the environment. However, research on agent architectures
traditionally focuses instead on achieving quicker reactions to events in the environment. In
traditional architectures, the lack of meta-reasoning at runtime is addressed by the developer
foreseeing any contingencies in an agent’s capabilities, which may not be realistic in many
complex environments.

It is certainly possible to develop agents with meta-level reasoning capabilities using existing
architectures, but the absence of a distinct component responsible for meta-level control
increases the complexity of an agent’s specification while limiting its runtime flexibility, since
the function of meta-reasoning must then be accomplished by extra steps within an agent’s
action-directed plans. Therefore, we believe the development of effective autonomous agents
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can be facilitated by the inclusion of an explicit meta-reasoning capability. Though existing
efforts in adding meta-reasoning strategies to agent architectures illustrate the possibilities
of such a module, these efforts have lacked generality, often restricting meta-reasoning to
specific domains [Raja and Lesser, 2004] in which meta-reasoning is hard-coded into an agent
architecture. We believe that a suitable abstraction for this component is needed, and the
body of work on motivated agency (as reviewed in Chapter 2) provides a strong basis for
meta-level reasoning. Research on motivated behaviour has been conducted in areas such as
psychology (e.g. [Morignot and Hayes-Roth, 1996]), ethology (e.g. [Balkenius, 1993]), and
philosophy (e.g. [Mele, 2003]), including some work in computer science (e.g. [Cañamero,
1997; Grand and Cliff, 1998; Luck et al., 2003; Norman et al., 2004]).

In this chapter, we develop a meta-level reasoning component based on the notion of moti-
vation. Meta-reasoning is specified through a motivation-oriented language with functions
for updating the motivational state of an agent as well as adopting and dropping goals as a
result of this motivational state. Our adoption of the motivation abstraction follows the the
extensive previous work on motivations described in Section 2.4, as well as in keeping with
the folk-psychology orientation of the BDI architecture. We start the chapter by discussing
the reasons for adding meta-reasoning to an agent architecture in Section 4.1, followed by
an abstract model of motivations in Section 4.2. We take a concrete model of motivations
that closely matches our abstract model in Section 4.3, and extend it in Section 4.4. We
then integrate this extended model into an agent interpreter in Section 4.6, and test its
effectiveness in the experiment of Section 4.7. Finally, we conclude the chapter with a brief
discussion in Section 4.8.

4.1 Reasons for Meta-reasoning

Several efforts towards refining the deliberation process (or reasoning), which can be viewed
as meta-level reasoning, have been proposed recently. For example, meta-reasoning1 can be
used to optimise task scheduling using some utility measure [Raja and Lesser, 2004], and
to improve and manage concurrent goal execution by exploiting opportunities and avoiding
conflicts [Pokahr et al., 2005a; Thangarajah et al., 2003b]. Most of these strategies rely on
optimising agent behaviour by comparing some intrinsic characteristic of an agent’s plans,
execution time, or some abstract notion of utility.

For example, the widely known and used BDI architectures are usually of two types —
procedural and declarative — and in both cases, there are advantages of meta-reasoning.
Procedural architectures require detailed plans and triggers to be described by the designer,
hence conflicts between plans must be foreseen, with conflict resolution strategies embedded
in each procedural plan as extra management steps. For example, if two procedural plans
require exclusive access to a particular resource, a designer must make sure that each plan

1We use meta-reasoning and meta-level reasoning interchangeably.
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checks whether the other plan is accessing the resource before trying to use it. The function
of these extra steps is analogous to meta-reasoning, since they are not action-directed, but
rather are evaluating the executing agent’s internal state in querying what other plans are
being executed. Thus, in procedural languages, specifying meta-reasoning separately from
the plans removes the need to replicate such internal management steps throughout the
plan library, facilitating development. Alternatively, declarative architectures are defined
by desired states to be achieved and capabilities with which an agent can achieve them,
where an interpreter selects capabilities to achieve goals, and conflict resolution must be
done by this interpreter. In declarative languages, the lack of some goal selection policy
means that goals and plans are selected arbitrarily, since in theory the designer does not
specify precisely how goals are to be achieved.

The generic definition of meta-level reasoning as reasoning about the reasoning process is
rather broad, so we must define a narrower scope for meta-level processing in order to
apply it to any concrete architecture. While there are many different models for inclusion
of meta-reasoning into an agent architecture, we have already seen (in Chapter 2), that
motivation provides one valuable way to do so, and at the same time offers a meaningful
abstraction that is useful for understanding the meta-reasoning process (as humans), and
for modelling the meta-reasoning of other agents. Moreover, motivation has already been
used in the kind of BDI architecture we are considering, albeit in a more limited fashion,
with motivations hard-coded and used to drive procedural goals. Therefore, while we adopt
the basic motivation abstraction used in previous BDI architectures, we must adapt it to
the needs of the architecture defined in Chapter 3. More specifically, the resulting model
needs to:

• associate motivations with the generation of declarative (to be) goals;

• use motivational intensity to select and prioritise intentions adopted to achieve the
most rewarding goals;

• mitigate motivations based on the fulfilment of declarative goals; and

• avoid the need to hard code motivations in the agent architecture.

Now, since the steps of the reasoning cycle of our AgentSpeak(PL) architecture are very
similar to those of traditional BDI architectures, and the functions provided by some of
the models of motivations in the architectures of Section 2.4 were designed to be integrated
into this kind of architecture, it is possible to leverage them in our modified model of
motivations. In these architectures, motivations underpin the rational adoption of goals,
allowing the comparison and prioritisation of competing goals. As a consequence, we can
use these functions for goal generation and prioritisation with little modification.

As we have seen, an agent’s perceptions are determined by its environment and captured by
its beliefs. In turn, the intensity of an agent’s motivations varies through time as a function
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of its beliefs. Accordingly, the architectures surveyed in Section 2.4 typically provide some
kind of function that associates a motivational value representing intensity with world-states
and actions. As far as the model of motivation is concerned, a motivation’s intensity serves
two purposes: first to determine the relative importance of a motivation compared to others,
and second to determine the point at which an agent is sufficiently motivated to generate
a goal and actively try to mitigate this intention. In terms of meta-level control, intensity
information indicates how important a certain world-state is, which allows an agent to
anticipate the motivational effect of certain courses of action before committing to them,
allowing it to select plans more effectively.

In most motivated agent architectures, the associations between motivations and goals that
mitigate them, and between specific world-states and motivational intensity updates, are
hard-coded within a belief update function, making it difficult to use the architecture in
different domains. In order to use motivated architectures for generic agent programming,
therefore, it is important for the definition of motivations and their dynamics to be specified
outside the agent architecture. For example, the association of specific world-states in an
agent architecture to motivational intensity updates requires some appropriate representa-
tion, and doing this in a generic and reusable fashion requires a specification language.

In summary, we use motivated reasoning to perform three functions: reasoning about goal
adoption, goal prioritisation, and plan selection. Translating these functionalities to the
BDI model requires associating motivational intensity to the belief database, and modifying
the reasoning process responsible for committing to intentions so that it uses motivational
information.

4.2 An abstract model of motivation

When considering the use of motivations as an abstraction for meta-reasoning, we must
take into account the operations that this type of reasoning performs so that the model of
resulting motivations adequately captures the desired properties of meta-level reasoning. As
we have seen in Section 2.4, meta-reasoning operates on the data structures of the underlying
agent architecture, which in the case of BDI, are beliefs, desires and intentions.

In particular, we want to use motivations for three key purposes: first to choose between
goals; second to assess goal achievement; and finally, to assess motivation mitigation. In
this context, we want to use a model of meta-reasoning to select the goals that provide the
best rewards for an agent; thus one particular aspect of motivations we want to capture
is goal selection. The idea of selecting goals to achieve a reward leads to the need for
modelling motivations in such a way that an agent’s reasoning cycle can select between
goals. Moreover, after goals are adopted, an agent needs to determine when these goals
have been achieved satisfactorily, so that we need an assessment of the degree to which
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goals have satisfied a certain motivation. In order to provide these properties in our own
model, therefore, we need to consider how such an assessment of the importance of certain
world-states can be undertaken, so that goals can be selected to achieve more important
world-states. Finally, after goals have been selected, the model must offer some means to
determine when, and to what extent, achieved goals mitigate their associated motivation.

We must not overlook the fact that the main reason we propose motivations as an abstraction
for meta-reasoning is that it allows a designer to model the rewards of certain behaviours
even when the domain does not provide a natural way of assessing these rewards objectively.
Thus, our model of motivations must not only provide the properties described above, but
must also allow motivations to be custom-defined alongside the agent they help to control.

Now, from our previous survey of computational models of motivated behaviour, it is clear
that while there are several relevant pieces of work, the existing models lack generality in
that most are hard-coded within ad hoc architectures developed exclusively for the simula-
tion of some type of artificial ecosystem, and are thus unsuitable for specifying meta-level
behaviour. Nevertheless, some of these models provide some indications of the way in which
we might construct our generic motivations-based mechanism for meta-reasoning. In partic-
ular, the mBDI model developed by Griffiths and Luck [Griffiths and Luck, 2003] includes
abstract mechanisms for intensity evaluation and goal generation, and is notably compatible
with the interpretation of the BDI architecture we consider in this thesis, more specifically
that of AgentSpeak(L). As a result, we can leverage this model of motivations in our work,
and thus use mBDI as the starting point for our abstract model of motivations.

However, this model suffers from two major limitations. First, it does not consider the
notion of goals to be introduced into AgentSpeak(L) in Chapter 3 in that it only evaluates
motivational reward in relation to plan execution rather than achieved world-states. Con-
sequently, we need to adapt it to handle the adoption and achievement of goals to be, with
the model and its adaptations being presented in Sections 4.3 and 4.4. Second, the mBDI
model only specifies particular key functions in an ad hoc formalisation that seems to bear
no relation to the manner of its development. This is important, for one of the aims of our
work is to provide agent languages that facilitate the programming of agent systems in a
generic and reusable fashion. In consequence, we argue that there should be a motivation
description language, increasing applicability for the design of meta-reasoning strategies.
We develop such a motivation description language, described in Section 4.5.

4.3 Griffiths’s mBDI model

As we have seen, we need a model of motivations that includes a minimum set of functions
that allow: the evaluation of world-states in terms of motivational value; the generation of
goals that best satisfy a motivation; and the identification of how motivations are mitigated
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as a result of goals being achieved. Based on our survey of computational models of mo-
tivation the most easily adaptable model of motivations that is compatible with the BDI
architecture is the one from Griffiths and Luck [Griffiths and Luck, 2003], which contains
these functions albeit not catering for the notion of goals to be. According to Griffiths and
Luck [Griffiths and Luck, 2003], a motivation is a tuple < m, i, t, fi, fg, fm >, where m is
the motivation name, i is its current intensity, t is a threshold, fi is an intensity update
function, fg is a goal generation function, and fm is a mitigation function.

Actions

Beliefs

Motivations

Goals

IntentionsPlan library

Control
Perceptions

Figure 4.1: Griffiths and Luck mBDI architecture.

This model underpins the mBDI architecture [Griffiths and Luck, 2003], which in turn is
based on the PRS architecture, plus motivations. Here, motivations are updated by an
agent’s beliefs, and in turn, influence the adoption of goals and the selection of intentions,
as illustrated in Figure 4.1, in which solid arrows represent the flow of control and dashed
arrows represent the flow of information.

The reasoning cycle for an mBDI agent starts with an agent perceiving the environment,
and using this information to update its belief base. In turn, the now updated belief base is
used to calculate the intensity of each motivation, according to the intensity update function
fi. After updating motivational intensity values, an agent compares the intensity of each
motivation against its threshold for activation, and if this threshold is exceeded, the goal
generation function fg is invoked to generate new goals. Once new goals are generated,
all goals are assessed in relation to the motivation that generated them. The goal with
the largest intensity value is slated for achievement, resulting in a plan being selected to
achieve it, and it is adopted as an intention. Then, the intention that provides the largest
motivational reward is selected from among the set of existing intentions, and a step is
executed from it. Finally, when an intention finishes executing, the mitigation function fm

is invoked to reduce the intensity of the associated motivation. These steps are illustrated
in Algorithm 2.

The model of motivations used in the mBDI architecture was intended for a procedural agent
architecture (i.e. the Procedural Reasoning System), and as such it equates the accomplish-
ment of a goal to the complete execution of a plan. This is is apparent from Steps 11 and
13 of the control cycle in Algorithm 2, which describe an intention as a plan to be executed,
and mitigation of a motivation as resulting from the completion of that plan. However,



Chapter 4 Motivations in meta-reasoning 110

Algorithm 2 mBDI control cycle.
1: loop
2: perceive the environment and update the beliefs;
3: for all motivation m do
4: apply fi to m to update i;
5: end for
6: for all motivation m do
7: if i > t then
8: apply fg to m to generate new goals;
9: end if

10: end for
11: select a plan for the most motivated of these new goals and adopt it as an intention;
12: select the most motivationally valuable intention and perform the next step in its

plan;
13: on completion of an intention apply fm to each motivation to reduce its intensity;
14: end loop

the way in which motivations are mitigated results in a sort of all or nothing approach to
plan execution, since if a plan fails, no mitigation ensues. It is therefore easy to imagine
situations in which motivations can be partially mitigated even if the initial plan adopted
to satisfy it is not executed fully. For example, if I have a motivation to refuel my car for
a short trip, and adopt a plan to fill up its petrol tank, but the fuel in the petrol station
runs out after the tank is half full, my initial plan failed, but it is certainly not true that
my motivation has not been, at least partially, mitigated.

Furthermore, in the model developed by Griffiths and Luck, the three functions that drive
motivated behaviour during agent execution are defined as abstract functions. As a result, a
number of issues arise regarding their specific operation in a concrete setting. In particular
it is not clear:

• how beliefs lead to modifications to motivational intensity;

• how goals are generated when the motivation threshold is exceeded;

• whether each motivation has a goal that is always generated, or if goal generation is
conditional; and

• how motivation intensity is mitigated.

As a result of these issues and the model’s inability to deal with goals to be introduced in
Chapter 3, we extend mBDI to address them.
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4.4 Extended Model: mdBDI

In this section, we extend the mBDI motivational model in order to address the issues raised
above. First, we need to modify the model so that it can apply not only to the notion of goal
achievement as plan execution, but also to goal achievement through desired world-states,
or goals to be. The idea here, is that motivations must be affected by an agent’s perception
of world-states, so a particular motivation must only be mitigated when an agent acting to
satisfy it perceives that a certain desired world-state holds. This entails that the mitigation
function, originally executed as a result of an intention finishing execution, must now be
associated with the achievement of particular world-states.

To solve this problem, we must define the basic mechanism behind the mitigation function
in terms of world-states. Thus, the mitigation function of our extended model must use
a mechanism similar to the original intensity update function, so that it takes an agent’s
beliefs as its inputs, and evaluates whether or not the currently perceived world-state sup-
ports the mitigation of a given motivation. Moreover, support for declarative goals leads to
the dissociation of mitigation from intention execution. Mitigation can only occur when a
certain motivation is driving behaviour, but since the original mBDI model keeps track of
active motivations through the intention it adopted to achieve a motivated goal, by dissoci-
ating mitigation with plan execution, we need to introduce the notion of active motivations
into the resulting reasoning cycle. In our model, an active motivation is a motivation with
its intensity level greater than its activation threshold, signalling that a goal to mitigate it
must be adopted. When a motivation is active, it can be mitigated, and therefore the mitiga-
tion function is used together with the intensity update function to determine motivational
intensity.

The resulting reasoning cycle for our mdBDI (motivated-declarative BDI) model, detailed in
Algorithm 3 thus contains important differences. The initial perception of the environment
and update of motivations occurs in the same way as in the original algorithm, but since
we mitigate motivations using the same beliefs used for intensity updates, we apply the
mitigation functions immediately afterwards, but only to the active motivations. When
a motivation is active, its associated goal generation function is invoked, generating new
goals, and resulting in it being added to to the list of active motivations. The final part
of the algorithm is also similar to the original, consisting of selecting a plan to achieve the
most motivated new goal, adopting it as an intention, and executing the next step of the
most motivationally valuable intention.

Here, we maintain the original meaning of the intensity update function as a mapping of
beliefs into intensity values, and the goal generation function as a mapping from beliefs into
new goals. In our extended model, however, the mitigation function is no longer associated
with plan execution, but rather in the achievement of world-states, so instead of using
the original mBDI fm function, we define a declarative mitigation function fmd containing a
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Algorithm 3 mdBDI control cycle.
1: loop
2: perceive the environment and update the beliefs;
3: for all motivation m do
4: apply fi to m to update i;
5: end for
6: for all Active motivation m ∈ Am do
7: apply fmd to each active motivation to reduce its intensity;
8: end for
9: for all motivation m do

10: if i > t then
11: apply fg to m to generate new goals;
12: add m to the list of active motivations Am

13: end if
14: end for
15: select a plan for the most motivated of these new goals and adopt it as an intention;
16: select the most motivationally valuable intention and perform the next step in its

plan;
17: end loop

mapping between beliefs and new motivational intensities. This is illustrated in the diagram
of Figure 4.2.

motivational
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Figure 4.2: Inputs and outputs of the motivation functions.

It is important to note that although our modifications are small, they have a number of
implications to the way in which motivations generate goals and are mitigated. First, due to
the new method of mitigating intentions introduced in our model, this last step of selecting
an intention implies the capability of an agent to predict the results of a plan after it is
executed, otherwise the agent cannot determine how motivationally rewarding a plan is.
This prediction of the effects of plans is further developed in Section 4.6. Second, with this
new control cycle, plans may execute successfully and still fail to bring about the desired
world-state, but a motivation can only be mitigated by achieving a certain desired world-
state. For example, if I want to mitigate a motivation to have a video-game console in my
home, I may execute my plan to order one from an internet shop successfully, but if the
mail service delays the delivery or loses the package, my motivation has not been mitigated
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by my plan. Moreover, motivations may be mitigated regardless of the plan adopted to do
so. Using the same example, if a friend gives me the video-game console as a gift after my
initial plan failed, my motivation is still mitigated.

In mBDI, the three functions within each motivation are represented as arbitrary mech-
anisms that cannot be modified by a designer. But as we have established earlier in the
chapter, in order for motivations to be used as a general purpose meta-reasoning abstraction,
a designer must be able to specify the details of each motivation function without modify-
ing the associated agent architecture. Therefore, our model must allow custom mappings
between an agent’s data structures and the outputs of each function.

In the following sections we examine each part of a motivation specification in more detail
discussing how the representation of each part of a motivation must be in order to satisfy
this requirement, starting with the definition of an individual motivation in Section 4.4.1,
and following to each of the three functions in Sections 4.4.2, 4.4.3 and 4.4.4.

4.4.1 Overview of a Motivation

At a high level, each motivation is composed of an identifier Id, an intensity value Int, a
threshold T , and the name of a concrete function to be used for each of the required abstract
functions of our motivation model, as follows:

〈Id, Int, T, fi(Beliefs), fg(Beliefs), fmd(Beliefs)〉

Given the intended meta-level function of our motivational model, we want the computa-
tional representation of the motivation to be as simple as possible, limiting the amount of
computational resources required in its processing. Thus, we adopt an integer representa-
tion of the intensity value of a motivation, eliminating the cost of performing floating point
arithmetic during motivational processing. Moreover, since the threshold value must be
defined in relation to the intensity value, it must also be represented as an integer. The
threshold value can be any integer value, so that a designer may define any scale for the
intensities in a motivation, and it is perfectly possible to have a threshold value of 100 and
define the evolution of the intensity update function in increments of 10.

We have seen that whenever a motivation becomes active, the goal generation function is
invoked, after which the mitigation function is invoked to verify if the condition for the
motivation to be mitigated is reached. The output of each motivation function must be
defined by a mapping process compatible with the purpose of the function, so if we are
dealing with the intensity update or mitigation functions, the mapping consists of belief-
value correspondences, while if we are dealing with a goal generation function, the mapping
is a series of belief-goal associations, since this function aims to generate goals, given the
perceptions that activated a motivation.
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4.4.2 Intensity Update Function

The first function in our model is the intensity update function, which is responsible for
translating belief and perceptual data into new values that represent changes in the inten-
sity of the motivation associated with this function. As a consequence, the definition of
an intensity update function must consist of a mapping between logical expressions over
an agent’s belief base (following the AgentSpeak model) into integer arithmetic expressions
(following the scale of the intensity value) defining the motivational value of the preceding
logical expression. By providing a mapping mechanism, we depart from the arbitrary mech-
anism present in the original mBDI [Griffiths and Luck, 2003] model into one in which a
designer can specify any correspondence between belief expressions and intensity values.

For example, consider the postman robot of Section 3.2.2. Here, a designer may wish to
create a motivation for processing packets arriving from a particular loading bay, and define
a function that causes the intensity of this motivation to increase by one unit whenever a
packet sits on top of this loading bay. In this situation, the designer must create a rule
stating that if the motivated agent believes there is a packet over the specified loading bay
(i.e. over(P,bay1)), then the motivational intensity is changed by one unit.

Mapping rules can be more complex than that, as a designer may need to define a com-
position of conditions that results in slower motivation accumulation depending on certain
conditions. For example, if the designer of the same postman robot now wants this moti-
vation to only increase in intensity if the robot’s battery is at level 10, and if the robot is
occupied the rate of motivational accumulation should be diminished by half, multiple rules
must be defined. The resulting intensity update function can be abstractly represented as
follows:

fi(Beliefs) =

over(P, bay1) ∧ batt(10)→ 2

occupied(robot)→ −1

Here, the intensity of the motivation to process a packet is increased by 2 whenever the
agent believes a new packet has arrived in loading bay 1 (i.e. bay1) and it has a battery
level of 10. It is important to notice that this language deals exclusively with beliefs, both
intrinsic ones and those resulting from perception, whereas some motivation models assign
values to actions and, by doing so, conform to a procedural view of reasoning.

4.4.3 Goal Generation Function

The second function underpinning our model of motivations is the goal generation function
which, as the name implies, is a function that causes an agent to adopt goals. We have
seen earlier that our language must be conceptually compatible with AgentSpeak(L), so
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the goal representation used in a goal generation function specification must be that of the
AgentSpeak(L) language.

One simplistic way of defining this function is to specify a static set of goals that are posted to
the agent whenever the associated intention’s intensity surpasses its threshold. Nevertheless,
we define a goal generation function based on a mapping from belief expressions (like in the
intensity update function) into goals. For instance, taking the postman robot of the previous
example, we can create a function which, whenever the threshold is exceeded, generates the
goal to sort the packet situated at loading bay 1 (i.e. bay1), if the robot is not occupied, as
follows:

fg(Beliefs) =
{

over(Packet, bay1) ∧ notoccupied(robot)→ +!sort(Packet)

There are two reasons for this particular type of mapping. The first is that the simplistic
approach ignores the possibility that an agent may not be ready to act immediately after
the threshold is exceeded. In our example, we only want the robot to start sorting the
packet if the robot is not occupied. This restriction allows a designer to prevent goals from
being posted that will interfere with other possibly conflicting goals, keeping the motivation
unmitigated so that when the robot is no longer occupied it can immediately adopt this
goal. This representation also prevents goals from being adopted in situations in which they
would fail. The second reason for this representation is that the belief expression part of
the rule allows goals to be bound to variable objects in the belief base. In the example,
the identity of the specific packet that must be sorted cannot be known at design time, so
the belief over(Packet,bay1) allows the function to map the variable Packet to be bound to
whatever packet the robot believes to be over bay1 at runtime and adopt a goal accordingly.

4.4.4 Mitigation Function

The last function we consider in the model is the mitigation function, which is invoked
after a motivation has been activated to mitigate the motivation. As we have seen, our
extension to the mBDI motivational model aims to accommodate the notion of goals to
be, as opposed to the purely procedural view taken by the original model, in which the
mitigation function is always invoked whenever a plan is executed to mitigate an intention
adopted through motivation. In order to accomplish this, our new mitigation function must
be able to identify the desired world-states that the motivated goal is intended to achieve,
and only then mitigate the intention. Consequently, the resulting function must include
some mapping of beliefs (representing the desired world-state) into some specified intensity
value that represents the mitigation of the associated motivation.

Following our running example of the motivation to sort packets arriving from a loading bay
by a postman robot, we identify the world-state intended for this motivation to be mitigated
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as the one in which the packet is over the pigeonholes in the mail warehouse. When this
state is reached, we mitigate the motivation by subtracting 20 units from the motivational
intensity. This can be represented in the following function:

fm(Beliefs) =
{

over(Packet, pigeonHoles)→ −20

Therefore, from a purely representational perspective, the mitigation function is exactly the
same as the intensity update function in that it consists of a mapping between beliefs into
intensity values. The difference lies in the way in which the mitigation function is used
during the reasoning cycle, so that, after a motivation is activated, the mitigation function
identifies the particular desired world-state that denotes that the motivation should be
mitigated.

4.5 A Language of Motivation

The second major issue we need to address is the absence of a concrete specification for
the three functions used in the model. We have seen that the mBDI model provides the
abstract machinery that drives motivated control, but it is necessary to associate these
abstractions to concrete instances of motivations. As we stated in the requirements we
set out in Section 4.1, in order to bind the variable aspects of a motivation to specific
functions (e.g. the association of motivation updates to specific world-states) in a generic
and reusable way, we need a specification language bound to our model of motivations.
Therefore, in this section, we provide bindings between the specification language and the
abstract requirements of the three functions mentioned in Sections 4.3 and 4.4 that drive
motivated behaviour. We start this section with the general requirements for the language,
and then consider the requirements of the individual functions.

4.5.1 Requirements

The main requirement of our language relates to the individual aspect of each agent’s moti-
vations. Since different individuals can have different sets of motivations, these individuals
are affected by their motivations in varying ways, each with its own dynamics to allow eval-
uation of situations and achievement of goals according to an agent’s unique priorities. So,
the way in which we set out to use motivations to describe meta-reasoning aims to allow
a designer to describe motivational aspects for each agent. Thus we require a language
to describe unique sets of motivations based on the abstract functions and data structures
of the mdBDI model. In consequence, we have designed a language centred on the three
abstract functions: intensity update; goal generation; and mitigation. Concrete versions of
these functions are essentially mappings between beliefs and an intensity value in the case
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of intensity update and mitigation, or new goals for the goal generation function. These
functions are specified for each individual motivation, of which an agent can have several.

Furthermore, the agent language considered in this thesis is AgentSpeak(L), which leads to
the second requirement of our language of motivations, which is conceptual compatibility
with AgentSpeak(L). In order to accomplish this, we must use the same language elements
from AgentSpeak to represent beliefs, goals and plans. We show how these elements are rep-
resented in a concrete language implementation in Section 4.5.2, exemplifying this language
in Section 4.5.3.

4.5.2 Language

Having seen how the requirements of Section 4.5.1 are translated into the conceptual frame-
work of our motivation language, we now proceed to introduce the syntax of the language.
As stated in Section 4.4.1, the high-level structure of a motivation contains the motivation
identifier, its intensity, its activation threshold and the three functions of intensity update,
goal generation and mitigation. From a specification perspective, a motivation’s initial in-
tensity does not need to be directly specified, as it can be assumed to start with a null value,
so our syntactic representation does not include it. In our language, the other language el-
ements are specified using an organisation similar to a class definition in an object-oriented
language. These basic elements of a single motivation are shown in the excerpt of Table 4.1,
and follow the example of the postman robot’s motivation to process packets arriving at a
loading bay. In this excerpt we can see that a motivation’s name is stated after the key-
word Motivation, that the threshold value is stated after the keyword Threshold, and that
motivation functions are specified immediately afterwards.

1 Mot i va t i on proce s sBay {
2 Thre sho ld = 10 ;
3
4 I n t e n s i t yUpd a t e MyIn t en s i t yUpda t eFunc t i on { . . . }
5 Goa lGene ra t i on MyGoa lGenerat ionFunct ion { . . . }
6 Mi t i g a t i o n MyMit i ga t i onFunc t i on { . . . }
7 }

Table 4.1: High-level description of a motivation.

Each motivation function is preceded by a keyword indicating which type of function is be-
ing defined followed by the name of a function implementation, so that the intensity update
function is preceded by the IntensityUpdate keyword, the goal generation function is preceded
by the GoalGeneration keyword, and the mitigation function is preceded by the Mitigation key-
word. It is important to note that the specification of a function implementation following
the function type keyword implies that in our implemented system it is possible to change
the exact way in which each function is processed by the motivation model. In this thesis,
however, we only consider function implementations that process the mappings described in
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Sections 4.4.2, 4.4.3 and 4.4.4. We consider these functions in detail later in this section, but
before we proceed, it is important to understand the basic building blocks of the language.

Given the requirement of AgentSpeak(L) compatibility, the elements used in the mappings
specified within each motivation function must comply with the type of representation used
in an AgentSpeak(L) agent specification. To accomplish this, the grammar of our language
includes rules to parse AgentSpeak(L) triggers, literals, atoms, variables, logical expressions
and arithmetic expressions in the exact same way as an AgentSpeak(L) interpreter would
parse them. This can be seen in the whole BNF of the language, described in this section
and shown in Table 4.2, and in which the logical framework has been derived from the
BNF of the parser used with the Jason [Bordini et al., 2005b] AgentSpeak interpreter. It
is important to note that, like AgentSpeak, we follow the Prolog [Nilsson and Maluszyn-
ski., 1995] convention of variables being expressed as literals with a capitalised first letter.
Moreover, the unification used in the evaluation of one function carries on to the next one
in the update cycle of the same motivation, so for example, if a certain variable X in the
intensity update function of motivation M is unified to a certain value a, all instances of X
in the following functions evaluated for M will also be unified to a.

As we have seen, the functions for updating the intensity of, and mitigating, a motivation
need to provide some kind of mapping between perceptual data and an intensity variation.
As a result, our language of motivation allows the specification of a mapping between beliefs
and an arithmetic expression indicating how the intensity level should be modified as a result
of the beliefs being true. Any specific mapping is represented as:

log_expr− > arithm_expr

where log_expr is a logical expression on the beliefs (e.g. a(X) & b(Y)), and arithm_expr

is an arithmetic expression (e.g. X+2), as shown in Table 4.3.

An example of such a mapping is shown in Table 4.4, replicating the postman example used
in Section 4.4.2. Here, the intensity of the motivation to process a packet is increased by
2 whenever the agent believes a new packet has arrived in loading bay 1 (bay1) and has
a battery level of 10. It is important to notice that this language deals exclusively with
beliefs, both intrinsic ones and those resulting from perception, whereas some motivation
models assign values to actions and by doing so conform to a procedural view of reasoning.

The mitigation function provides a mapping that is syntactically the same as the intensity
update function, though the function serves a different purpose, as outlined in Section 4.4.4,
being only invoked when a motivation is active, to determine when its associated motivation
has been mitigated. For example, if the motivation of Table 4.4 is mitigated when a packet
P has been sorted, this can be expressed as the function of Table 4.5.

Aside from mapping beliefs into perceptions, we must also describe the mapping of beliefs
into goals. We have seen in Section 4.4.3 that goal generation is invoked when the motivation
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parse ::= (motivation)+
motivation ::=< MOTIV ATION > identifier“{”motivationBody“}”

motivationBody ::= threshold“; ”intensityUpdategoalGenerationmitigation

threshold ::=< THRESHOLD > “ = ” < NUMBER >

identifier ::=< ATOM >

| < V AR >

classname ::= identifier

intensityUpdate ::=< INTENSITY _UPDATE > classname“{”
(beliefToIntegerMapping“; ”) ∗ “}”

beliefToIntegerMapping ::= (log_expr“− > ”arithm_expr)
goalGeneration ::=< GOAL_GENERATION > classname“{”

(beliefToTriggerMapping“; ”) ∗ “}”
beliefToTriggerMapping ::= (log_expr“− > ”trigger)

mitigation ::=< MITIGATION > classname“{”
(beliefToIntegerMapping”; ”) ∗ “}”

trigger ::= (“ + ”|“− ”)((“!”|“?”))?(literal|var)
literal ::= (((< TK_NEG >)?atom)| < TK_TRUE > | < TK_FALSE >)
atom ::=< ATOM > (“(”terms“)”)?(list)?

terms ::= term(“, ”term)∗
term ::= (literal|list|arithmexpr|string)

list ::= “[”(term(“, ”term)∗
(“|”(< V AR > | < UNNAMEDV AR > |list))?)?“]”

log_expr ::= log_expr_trm(“|”log_expr)?
log_expr_trm ::= log_expr_factor(“&”log_expr_trm)?

log_expr_factor ::= (< TK_NOT > log_expr_factor|rel_expr)
rel_expr ::= (arithm_expr|literal|string)

((“ < ”|“ <= ”|“ > ”|“ >= ”|“ == ”|“\\ == ”|“ = ”|“ = ..”)
(arithm_expr|literal|string|list))?

arithm_expr ::= arithm_expr_trm((“ + ”|“− ”)arithm_expr)?
arithm_expr_trm ::= arithm_expr_factor(

(“ ∗ ”|“/”| < TK_INTDIV > | < TK_INTMOD >)arithm_expr_trm)?
arithm_expr_factor ::= arithm_expr_simple((“ ∗ ∗”)arithm_expr_factor)?
arithm_expr_simple ::= (< NUMBER > |“− ”arithm_expr_simple|“(”logexpr“)”|var)

var ::= (< V AR > | < UNNAMEDV AR >)(list)?
string ::=< STRING >

Table 4.2: BNF of the motivation language.
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intensityUpdate ::=< INTENSITY _UPDATE > classname“{”
(beliefToIntegerMapping“; ”) ∗ “}”

beliefToIntegerMapping ::= (log_expr“− > ”arithm_expr)
mitigation ::=< MITIGATION > classname“{”

(beliefToIntegerMapping”; ”) ∗ “}”

Table 4.3: BNF of intensity update and mitigation functions.

1 Mot i va t i on proce s sBay {
2 . . .
3
4 I n t e n s i t yUpd a t e MyIn t en s i t yUpda t eFunc t i on {
5 ove r ( P,bay1 ) & ba t t (10) −> 2 ; // This i n c r e a s e s i n t e n s i t y
6 occup i ed ( robo t ) −> −1 ; // This l owe r s i t a b i t
7 }
8
9 . . .
10 }

Table 4.4: Example of an intensity update function.

1 Mot i va t i on proce s sBay {
2 . . .
3
4 Mi t i g a t i o n MyMit i ga t i onFunc t i on {
5 s o r t e d (P) −> −20 ; // This m i t i g a t e s a mot i v a t i o n
6 }
7
8 . . .
9 }

Table 4.5: Example of a mitigation function.

threshold is exceeded as a result of intensity accumulation. In turn, our language allows
the specification of additional constraints before a goal is generated, or the unconditional
generation of goals through the true condition, as shown in the BNF of Table 4.6. This
mapping is similar to intensity update in that mappings start from a logical expression over
beliefs. However, the targets of this mapping are goal addition events. As a consequence,
new goals to be achieved are added as a result of the intensity reaching the threshold in the
motivation containing this goal generation function.

An example of goal generation function is illustrated in Table 4.7, where the agent generates
an event to sort a packet located over bay1 whenever the goal generation function is invoked.
Here, the constraint on the left of the mapping exists only to allow the unification of the
packet name with the goal to be generated.
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goalGeneration ::=< GOAL_GENERATION > classname“{”
(beliefToTriggerMapping“; ”) ∗ “}”

beliefToTriggerMapping ::= (log_expr“− > ”trigger)

Table 4.6: BNF of the goal generation function.

1 Mot i va t i on proces sBay1 {
2 . . .
3
4 Goa lGene ra t i on MyGoa lGenerat ionFunct ion {
5 ove r ( Packe t ,bay1 ) & not occup i ed ( robo t ) −> +!so r t ( Packet ) ;
6 // t r u e −> +!so r t ( packet1 ) ; // Another p o s s i b i l i t y
7 }
8
9 . . .
10 }

Table 4.7: Example of a goal generation function.

4.5.3 Language Example

To exemplify how our language can be used to model behaviour, we work through the
example of the postman robot. The idea here, is that the example of Section 3.3.3 is
modified so that the goal of sorting packets is now driven by motivations rather than as a
direct reaction to the arrival of new packets. We introduce a motivation to process packets
arriving from loading bay 1 using our language and shown in Table 4.8, associated with
an agent almost identical to that of Table 3.8, with the exception that it does not react
immediately to events of the type over(Packet,Bay). The intuition for this motivation is that
an agent now waits for a certain time before picking up a package and moving it around,
allowing for other activities to be carried out before delivering packages. Moreover, when
an agent is already occupied in delivering a packet, the motivation to deliver another packet
is expected to remain the same, preventing multiple goals to deliver packets from being
adopted simultaneously.

In more detail, this example describes the dynamics of a motivation to process packets
arriving from loading bay 1. The motivational intensity starts to increase as soon as the
agent detects an undelivered packet over bay 1, until it reaches the threshold of 10. Once
the threshold is reached, the goal generation function adds a goal to deliver this packet.
Finally, the agent assumes the motivation is mitigated when it perceives the packet to be
over the pigeonholes, diminishing the motivational intensity accordingly. Here, if an agent
needs to monitor multiple bays at the same time, it will give priority to the one that has
the highest motivation.
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1 Mot i va t i on proces sBay1 {
2 Thre sho ld = 10 ; // This i s the t h r e s h o l d
3 I n t e n s i t yUpd a t e org . k c l . n e s t o r . mot . imp l .

I n t e n s i t yUpda t eFun c t i o n Imp l {
4 ove r ( P,bay1 ) & ba t t (10) −> 2 ; // This i n c r e a s e s

i n t e n s i t y
5 occup i ed ( agent ) −> −1 ; // This l owe r s i t
6 }
7
8 Goa lGene ra t i on org . k c l . n e s t o r . mot . imp l .

Goa lGene r a t i onFunc t i on Imp l {
9 ove r ( Packe t ,bay1 ) −> +! d e l i v e r ( Packet ) ;
10 }
11
12 Mi t i g a t i o n org . k c l . n e s t o r . mot . imp l . M i t i g a t i o nFun c t i o n Imp l {
13 ove r ( Packe t , p i g eonHo l e s ) −> −20 ;
14 }
15 }

Table 4.8: Example of a set of motivations.

4.6 AgentSpeak(MPL): A Motivated AgentSpeak
Interpreter

Autonomous agents are expected to generate goals pro-actively instead of simply reacting
to discrete events in the environment [Duff et al., 2006]. Generating goals pro-actively
entails that an agent has a way of assessing its current situation and anticipating how the
environment (or other agents in the environment) will behave, in order to provide a rational
justification for the adoption of a goal. Since motivations can be used to associate a measure
of importance to goals, it is possible to use motivational intensity to guide an agent’s choice
of action when faced with multiple conflicting courses of action.

In traditional AgentSpeak, plans are adopted as a reaction to events in the environment in
a direct sense. That is, plans are expressed so that if a certain event e happens in a certain
world-state, an agent having a plan with a matching triggering event e always adopts this
plan. Furthermore, since goals in the procedural sense used by AgentSpeak(L) are adopted
as part of the execution of plans, an agent does not generate them through deliberation,
and they are instead adopted in the process of reacting to some event in the environment.
For instance, a plan may be described so that whenever an agent believes that a given
block is on a table (e.g. on( block,table )), a procedure to remove such a block is invoked.
This amounts to simple reaction rather than deliberate, future-directed behaviour. This
method of behaviour selection also fails to properly describe the reasons for goal adoption
in a declarative sense. Such shortcomings can be exemplified using the traditional example
of a block on a table, in which a declarative goal to remove the block from the table could
be described as not on( block,table ). The question here is whether an agent should always
react to new events and start deliberation immediately even if this agent might be pursuing
other, more important, goals. Meta-level control is intended to address this issue by allowing
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reasoning to take place before action-directed plans are adopted, and our motivation model
provides the means with which to compare goals through their relative worth to an agent.

Agent

Motivation

Intensity Update

GoalGeneration

Mitigation

Belief Base

Plan Selection

IntentionSelection

Prediction

Environment Model

Figure 4.3: Modules of the motivated AgentSpeak.

AgentSpeak has three key reasoning processes that must be modified in order to accommo-
date the meta-reasoning model we defined in Section 4.2: belief update, plan selection and
intention selection. In the following sections, we show how we modify the reasoning pro-
cesses of AgentSpeak processes to take the motivations model into account. The resulting
architecture is AgentSpeak(MPL), an extension to our own AgentSpeak(PL) architecture
that contains a motivation module that drives an agent’s goal adoption and plan selection
process. The components of this architecture are summarised in Figure 4.3, which shows
the motivation module including its three functions and their association with the belief
base and intention selection processes, explained in Sections 4.6.1 and 4.6.3, as well as the
prediction module associated with plan selection, explained in Section 4.6.2. We close the
section with an example summarising how the motivation module affects the adoption and
prioritisation of intentions in Section 4.6.5.

4.6.1 Motivations and Belief Update

In our model, motivation intensity is a function of the perceived world-state, so most of the
motivation machinery is associated with the agent’s belief update function. Each motivation
data structure comprises an intensity value, a threshold value, and functions for intensity
update, goal generation and mitigation. These data structures are updated as a result of the
agent perception of the world, as illustrated in the activity diagram of Figure 4.4. When an
agent receives new perceptions, it updates its belief base which is immediately inspected by
the intensity update function associated with all motivations affecting this agent. During
the update process, if the motivational intensity of any motivation reaches its threshold
level, the goal generation function is invoked, also inspecting the belief base, and generating
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a set of goals based on the current world-state. Finally, the belief base is inspected by the
mitigation function to determine if any of the motivations triggered previously have been
mitigated, in which case motivations are adjusted accordingly.

Update Beliefs

MotivationMotivationUpdate Intensity

Check Threshold

Generate Goals

Mitigate Motivations

Belief BaseBelief Base

Threshold exceeded

Threshold not exceeded

Figure 4.4: Activity diagram of a motivated belief update.

In practice, the intensity update performed by the mitigation function is equivalent to that
of the intensity update function. However, this update can only apply to motivations that
had been previously activated as a result of their threshold levels being reached, and had
generated goals.

4.6.2 Motivations and Plan Selection

The second modified process in AgentSpeak(L) is plan selection. Since goals are adopted
based on a numerically quantified (motivational) importance, it makes sense to use this
quantification as a criterion for plan selection. Information regarding the motivation that
led an agent to adopt a certain goal can be used in the selection of the best course of action
to mitigate this motivation. Since our model provides separate functions for motivation
intensity update and mitigation, it is possible to use them along with a world-state prediction
model to determine the motivational reward of executing the plans known by the agent.
Therefore, we need a motivation-driven plan selection function, which selects the most
motivationally rewarding plan from a set of applicable plans.
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Execute Next Plan Step Simulated EnvironmentSimulated Environment

Temporary Belief BaseTemporary Belief Base

MotivationMotivation

Update Belief Base

Calculate Motivation Intensity

Simulate Plan(Plan)

Simulated Effects(Perception)

Plan not finished / Get Next Action

Plan Finished?

Yes

Figure 4.5: Activity diagram of the prediction module.

In order to calculate this quantification, plans are submitted to a prediction module that
consists of a sandbox 2 [Gong et al., 1997] copy of the current belief base, as well as a
simplified model of the environment. This prediction module then simulates the execution
of the plan using the functions from the motivation module to determine the expected overall
decrease in motivational intensity. The diagram of Figure 4.5 illustrates the operation of
prediction module as consisting of executing each step in a plan while determining its effects
over the simulated beliefs, followed by the application of the motivation update function
over these simulated beliefs to establish the motivational reward of the plan. Once all
predictions are collected, the function selects the plan that provides the largest mitigation
reward. Alternatively, a designer may specify the declarative outcome of each plan and use
this outcome to calculate the expected motivational reward.

4.6.3 Motivations and Intention Selection

When an agent has committed itself to achieving multiple concurrent goals, their relative
priorities may fluctuate as events take place in the environment while the agent carries
out plans to achieve these goals. Achieving goals in a timely fashion is crucial in a highly
dynamic environment, and an agent has to adapt to changing circumstances with minimum
overhead. As we have seen, an AgentSpeak interpreter creates a new intention for every
external goal adopted by an agent (i.e. not subgoals), which contains the plan to achieve

2In computer security and software development, a sandbox is an insulated environment where tests can
be performed without affecting the main system.
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this goal, as well as the plans required to achieve any possible subgoal generated in the
process of carrying out the initial plan.

Subsequently, the interpreter selects an intention to execute the steps from the plans in-
cluded in them. In a traditional AgentSpeak interpreter, this selection works on a first-come
first-serve basis. In our motivated agent architecture, external goals are generated by the
goal generation function whenever a threshold intensity is reached in a motivation. Here,
using motivation information to prioritise goals can help an agent achieve important goals
quickly by postponing the execution of plans to achieve less important goals. Under this
assumption, we require a module that evaluates all active intentions and selects the inten-
tion associated with the most motivated goal. However, one potential problem with this
approach to goal prioritisation is that it can lead to problems in the case of plans that
gradually mitigate a motivation as they are executed. In this scenario, this kind of plan will
be constantly preempted by new plans adopted to mitigate higher intensity motivations,
possibly leading to it never being finished. This behaviour might be undesirable in certain
situations, so it is important to ensure good motivation design to avoid this effect in these
situations.

4.6.4 Motivation update and timing

The mBDI architecture does not specify the behaviour of the goal generation function
between threshold activation and goal mitigation. The effects of this ambiguity become
apparent when there is a significant delay between goal adoption and goal achievement.
For example, consider a nourishment motivation that generates a goal to feed whenever its
threshold is reached, and for which all available plans take three units of time to be executed
before the goal is achieved. Moreover, suppose that the agent performs one reasoning cycle
per unit of time so, assuming the plan is successful, the agent will perform three reasoning
cycles before mitigating this motivation. In the meantime, it is not clear whether or not
the agent should generate the same goal three times until the motivation is mitigated or
generate goals only once between a motivation’s threshold being reached and its subsequent
mitigation.

In our implementation, we take the approach of generating a single goal when a threshold
is exceeded rather than multiple goals as time elapses. However, it might be interesting to
add a language construct to determine when a motivation can generate multiple goals per
activation.

4.6.5 Example of motivation dynamics

In order to better illustrate the mechanism described in this section, we now develop an
example of how a set of motivations affects the reasoning cycle of an AgentSpeak(L) agent.
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Motivation Threshold Goal
motivationA 15 goalA
motivationB 10 goalB
motivationC 20 goalC

Table 4.9: Example motivations and activation thresholds

We consider an agent containing three motivations, motivationA, motivationB and motiva-
tionC, with associated goals and activation thresholds as summarised in Table 4.9. Since the
specific manner of motivation accumulation and mitigation is irrelevant for their impact on
the reasoning process, we ignore the intensity update function and the mitigation function
for this example. Each of these motivations has a fairly simple goal generation function
that generates a single goal whenever a certain motivation is activated.

If, during the execution of this agent, the intensity of motivationB reaches a value of 20, the
motivation becomes active, leading to the adoption of a plan to achieve goalB. Assuming
that no other motivation is active, the intention corresponding to the plan to achieve goalB
will be given priority to be executed by the intention selection function, as illustrated in
Figure 4.6(a). Now, if while executing the intention to achieve goalB the environment
changes in such a way that the intensity of motivationC reaches its threshold of 20, a new
intention to achieve goalC (i.e. a plan to achieve goalC ) is also adopted. Moreover, if the
intensity of motivationC surpasses the intensity of motivationB, then this new intention is
given priority over all other motivations, as illustrated in Figure 4.6(b). It is important to
notice in this example that, since motivationA was never activated, no intention to achieve
its associated goal was ever adopted.

4.7 Experimental Evaluation

In the evaluation of our AgentSpeak(L)-based motivated architecture, we developed a prac-
tical experiment in which the motivation language is used to augment an AgentSpeak(L)

Agent

Motivations

motivationA 0

motivationB 20

motivationC 10

Intentions

Achieve goalB

Intention2

exec

(a) Execution of plan to achieve goalB.

Agent

Motivations

motivationA 0

motivationB 20

motivationC 40

Intentions

Achieve goalB

Achieve goalC

Intention2

exec

(b) Priority given to intention to achieve goalC.

Figure 4.6: Effect of motivations on intention selection.
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agent specification. The experiment was adapted from an existing scenario of a mars rover
and aims to provide a basis for comparison between a meta-reasoning enhanced agent and a
more traditional approach. We describe the scenario in Section 4.7.1 and show the empirical
results of our evaluation in Section 4.7.2.

4.7.1 Mars Rover

In order to evaluate the potential improvements to agent efficiency, we adapted the scenario
used by Duff et al. [Duff et al., 2006] to outline the advantage of proactive maintenance goals
in agents. This scenario consists of a Mars rover capable of moving about a two-dimensional
environment, in which movement consumes energy from the rover’s batteries as it moves.
Each unit of distance covered by the rover drains one unit of battery energy, and the rover
can recharge at a mothership located at the centre of the environment. In the scenario,
goals consist of waypoints through which the rover must pass in its exploratory expedition.
A varying number of goals was given to the agent to assess four test parameters:

• effective movement, consisting of the distance travelled towards waypoints;

• supply movement, consisting of the distance travelled towards the mothership for
recharging;

• wasted movement, consisting of the distance travelled to a waypoint that was wasted
due to the agent needing to recharge halfway through getting to a waypoint; and

• the number of intentions dropped to avoid complete battery discharge.

In this context, a more effective agent travels the least wasted distance, as well as the least
supply distance, thus optimising battery use3. Regarding the reasoning process itself, a
more rational agent can be seen as one that drops the least amount of goals, since reasoning
about adopting and managing ultimately dropped goals is also wasteful.

Our experiments consisted of submitting an increasingly larger number of waypoints, ran-
domly generated for each set, varying from 10 to 100 waypoints, to three different agents.
The baseline of performance for the experiments was established by an agent with an in-
finite amount of energy, giving optimal movement to navigating through the entire set of
waypoints, since there is no need to move to the mothership.

These waypoints were also submitted to a traditional AgentSpeak(L) agent, which must
monitor its battery level and recharge before being too far from the mothership. Its strategy
is to navigate to the waypoints in the order they arrive, without prior consideration of
battery level. Whenever it is about to move to a position beyond reach of the mothership,

3The Pathfinder [Mishkin et al., 1998] rover mission ceased its operations due to the limited number of
recharges of its onboard battery.
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(c) Movement towards the mothership.
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(d) Number of dropped goals.

Figure 4.7: Graphics for the rover experiment

it drops the goal to navigate the waypoints and adopts the goal to move to the mothership
and recharge.

A third agent used AgentSpeak(MPL), driven by two motivations to navigate and to keep a
safe battery level. These motivations behave as a sort of bilateral inhibition mechanism, in
which a high intensity for the motivation to have a safe battery level suppresses the intensity
of the motivation to navigate. In more detail, whenever it perceives a new waypoint, the
motivation to navigate is stimulated, and when it reaches its threshold, a goal to navigate
to this waypoint is generated. The motivation to navigate, however, is suppressed if the
battery level is not sufficient to reach that waypoint or if the charge spent doing so will
place the agent in a position too far from the mothership. Conversely, the motivation to
keep the battery level safe is stimulated by these two battery-related conditions. When the
intensity of this motivation reaches its threshold, a goal to move to the mothership and
recharge is generated. The result of this is that a goal to navigate to a waypoint should not
be generated unless the rover has enough battery to move to it and then to the mothership.
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4.7.2 Results

Because the traditional AgentSpeak(L) agent starts executing plans to navigate as it per-
ceives new waypoints, it only detects a critical battery level after having moved some dis-
tance towards its target position, resulting in a waste of movement actions and a larger total
distance covered. On the other hand, the effect of considering the amount of charge before
starting to execute a plan to navigate is that no movement is wasted, and thus the total
distance covered is smaller, as illustrated in Figure 4.7(a), which compares the total distance
covered by each of the agents. In these experiments, the motivated agent had to cover an
average 6% less distance than the traditional AgentSpeak(L) agent. The traditional agent
had to cover an average of 54% more distance than the baseline agent, compared to 45%
for the motivated one, as illustrated in Figure 4.7(b).

Figure 4.7(c) illustrates the distance covered while moving towards the mothership for charg-
ing, where the motivated agent appears to move more than the traditional agent. This is
a side-effect of the motivated agent always moving towards the mothership intentionally,
rather than a side-effect of moving towards a waypoint closer to the mothership, which is
corroborated by the smaller amount of total movement shown previously.

The last evaluation parameter for this experiment relates to the number of goals dropped
as a result of higher-priority goals being pursued. Goals to navigate must be dropped
by the rover whenever it has to move back to the mothership to recharge. Goals that are
eventually dropped amount to wasteful deliberation, which rational agents should minimise.
Here, the difference between the two approaches is more pronounced, with the motivated
agent dropping an average of 75% fewer goals than the traditional agent, as shown in
Figure 4.7(d).

4.7.2.1 Specification size

In terms of the size of the agent specification, illustrated in Table 4.10, traditional Agent-
Speak(L) uses a larger plan library to perform the meta-reasoning required to manage con-
current goals, and to allow the prioritisation of the goal to recharge. On the other hand, the
motivated agent’s plan library, which was derived from the former, requires a significantly
smaller number of plans, since the motivation module ensures that goals are generated once
per motivation until being mitigated, while also taking care of bilateral coordination.

AgentSpeak(L) AgentSpeak(MPL)
# atoms 119 95
# plans 19 10

Table 4.10: Plan library size comparison.
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4.8 Conclusion and Discussion

In this chapter we have described an extended agent architecture that includes an explicit
meta-reasoning module with an accompanying motivation-based specification language.
This allows the specification of rules for adopting goals, selecting plans and prioritising
currently adopted intentions to satisfy some subjective definition of importance, defined in
terms of an agent’s motivations. Motivations are specified separately from the agent lan-
guage, allowing for both the reactive plan adoption mechanism inherent to traditional agent
languages and the proactive type of goal adoption enabled by motivated reasoning.

While our mechanism is not as precise as some other attempts to quantify rewards for
certain behaviours, it is a simple mechanism that involves minimal overhead in the inter-
preter reasoning cycle. Our experiments have shown that our model can achieve the same
kind of improvement that other reasoning optimisation strategies have achieved. In addi-
tion, specifying meta-level behaviour separately from action-directed behaviour also results
in a simpler agent description. Finally, although the motivation mechanism described in
Section 4.2 is a modification of previous work on motivations associated with a PRS-like
interpreter, we believe our model is generic enough that it can be used in most current agent
interpreters, such as 3APL or JACK.



Chapter 5

Social Agentspeak(L)

5.1 Introduction

Although Chapter 3 describes the applicability of planning algorithms in the generation of
new individual plans through composition of existing plans in a plan library [Meneguzzi and
Luck, 2007a], allowing an agent to discover new ways of achieving its goals by combining its
existing plans into new high-level plans, agents are still limited to their individual capabili-
ties. When operating in a society, however, agents can resort to cooperating with others to
overcome their limitations. In the context of a cooperative multiagent society with a highly
dynamic set of available capabilities, the ability to combine newly discovered capabilities to
achieve goals is an important feature, yet the generation of new plans based on previously
unknown third party capabilities has only received little attention.

More specifically, when a planning-capable agent needs to achieve a new goal, it searches
its plan library for applicable plans. When no suitable plan is found in the plan library, the
planner is invoked in an attempt to generate a new plan to satisfy the desired goal. Plans
generated by the planner in this way are added to the plan library and become available to
the agent to solve future instances of that particular goal. However, if the planner fails to
generate a new plan, this (normally) means that the proposed goal is impossible to achieve,
given the world-state and capabilities known to the agent at the time of planning. Such
an approach to planning has been studied for individual agents, planning over their own
capabilities, under the premise that an agent’s capabilities are static throughout its life
cycle.

However, in a multiagent environment the limitations of an individual agent may be over-
come with the help of others, either by delegating tasks to other agents, or by learning new
ways of achieving goals. This means that the assumption that the set of available capabili-
ties is static no longer holds. In this case, a failure to generate a plan from an individual’s

132
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capabilities does not necessarily mean the goal is impossible, since other agents in the soci-
ety might have complementary capabilities. If an agent is capable of generating new plans
at runtime by taking into consideration the capabilities of others, new multiagent plans can
be used to overcome individual limitations, and added to the plan library for future use. In
a simplistic approach, a planning capable agent interpreter that is aware of other agents’
capabilities can be used to achieve this effect.

Nevertheless, the ability to overcome problems using cooperation is a key part of a mul-
tiagent system, but agent programming languages, designed ostensibly to allow the de-
velopment of multiagent systems, seldom support high-level cooperation directly. Most
programming languages only go as far as including an agent communication language like
KQML [Finin et al., 1994] or FIPA ACL [Foundation for Intelligent Physical Agents, 2000],
but lack any indication as to how these languages are to be used to achieve any level of
agent cooperation. This is clearly a problem, and if agent languages are to be used for
agents to cooperate in an interoperable way, these languages need to contain at least a
simple cooperation mechanism to facilitate the development of multiagent systems without
requiring a designer to create this mechanism from scratch every time. An analogy can
be made with object-oriented languages such as Java1 [Grosso, 2002] or Ruby2 [Carlson
and Richardson, 2006], each of which contains a basic object sharing mechanism on top
of some network protocol that allows simple interoperation among distributed instances of
the language interpreter. Unlike object-orientation though, cooperation among agents does
not involve simply sharing and invoking methods in remote agents. Since the basic build-
ing block of an agent description is a plan, agent cooperation must be concerned with the
creation of multiagent plans.

Multiagent plans give rise to issues of efficiency and reliability of distributing task achieve-
ment. Cooperative action involves communication and coordination, as well as an increased
degree of risk for the success of a plan, given that the agents relied upon may break their
commitments to achieve their own goals. But from the planner’s perspective, the composi-
tion of new plans based on preconditions and effects on the environment can be performed
independently of these factors. It is important to point out that, though there are a number
of issues (e.g. communication and coordination among parties) that must be addressed in
order to perform planning in distributed systems [desJardins et al., 1999], these can be ab-
stracted away from the planning process and inserted at a later point in time [Ghallab et al.,
2004]. In order to address this limitation of agent languages, in this chapter we develop
a new technique for agents with plan generation capabilities to cooperate in a multiagent
society. Unlike the approach taken in the TÆMS/GPGP platform [Lesser et al., 2004], we
do not gear an agent language exclusively for cooperative planning, but adapt an agent
language that has been proven for single agent domains and extend it to handle cooperation
aspects.

1And its Remote Method Invocation (RMI) mechanism.
2And its Distributed Ruby (DRb) mechanism.
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More specifically, by extracting key information from another agent’s plans, particularly
in relation to the declarative consequences of local plans, an agent can be informed of the
problem-solving capabilities of others, allowing it to delegate the achievement of specific
world-states, and using this information in its own planning process. In this chapter, there-
fore, we extend the planning agent architecture of Chapter 3 to handle multiagent domains,
thus addressing the omission of cooperation mechanisms embedded in agent languages. Our
contribution in this chapter is twofold: a generic technique to reduce multiagent planning
into a traditional planning problem, and the practical integration of such a technique in a
BDI-like agent language. In our approach, external plans are encapsulated into patterns of
local plans in order to abstract the communication and coordination aspects away from the
planner.

To accomplish this, and in keeping with the remainder of this thesis, we choose the Agent-
Speak(L) language, so that we can leverage the extensions developed in Chapter 3, and start
with an overview of our cooperation mechanism in Section 5.2. Cooperation in agent sys-
tems in turn requires a series of fundamental building blocks, and therefore, in Section 5.3
we review our chosen agent communication language, as well as the communication mecha-
nisms and language extensions available for AgentSpeak(L). Having reviewed the technical
background of our technique, we develop our cooperation mechanism in Section 5.4, includ-
ing a partner discovery algorithm for use in our cooperating agent language extension in
Section 5.4.1. We further refine the cooperative plans thus created with a failure handling
mechanism developed in Section 5.5. Finally, we situate our contribution within the body
of related work in Section 5.6, and conclude the chapter with a discussion in Section 5.7.

5.2 Overview of Cooperation in AgentSpeak

As we have seen in Section 5.1, agent languages do not generally include cooperation mech-
anisms built into them, leaving a significant gap in their potential for the development of
complete multiagent systems. Consequently, the problem we need to solve is the inclusion of
a cooperation mechanism in an agent language. In particular, the cooperation possibilities
among agents that can change their plan libraries at runtime are greater than for agents
with pre-designed cooperative behaviour. Since our thesis focuses on dynamic plan libraries,
the cooperation mechanism we develop in this chapter allows for agents to supplement their
plan libraries with new plans based on help from cooperating partners. When an agent
has exhausted its individual options to achieve a desire, it may be able to accomplish this
desire by relying on cooperation with others. In order to generate new plans that rely on
cooperation with others, we define a practical technique for multiagent planning and coop-
eration that allows an agent to share the knowledge of the consequences of its plans so that
others can delegate parts of their high-level plans and achieve new goals. This technique
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can be divided into three main parts: the discovery of available capabilities, the creation of
cooperative plans and the execution of multiagent plans.

When an agent cannot find a plan within its plan library to accomplish its goals, it tries
to create a new plan, as we have seen in Chapter 3. However, this process relies only on
an agent’s own abilities, and in some cases these abilities may not be enough. Since this
process does not consider the abilities or plans of other agents, it may still be possible to
create appropriate plans that include the plans of other agents, relying on their cooperation.
This is the focus of this chapter.

The first task for an agent seeking to do this is to find out if there are plans that other
agents are willing to perform for the original agent. We do this by gathering information
through a capability discovery mechanism, which provides details of the available plans that
other agents may offer to be used in cooperation. Given this information, we can proceed
to establish the basis for the creation of cooperative plans. In essence, we want to provide
our original agent with extra plans, from the other agents, to integrate into its own plan
generation capability, in support of achieving its goals. Now, this is challenging, because
we require the sharer agents to execute such plans themselves, as part of a broader, higher
level plan for the original agent, requiring both communication and coordination. However,
we do not want these concerns of communication and coordination to cause difficulties in
the plan generation process.

Though many existing approaches to cooperative action handle communication and coordi-
nation together with plan composition [Kalofonos and Norman, 2004], we choose to separate
these two tasks in order to allow the use of off-the-shelf planning algorithms. The rationale
behind this choice of approach is as follows:

• as discussed in Chapter 3, there is a wide range of local planning algorithms;

• active research on planning algorithms yields new potentially useful algorithms fre-
quently;

• some planning algorithms are better suited for certain specific domains;

• integrating communication and cooperation in the planning algorithm is not always
easy; and

• our approach delegates actions to the agent architecture, allowing new planners to be
used seamlessly.

In particular, our technique relies on plan patterns that encapsulate communication and
coordination in such a way that the planning algorithm can ignore them when chaining
operators in a plan.
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In our mechanism, the requester agent (that is, the agent that needs to use the capabilities
of another agent to achieve its goals) needs plans to serve as local placeholders for the
invocation of externally executed plans, which we call proxy plans. Conversely, the sharer
agent, that is, the agent willing to execute one of its plans on behalf of another, needs
an external plan to handle the requests from requester agents and invoke its local plan.
As we have seen in Chapter 3, new plans can be generated through classical planning by
considering their preconditions and consequences and equating them to STRIPS/PDDL
operators, and proxy plans can similarly be integrated into new plans. These newly created
cooperative plans are now effectively multiagent plans, and can then be integrated into an
agent’s plan library for future use and efficiency gains.

In order to create these interrelated plans, we use a mechanism inspired by the work of
Hübner et al. [Hübner et al., 2006] consisting of plan library modification rules (or plan
patterns) that allow the creation of new plans based on the existing plan library and ad-
ditional parameters. There are two plan patterns that are needed to generate cooperative
plans, without the need for designers themselves to do so.

Figure 5.1: Plan patterns involved in the sharing and use of a plan to achieve g.

More specifically, given a shared plan, we define an external plan (EC) pattern in Sec-
tion 5.4.4 that includes the steps necessary for another agent to request the execution of
the shared plan. On the requester’s side, we define a proxy plan (PPX) pattern in Sec-
tion 5.4.3 that encodes the declarative information of the shared plan’s preconditions and
consequences, and contains the steps necessary for this agent to request the remote execu-
tion of the shared plan. Ultimately, proxy plans can be used by the planning process of
AgentSpeak(PL) as if they were local plans, and result in new cooperative plans.

Now, even if the issues arising from interaction can be ignored by the planner, they must be
addressed in order to ensure the long-term effectiveness of the plan library. In particular, a
number of issues arise from relying on third parties to accomplish one’s goals, such as unre-
liability and broken commitments. Moreover, it is possible that an agent whose cooperation
is necessary for some plan in the plan library may leave the society. This renders such a
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plan not only useless, but also damaging to an agent’s efficiency if the plan is eventually
selected to achieve some goal, since this plan will always require the agent to drop it after
wasting the effort of starting to execute it. Therefore, given the uncertain nature of agent
cooperation, there is also a need to provide a third plan pattern, for failure handling plans
(FHP) to cope with unreliable partners, which we describe in Section 5.5. All these patterns
and their resulting plans are summarised in the diagram of Figure 5.1, where dashed arrows
represent the creation of new plans through a plan pattern.

5.3 Technical Requirements for Cooperation

We have seen in Section 2.5.1 that agent communication is generally underpinned by speech
act theory, but the original AgentSpeak(L) does not include communication constructs for
agent communication of any sort. In order to address this shortcoming, we leverage the
work of Moreira et al. [Moreira et al., 2003], who introduce a notation for speech act-based
communication into AgentSpeak(L). This work was later extended by Vieira et al. [Vieira
et al., 2007] formalising the semantics of the main KQML speech acts within the Agent-
Speak(L) reasoning cycle. In this section, we review the relevant aspects of their work to
provide the theoretical basis for communication in our cooperation technique. Agent com-
munication as defined by Vieira et al. [Vieira et al., 2007] is underpinned by two notational
extensions to AgentSpeak(L), annotations and internal actions, which we review in Sec-
tions 5.3.2 and 5.3.1 respectively. Finally, we review the semantics of the key speech act
performatives required for our technique in Section 5.3.3.

5.3.1 Internal actions

The common understanding of agent actions is that they are environment transformation
operators, so that when an agent invokes an action, some consequence in the environment
is expected. However, when some custom computation needs to take place within a single
reasoning cycle, Bordini et al. use the concept of an internal action in AgentSpeak(XL)
[Bordini et al., 2002]. This allows an agent to access extensible libraries of custom procedures
that can be executed instantaneously by an agent.

Unlike traditional actions, internal actions do not cause changes in the environment, and
since they are executed instantaneously, they can be included in either the body or the
context of a plan, allowing an agent to use them to refine the process of selecting applicable
plans. Syntactically, internal actions are denoted in the language by a preceding dot (.)
character, so if a designer wants to define a check internal action with two parameters, its
invocation is represented as .check(a, b).

From a communication point of view, an internal action .send is invoked by an agent
whenever it needs to communicate through some speech act performative to another agent.
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We further explore the effects of this action depending on the specific performative in
Section 5.3.3

5.3.2 Annotations

As part of the formalisation of communication within AgentSpeak(L), Vieira et al. [Vieira
et al., 2007] introduce a modification to the language to allow annotations to be associated
with predicates within AgentSpeak(L). These annotations were initially proposed by Bordini
et al. [Bordini et al., 2002] and are aimed at extending the representation of beliefs from
simple predicates to predicates with an indication of their source. Syntactically, annotations
are represented as a list of additional predicates appended to the annotated predicate. For
example, while in traditional AgentSpeak(L), we represent a belief in some fact p(X) as a
predicate p(a), their extension allows us to represent that an agent believes in p(a) because
it has perceived it through its sensors and because some other agent ag1 has also informed
our agent that p(a) is true, as p(a)[ source(percept) , source(ag1)].

Along with the syntactic modification, Vieira et al. [Vieira et al., 2007] also extend the
meaning of logical consequence and unification between annotated predicates, stating that
an annotated atomic formula p1[s11, . . . , s1n] is a logical consequence of a set of ground
atomic formulae bs, if and only if there exists p2[s21, . . . , s2m] in bs such that p1 and p2

unify and [s11, . . . , s1n] is a subset of [s21, . . . , s2m].

This annotation mechanism allows triggering events, which we have seen in Section 3.3.1.2
are formed by predicates referring to beliefs or goals, to encode information regarding their
source, thus enabling plans to handle events resulting from communication in a richer way.
Intuitively, from the notion of consequence explained above, one annotated predicate is
only supported by another predicate that unifies with it and that has at least the same
set of corroborating sources as the original predicate. For example, a certain predicate p(

a)[ source(ag1)] is supported by predicate p(X)[source(ag1),source(ag2)], but not by predicate
p(X)[source(ag2)].

In our work in this chapter, we use annotations in the messages exchanged between coop-
erating agents to indicate the sender of each message. This information is used by agents
sharing plans in their decision over whether to agree to cooperate with the requesting agents.

5.3.3 Speech act-based communication

Effective cooperation between autonomous agents in a society requires some form of com-
munication among them, and research into agent communication has generated a number of
agent communication languages, such as FIPA ACL and KQML [Singh, 1998]. As we have
seen at the beginning of this section, Vieira et al. [Vieira et al., 2007] introduced an oper-
ational semantics of speech act-based communication for AgentSpeak(L), defining several
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plan rules for handling several of the performatives defined by Searle [Searle, 1969]. The
plan rules thus defined are given from both a sender and a receiver point of view, allowing
them to be implemented in practical AgentSpeak(L) interpreters.

From an operational perspective, we consider an implementation of agent message passing
using the concept of internal actions described in Section 5.3.1, because messages between
agents are not expected otherwise to cause the environment to change. Messages are there-
fore sent using the .send internal action, which takes three parameters: the identification
of the receiver, the performative carried by the message, and the message itself. In order
to operationalise the effect of sending and receiving messages to and from other agents,
Vieira et al. [Vieira et al., 2007] extend the configuration of an AgentSpeak agent with two
new data structures: a set of messages that an agent has received but has not processed
(effectively an inbox ), and a set of messages that need to be sent to other agents (effectively
an outbox ). When the send internal action is invoked, messages are stored in the outbox
until the interpreter moves them to the receiver’s inbox. On the receiver’s side, the inbox
effectively provides another set of events, just like traditional events from the environment,
to which an agent responds by adopting plans. Thus, from a plan execution perspective,
the receipt of new messages is handled in the exact same way as the receipt of new events
from the environment.

We now proceed to describing the effects of sending and receiving messages within the
AgentSpeak implementation of KQML. In particular, in this chapter we are concerned with
the three performatives needed for our cooperation technique:

• ask, used by an agent to request information from others;

• tell, used by an agent to supply information to others; and

• achieve, used by an agent to request another agent to achieve a procedural goal.

According to Vieira et al. [Vieira et al., 2007], there are two possible effects on the sending
agent of executing such an internal action, one for the ask speech act, and another for all
other speech acts. When an agent sends a message with the ask performative, it is trying
to check whether or not another agent has a certain belief within its belief base; in effect,
an agent is trying to execute a query in the target agent. Therefore the intention containing
this send action must be interrupted until the query has been performed, or the receiving
agent has rejected the message. The other possible effect of executing a send action (i.e.
for tell and receive), is that a message is sent to the target agent and the intention resumes
executing. We proceed to examining the effects of these messages in the receiving agent.

For the target agent, messages are ultimately received as events annotated with the name
of the sending agent, so the query associated with the ask performative being sent from an
agent ag results in an event +?query[source(ag)] being posted for the receiving agent.
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For example, suppose agent randal wants to know the time of the hockey game, stored in
the belief base of agent dante as the belief time(hockey,T). To discover this information,
it executes an internal action .send(dante,ask,time (hockey,T)), which causes an event +?time

(hockey,T)[source(randal) ] to be posted to dante. If dante accepts the message, and has
time(hockey,1020) in its belief base, the .send action in randal will be executed successfully,
resulting in T being unified with 1020. Notice here that since the effect of this send is an
event in the receiving agent, it might be handled by a plan with a triggering event matching
the query being made to it, rather than a direct query to its belief base.

It is important to note that annotations also include reserved words indicating that the
source of certain predicates are an agent’s sensors, denoted as source(percept), as well as
indicating that certain events originate in the agent itself, denoted as source( self ). This
enables an agent to maintain its autonomy, allowing plans to be created to respond to
specific agents, or not to respond to anyone at all. For example, if a designer wishes to
create an agent that never responds to queries from other agents, a plan +?Q[source(S)] :

not (S=self) <− false. can be included in the plan library.

When an agent sends a message with a tell performative, it wants to make another agent
aware of some belief expression. Thus, when an agent receives a message with a tell perfor-
mative from an agent ag regarding a belief b, the target agent receives an event +b[source(

ag)]. For example, now suppose dante wants to make randal aware that the hockey game is
at 1020 by executing the action .send( randal,tell,time (hockey,1020)). If randal accepts this
message, it causes the event +time(hockey,1020) [ source(dante)] to be posted to randal.

Finally, when an agent wants another agent to adopt a particular achievement goal, it sends
a message with an achieve performative. Similarly to the previous types of performatives,
the effect of an agent ag sending a message with the achieve performative regarding a goal
g is that an event +!g[source(ag)] is posted to the receiving agent. So, following our previous
example, if dante wants randal to come to the hockey game now, and it knows that randal
has a plan to come to the game associated with the triggering event +!comeToHockey, it
executes .send(randal,achieve,comeToHockey). Again, if randal accepts this message, it causes
the aforementioned event to be posted to randal, and the plan to be executed.

5.4 A multiagent planning mechanism

In this section, we explain our multiagent planning mechanism. We start by providing a
basic capability discovery mechanism in Section 5.4.1, which gathers information about will-
ing cooperation partners and the ability they are trying to share. Next, in Section 5.4.2 we
explain how we use the plan patterns mechanism to implement our cooperation mechanism.
We use this mechanism to build key parts of the cooperation mechanism, including proxy
plans (in Section 5.4.3), and external plans (in Section 5.4.4). Finally, in Section 5.4.5 we
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show how multiagent plans created locally are executed and how potential failures of these
plans can be handled.

5.4.1 Discovering Capabilities

In order for an agent to be able to use the capabilities of others, it must be aware of what
capabilities are shared by whom. Here, a shared capability is a plan that an agent is willing
to execute on behalf of another agent whose goals cannot be accomplished by its individual
abilities. In turn, for an agent to be able to use the plans of others rather than just its own,
it must seek partners willing to carry out some of their plans on behalf of the requesting
agent. These willing partners then send declarative information about their plans. Since
we are not concerned in this thesis with issues of discovery per se, we avoid developing an
elaborate mechanism, and use a dummy plan (or a plan stub) indeed as an abstraction of
any of a number of existing partner selection mechanisms, such as described in [Munroe
et al., 2004].

Nevertheless, we provide a simple capability discovering mechanism in which we assume that
cooperation partners have already been selected somehow. Our capability discovery method
consists of broadcasting a request for external plans, which is answered by all available
agents in the society. However, if a partner selection mechanism is in place, the requests
for external plans will only be sent to selected cooperation partners. During the process of
gathering information regarding shared capabilities, plans comprising the abstraction layer
for the planner are created in both the agent that will eventually use the shared capability
in its planning process and the agent providing the capability. This mechanism is shown in
Algorithm 4

Algorithm 4 Simple capability discovery mechanism.
Require: Set P = {ag1, . . . , agn} of selected cooperation partners
Broadcast to P a request for capabilities
Receive a set CP = {c1,ag1 , . . . , cm,ag1 , . . . co,agn} of capabilities
for all ci,agj ∈ CP do
Create local plans to use ci,agj

Create plans in agj to share ci,agj

end for

Elements in the set CP must contain all the information necessary for the requesting agent
to perform planning as if the capability being shared was local. Thus, similarly to the
way in which information about preconditions and effects is collected for planning in Agent-
Speak(PL), partners wishing to inform others of their external plans need to gather the plan
invocation parameters, preconditions and declarative effects and send this information to
their peers. This information can be retrieved using the same process as in AgentSpeak(PL),
but instead of using this information to generate a STRIPS-like operator description, an



Chapter 5 Social Agentspeak(L) 142

agent sends this as a reply to another agent requesting external plans, along with the iden-
tification of the agent supplying the external plan. Therefore, elements ci,agj contain the
information represented in the tuple, 〈g, ag, P,E〉, where:

• g is the achievement goal (including its parameters) in the sharing agent’s plan library
that will be executed on behalf of the requesting agent;

• ag is the identifier of the agent that contains the external plan;

• P is a set {p0, . . . , pn} of preconditions g; and

• E is a set {r0, . . . , rm} of declarative effects expected to hold after the external plan
is executed.

This information is used in the creation of a series of plans constituting the abstraction
layer. This information and the plans resulting from it, in turn, enable an agent to generate
new high-level cooperative plans, which we detail in Section 5.4.5.

5.4.2 Plan patterns

While many researchers have chosen to create new languages to add notions such as declar-
ative goals [Sardiña et al., 2006; Winikoff et al., 2002] and failure handling mechanisms
[Sardiña and Padgham, 2007; Thangarajah et al., 2007], it is possible to represent these,
and many other notions using simpler, existing agent languages. In traditional Agent-
Speak(L), although there is no explicit connection between the adoption of plans and the
goals they achieve, we have made the connection explicit through the planning action of
AgentSpeak(PL) in Chapter 3. Another alternative, in AgentSpeak(L), is to represent these
notions by multiple related plans, as shown by Hübner et al. [Hübner et al., 2006], who in-
troduce the notion of plan patterns to facilitate the designer’s task of creating multiple,
related, plans that serve a particular purpose.

The idea here is that many related plans to accomplish a particular task will have reoccurring
elements, varying just in small details that can be parameterised. Such parameters are more
complex than what could be achieved through the unification mechanism present in an
AgentSpeak interpreter like Jason. For example, a high-level plan to try multiple different
plans in sequence to achieve a world-state, checking after plan execution if the world-state
has been achieved can be seen as a plan pattern where the preconditions and the test at
the end of each plan are appended to each of the plan in the series [Hübner et al., 2006].

In more detail, a plan pattern is an agent program rewriting rule with a numerator describing
the original plan (or plans) description, and a denominator describing the resulting agent
program. For example, if we wish to define a plan pattern that adds a printed message
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before and after a certain plan body b is executed, called PDB (Plan Debug), the rule is
defined as:

+e : c← b.

+e : c

← .print(“Start”);
b ;
.print(“End”).

PDB

Pattern PDB takes a plan with a certain plan with a triggering event e, a context condition
c and a body b, and replaces this plan in the plan library by another one with the exact
same header (i.e. with e and c), but with a body containing a step to print the word “Start”
before executing the original plan body b, and prints the word “End” after executing the
original plan body.

5.4.3 Creating proxy plans

Once an agent is aware of the external plans of others in the same environment, it can try
to use these capabilities in its own problem-solving strategies. In this approach, we make
the external aspect of shared plans transparent to an agent’s local planner through proxy
plans. These proxy plans describe the expected outcome of a successful invocation of a
third party capability and encapsulate the communication and coordination necessary for
effective cooperation. A proxy plan pattern PPX for an external plan 〈g, a, P, E〉, where
g is the triggering event of the shared plan in the sharing agent a, P = {p0, . . . , pn} is the
set of preconditions (i.e. the context condition) of the shared plan, and E = {r0, . . . , rm} is
the set of declarative effects of the shared plan, is as follows:

+!g : p0& . . . &pn ← r0; . . . ; rm

+!remoteG : p0& . . .

&pn&ready(a, g)
← .send(a, achieve,

requestG);
.wait(done(g));
+r0; . . . ; +rm.

+!check(a, g) : true

← +ready(a, g).

PPXg,a,P,E

This plan pattern creates two plans, one of which replicates all the logical constraints re-
quired for a to be successful in executing this plan locally. The plan body includes a
communication action (.send) that uses the achieve performative to request the sharing
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agent to carry out the specified plan, followed by an action to wait for confirmation that the
plan was executed. Finally, the plan pattern replicates the belief additions expressed in the
sharing agent’s external plan, so that the planning process of AgentSpeak(PL) [Meneguzzi
and Luck, 2007a] can process this plan in the same way as it would process local plans.

In addition to the action-related part of the proxy plan to invoke the external plan, we
may also want to check that the owner of the external plan is ready and willing to adopt
it. This is represented in the PPX plan pattern by the precondition ready(a, g), which is
added to those preconditions already present in the original external plan. This literal, in
turn, is the result of an additional plan to ensure that the sharing agent will actually carry
out that action when the requesting agent needs it to do so. In the PPX plan pattern,
this plan is simply a placeholder for any mechanism used to ascertain the reliability or
readiness of a cooperation partner, which can be replaced by any mechanism preferred
by the designer. Such a mechanism can be introduced using the CA (check agent) plan
pattern, which rewrites the check plan so that it calls a plan in the plan library associated
with such mechanism. For example, if there is a trust verification mechanism associated
with a verifyTrust achievement goal (which we will not specify, but assume to be specified
by the designer), a plan pattern CA for the readiness of an agent to execute external plan
〈g, a, P, E〉 through an achievement goal verifyTrust is as follows:

+!check(a, g) : true← +ready(a, g).

+!check(a, g) : true

← !verifyTrust(a, g);
+ready(a, g).

CAg,a

Now, let us consider an example where we have two agents, randal and dante, both of which
work in a convenience store, and can close it at the end of the day [Smith, 1995]. Both
their plan libraries should include a plan that accomplishes this, and the plan illustrated in
Table 5.1 shows Randal’s plan to close the store.

1 +!c l o s e ( s t o r e ) : at ( r a n d a l , s t o r e )
2 <− . sw i t c hO f f ( l i g h t s , s t o r e ) ;
3 . c l o s e ( d o o r , s t o r e ) ;
4 +closed ( s t o r e ) .

Table 5.1: Randal’s plan to close the store.

Normally, Dante is assigned the last shift and closes the store, but on a certain day, Dante
needs to leave earlier to go to an appointment, so he needs somebody else to close the store
on his behalf. In order for Dante to be able to incorporate this ability in his plans for the
day, Dante needs to know the information from the shared plan of Table 5.1 in order to
use the CA plan pattern, including the preconditions and effects. Considering the rules for
extracting declarative information from Chapter 3, we have that the precondition of this
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plan is at( randal,store ) and the effect is closed( store ). By applying the plan pattern CA, we
have the resulting proxy plan of Table 5.2.

1 +!remoteClose ( s t o r e ) : at ( r a n d a l , s t o r e ) & ready ( r a n d a l , c l o s e (
s t o r e ) )

2 <− . send ( r a n d a l , a c h i e v e , r e q u e s tC l o s e ( s t o r e ) ) ;
3 . wa i t ( done ( c l o s e ( s t o r e ) ) ) ;
4 +closed ( s t o r e ) .

Table 5.2: Dante’s proxy plan to close the store through Randal.

With this plan in his plan library, Dante can now plan for his early departure from the
store, but we also need Randal to be aware of how to respond to Dante’s request. For this
we also need to change Randal’s plan library, creating plans to communicate with Randal.

5.4.4 Creating external plans

An important property of our proxy plans is that they succeed when the sharer agent
succeeds, and fail if either the sharer agent fails in its execution or it refuses to carry out
its commitment. Hence, from the requester agent interpreter’s point of view, the execution
of a local plan and an external plan is the same.

Naturally, an agent sharing an external plan needs to have in its plan library the achievement
goal that corresponds to the achieve performative sent by the requesting agent. We refer to
this achievement goal as a plan endpoint to the PPX plan pattern, which is associated with
an actual plan in the sharing agent’s plan library. The external plan, is therefore generated
from a local plan in the sharer’s plan library using the EP (external plan) pattern, which
is as follows:

+!g : e← b.

+!g : e ← b.

+!requestG [source(S)]
: true

← !g;
.send(S, tell, done(g)).

EPg

Following the example developed in Section 5.4.3, we need to modify Randal’s plan library in
order to allow his plan to close the store to be accessed by Dante. As we have seen, Dante’s
proxy plan sends a request for an externally invocable plan to be executed by Randal. This
plan can be created through the application of the EP plan pattern to the plan of Table 5.1,
which keeps the original plan in the plan library and adds a plan that receives the request
from Dante and executes the shared plan, as illustrated in Table 5.3.
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1 +! r eque s tC l o s e ( s t o r e ) [ s ou r c e (S) ] : t r u e
2 <− ! c l o s e ( s t o r e ) ;
3 . send ( S , t e l l , d o n e ( c l o s e ( s t o r e ) ) ) .

Table 5.3: External plan for Randal to close the store.

5.4.5 Creating cooperative plans

Given the properties of the proxy plans described in Section 5.4.3, it is easy to use the
planning approach of AgentSpeak(PL) to generate new multiagent plans, since the Agent-
Speak(PL) planning module is insulated from the communication and cooperation aspects
of planning. However, although the generation of a sequence of actions (from a cause and
effect perspective) does not depend directly on whether it includes external and internal
capabilities, high-level plans that depend on the compliance of third parties must contain
guards to prevent initiating the plan when it has become infeasible. These guards are de-
rived by propagating the preconditions of external proxy plans to the precondition of the
high-level plan generated by the planning module. Propagating these preconditions ensures
that a plan will not be initiated until all parties are ready to comply with requests for
cooperation, while making sure that the cooperating agent is queried for availability imme-
diately before its cooperation is needed. This can be accomplished using the algorithm for
precondition generation developed for AgentSpeak(PL) in Section 3.6.3.

Now, to finish our example, suppose that Dante is aware that Randal can achieve a goal
to close the store on his behalf. Moreover, if Dante needs Randal to close the store on his
behalf, the plan to request Randal to be at the store requires him to be at the store, and
results in the store being closed; a cooperative plan to achieve these goals generated in our
system is shown in Table 5.4.

1 +!goal_conj ( [ c l o s e d ( s t o r e ) ] ) : at ( r a n d a l , s t o r e ) & ready ( r a nda l )
2 <− ! r emo t eC l o s e ( s t o r e ) .

Table 5.4: A cooperative plan.

When a cooperative plan is adopted by an agent, it eventually reaches the step corresponding
to the adoption of the proxy plan (remoteG). The proxy plan causes this agent to send
a message to the sharer agent requesting it to execute its external plan (requestG), which
corresponds to delegating the adoption of a plan to achieve a certain goal g in the sharer
agent’s plan library. If the plan to achieve g is executed successfully, the sharer agent sends
the confirmation of having achieved g. This sequence of events is illustrated in Figure 5.2.
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Figure 5.2: Proxy plan communication.

5.5 Failure handling for new plans

As we have seen, it is often pointed out that traditional agent architectures equate goal
achievement with the successful execution of a procedural plan selected to achieve such a
goal [Hübner et al., 2006; Winikoff et al., 2002]. Here, the assumption is that the invoca-
tion condition of a procedural plan should be enough to guarantee that the plan executes
successfully in case the goal is possible, or proves the goal impossible otherwise. However,
in highly dynamic environments, in particular those populated by self-interested agents, the
conditions that enabled a plan to be executed may change after an agent commits to a plan.
Our technique for multiagent cooperation must take into consideration the unreliability of
cooperation in the context of self-interested and unreliable agents by adding failure handling
plans to manage multiagent plans, and eventually to remove plans including such unreliable
partners. Therefore, in order for agents to be able to cope with the possibility of plan failure,
they must be able to handle failure explicitly. Recent work in agent languages has explored
the semantics of plan failure, extending traditional languages with plan failure constructs
[Bordini et al., 2005b] as well as procedures for handling plan abortion [Thangarajah et al.,
2007].

Although the ability to create new plans taking advantage of the external plans of other
agents allows the creation of plans that achieve goals otherwise impossible for an agent,
dependence on other self-interested agents poses another challenge, coping with possibly
unreliable partners. Plans created at design time tend to be very efficient by making as-
sumptions about aspects of the environment that do not change at runtime, whereas the
generation of plans at runtime involves a great deal of computational effort. We have seen
in Chapter 3 that the computational effort of planning at runtime can be amortised by the
careful generation of contextual information and storage of newly created plans in the plan
library. However, plans created in a dynamic society in which autonomous agents may join
and leave at any point in time cannot make many assumptions regarding the availability of
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capabilities shared by third parties. The likelihood of failure for plans that depend on others
can thus be considered greater than for plans that rely on an individual’s own capabilities.
Therefore, it is necessary for dynamically generated plans, especially those that depend on
unreliable capabilities, to have associated failure handling plans. This mechanism of failure
handling relies on the notion of a plan-dropping event described in Section 3.4.6. For ex-
ample, if an agent creates a plan that involves cooperation with an agent a, we introduce
a failure handling plan FHP pattern that removes the failed plan when this agent fails to
cooperate for some reason, as follows:

+!goal_conj([g1, . . . , gn]) : e← b.

+!goal_conj([g1, . . . , gn])
: e← b.

−!goal_conj([g1, . . . , gn])
: notready(a)

← .remove_plan(
goal_conj([g1, . . . , gn])).

FHPa

Here, handling plan failures is important to ensure that the agent can cope with individual
faults due to failed cooperation. It also allows the agent to manage its plan library in the
long term, removing plans which are no longer relevant due to the absence, or consistent
lack of reliability, of necessary parties.

5.6 Related Work

Previous work by Ancona et al. [Ancona et al., 2004] describes a cooperation technique that
allows agents to expand their problem solving capabilities at runtime by exchanging plans
at runtime. Although this technique relies on a very similar basic agent framework to our
own (aside from the planning component), it consists of a distinct approach to addressing
the shortcomings of an agent, as it relies on an agent receiving entire plans from others.
This approach, therefore, assumes that all agents in an environment are able to execute the
same set of basic actions, which may not be the case in many real world scenarios. For
example, agents might require different levels of authorisation to perform specific actions
in the environment: an agent running in a user-level account, performing maintenance in a
Unix filesystem may need to change a file that is owned by the root user, and clearly the
plans that the root can execute cannot simply be sent to this agent. Ancona’s approach is
complementary to ours in the sense that it can, for example, replace the planning module
we use to generate new plans from scratch and allow an agent to get new plans from others.

Though planning has always been advocated as a fundamental part of an agent system, it
is only recently that consistent efforts have been made to integrate AI planning into agent
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architectures as a result of significant improvements in the runtime efficiency of modern
planning algorithms. These efforts have largely focused on integrating planning into indi-
vidual agents by relying on a centralised planning algorithm to solve specific problems using
a state-space planner [Despouys and Ingrand, 2000], or to check the viability of existing par-
tial plans by verifying them before adopting these plans [Sardiña et al., 2006]. Meanwhile,
distributed planning has evolved more or less in parallel with multiagent technology, with
very few intersecting efforts [desJardins et al., 1999]. While research on distributed planning
focuses mostly on distributing the burden of planning algorithms among a number of con-
tributing nodes, multiagent cooperation is mainly concerned with coordinating pre-defined
plans among participants whose existence and potential are known before the system is
deployed. This parallel progression of planning versus agents is summarised in Figure 5.3.

Planning 
AgentsSingle Agent AI Planning

Multiple 
Agents

Social 
Planning 
Agents

Distributed 
Planning

Coordination

Figure 5.3: Evolution of planning and agent technology.

In a dynamic environment with multiple autonomous agents, it is important not only to
coordinate predefined plans, but also to create and coordinate new strategies. Multiple
agents need to detect and discover how to exploit unforeseen combinations of partners and
capabilities while at the same time coordinating their efforts to minimise conflicts (which
may arise due to agents having diverging individual goals) and maximise utility. Reasoning
about cooperation in a dynamic world presents a number of challenges that have been
addressed separately in previous efforts, namely:

• deciding when to cooperate and with whom;

• discovering and exploiting capabilities among participants;

• coordinating efforts that require synchronisation;

• reaching a consensus among agents with distinct goals;

• determining the ideal amount of information sharing; and

• coping with a changing world during plan formation.
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We further explore recent efforts in distributed planning and its integration with agent
systems, discussing their advantages and limitations at the end of this section. These efforts
illustrate the possibility of many interesting extensions to our technique.

5.6.1 MARTHA Project

The MARTHA project, (Multiple Autonomous Robots for Transport and Handling Appli-
cations) [Alami et al., 1998], created a PRS-based multiagent system aimed at controlling a
fleet of mobile robots in charge of running trans-shipment operations (i.e. loading and un-
loading containers) in harbours, airports and marshalling yards. The system is composed of
a central station (CS) that plans trans-shipment operations and assigns missions to agents
running in the mobile robots.

Communication between the CS and the robots is minimal, and the CS simply tells robots
their missions and preferential routes, while they must coordinate individually with other
agents. Coordination in MARTHA is exclusively concerned with the avoidance of resource
conflicts. Here, resources are sections of the routes over which robots navigate. Individual
robots generate plans to accomplish their assigned missions, but before committing to the
execution of these plans, they attempt to merge them into a global plan. In order to
merge its plan, a robot needs permission from the other agents, in the form of a token
passed around agents, as well as information on the usage of shared resources. If an agent
manages to successfully merge its plan into the global plan, it then requests other agents for
synchronisation notifications to solve any potential conflict during execution. For instance,
if two agents need to pass through the same intersection, the agent allowed to pass first
would have to send a message to the second one notifying it of its turn. Planning in this
system consists mainly of plotting trajectories within a set of established routes, which are
divided into cells representing the building blocks for the movement plans.

Although the approach taken in MARTHA for support to cooperation in a multiagent
system is interesting in that it uses planning to create new strategies at runtime, this work
has a very narrow scope, and thus lacks the generality afforded by the technique developed
in this chapter.

5.6.2 Plan selection through trust

The control cycle of traditional BDI architectures seldom, if ever, address the issues of how
to cooperate and with whom. Therefore, Griffiths and Luck [Griffiths and Luck, 1999] ex-
tend a BDI-like architecture with higher-level control mechanisms aimed at improving plan
selection in a multiagent environment, and consider how cooperative plans are structured
by extending the elements of BDI plans. These plans include individual actions, which are
the traditional components of BDI plans, as well as joint actions and concurrent actions.
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Joint actions are composite actions that require a group of agents to act simultaneously, or
with a precise level of synchronism, whereas parallel actions are cooperative in the sense
that a group of agents must contribute to it, but without any particular synchronism.

BDI plans use partial plans that include subgoals instantiated at runtime, and plan selection
involves completing these subgoals with a choice of plans. Since plans may or may not
contain cooperative actions, the decision to cooperate would normally be implied by the
choice of a plan containing such actions.

Previous work on cooperative problem solving does not properly address why agents decide
to seek assistance beyond a high level statement that an agent detects the need to cooper-
ate. Griffiths and Luck introduce a series of plan evaluation criteria to help improve plan
selection. These criteria involve evaluating not only the quality of a plan in terms of its cost
and agent’s preference, but also the risk involved in depending on external help. In assessing
a plan’s risk, an agent builds a model of each partner which include their capabilities and a
level of trust in them. All these metrics are brought together in the form of a plan rating,
which is calculated in a pre-execution step that simulates how a plan would work when
executed taking into account an agent’s own model, as well as the inspected models of all
other agents involved. This simulation is performed offline, so if new agents and capabilities
can be introduced into the world at runtime, this approach would have to be revised.

The work of Griffiths and Luck uses the existing BDI-based plan execution capabilities to
reason about cooperative plans, but it assumes cooperative plans are already present in a
plan library. Alternatively, our work allows such multiagent plans to be generated from
an existing single agent library, but we do not go into much detail regarding the decision
to use a multiagent plan, and assume that an agent uses such plans when it has no other
alternative. Thus, Griffiths and Luck’s work can be seen as complementary to ours in
providing a more elaborate process to decide on when to use cooperative plans.

5.6.3 Multiagent Graphplan

Kalofonos and Norman [Kalofonos and Norman, 2004] propose a multiagent planning algo-
rithm based on a version of Graphplan that interleaves planning with communication and
allows the negotiation of team goals during Graphplan’s solution extraction phase. This
planning strategy is extended to allow agents to interleave planning graph expansion with
information exchange, as well as interleaving solution extraction with conflict resolution.
Information sharing in the graph construction phase is not necessarily complete, and can
be limited by a participant’s willingness to contribute certain actions to a team plan, hence
agents can withhold their unrelated activities from others in this particular interaction.

Some restrictive assumptions are made about the agent’s knowledge about the world and
the effects of actions, namely that agents agree on the relevant aspects of the initial state,
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and about the preconditions and effects of actions. Agents also agree on the team goals and
are assumed to be cooperative.

During planning, each agent keeps a copy of the planning graph and shares updates with
other agents. When each action level is built, agents reveal the actions they are willing to
contribute at that point in time. In order to preserve Graphplan’s guarantee of termination,
once an action is committed to a plan, it cannot be withdrawn in further action levels.
Finally, during solution extraction, agents collaborate to search for a plan that represents a
compromise to all participants.

Since the work presented in this chapter relies on centralised planning for multiagent plans,
we do not take advantage of the potential distribution of planning effort. In this respect, the
work of Kalofonos and Norman represents a potential extension to our cooperative planning
framework if distributed planning is desirable.

5.7 Conclusion and Discussion

By taking advantage of recent developments in practical agent languages, we have described
a practical, yet flexible, technique for multiagent planning. This technique extends the work
in Chapter 3 to take advantage of the availability of cooperating agents in a society, allowing
agents to overcome individual limitations by delegating parts of locally generated plans for
execution by others. Furthermore, we have shown how this technique can be implemented
using recent extensions to the AgentSpeak(L) language, without affecting the generality of
our approach, since any other BDI-like language with declarative goals and communication
capabilities can be extended with the planning we propose.

Examples of agent languages suitable for implementing this strategy are CANPLAN2
[Sardiña and Padgham, 2007] and Jason [Bordini et al., 2005a]. Descriptions of agent plans
throughout this section use Jason to facilitate readability and to remain consistent with
the remainder of this thesis, but these plan definitions can be easily converted to any BDI-
like agent language. Jason is an AgentSpeak(L) interpreter with a number of extensions
necessary for our technique to function in practice.

We have implemented this cooperation technique using the Jason interpreter extended with
the AgentSpeak(PL) functionality of Chapter 3. The resulting system was then used in im-
plementing the example of the convenience store clerks developed throughout this chapter3.
In practice, a designer using our prototype needs to mark all shared plans in the plan library
definition as such, while the plan pattern mechanism present in Jason expands these plans
at runtime into the corresponding external plans. Similarly, during the execution of the
capability discovery mechanism of Algorithm 4, the information regarding external plans

3This implementation is available for download at www.meneguzzi.eu/felipe/software.html.

http://www.meneguzzi.eu/felipe/software.html#kastor
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from other agents is injected into the Jason interpreter as plan patterns that are expanded
into the proxy plans used by the planner.

Unlike the previous contributions, the introduction in this chapter of a cooperation mech-
anism in AgentSpeak(L) is diffcult to evaluate quantitatively, or to compare quantitatively
with the original architecture. In consequence, our validation effort consists of example
applications of the techniques developed, demonstrating what can be achieved using them.
Further evaluation of the contribution in this chapter can and should be undertaken through
extensive deployment and use, with experience feeding into evaluation and subsequent refine-
ment. While this is beyond the scope of what is possible in this thesis, it offers opportunities
for further research.

Our focus here is on the structural and functional aspects of the plan library, and as a
consequence we have sidestepped any detailed account of how to address two major issues
with cooperation in agents, namely the distribution of the planning effort, and the evaluation
of reliability of cooperation partners. We chose, however, to modularise our technique so
that a designer can choose from the existing body of work in both these areas. Regarding the
issue of distribution, although the classical planning module leveraged from AgentSpeak(PL)
[Meneguzzi and Luck, 2007a] is a simple and centralised one, we see no hurdles in using our
technique with distributed plan formation algorithms, such as that proposed by Zhang
et al. [Zhang et al., 2007]. In this respect, our method is flexible in that it allows any
planning algorithm with a PDDL [Fox and Long, 2003] compatible planner to be used
in the planning module. Moreover, we acknowledge that issues of trust and reliability of
cooperation partners are of paramount importance in any deployment of a system composed
of agents that use our technique, but this is not the focus of our thesis, and can be isolated
from the rest of our planning process.



Chapter 6

Normative processing

6.1 Introduction

In Chapter 5 we developed a mechanism to extend AgentSpeak(L) beyond only single agents
to provide mechanisms to handle societal aspects of multiagent systems. Yet in a multiagent
society containing autonomous self-interested agents we need to ensure that agents operate
effectively and find ways to work together. In many cases this is achieved through imposing
constraints on agents, aimed at maintaining stability in the system. In this context, there
have been several efforts to develop computational systems of societal norms [Lopez y Lopez
et al., 2005; Vázquez-Salceda et al., 2005], their processing and monitoring for compliance.
However, while there has been much work on formalising such systems, very little has
been proposed in terms of practical, agent language-level mechanisms to modify an agent’s
behaviour at runtime (rather than by design) so as to comply with these norms.

In particular, systems composed of heterogeneous autonomous agents require some form of
societal control to ensure a desirable social order in which agents work together effectively.
For many, norms are the mechanism of choice to address this concern in multiagent societies
and ensure order and predictability [Aldewereld et al., 2006]. Such norms define standards
of behaviour that are acceptable in a society, indicating desirable behaviours that should
be carried out, as well as undesirable behaviours that should be avoided. Normative sys-
tems thus rely on a representation of obligations, prohibitions and permissions that ensures
that complying agents act within some predefined bounds. Although deontic concepts have
received much attention from philosophy [Jones and Pörn, 1986; Pörn, 1970], and more re-
cently computer science [Lomuscio and Sergot, 2003; Lopez y Lopez et al., 2005], we must
provide a simple definition for the concepts we use in this thesis. Therefore, we take an
obligation to be a positive constraint on an agent, indicating that it must act to accomplish
something in the world [Oren et al., 2008a]; permissions to be overriders of obligations,
undercutting them and freeing an agent from being bound to a particular constraint; and
prohibitions to be negative constraints on an agent, indicating that it must refrain from

154



Chapter 6 Normative processing 155

acting in a particular way [Oren et al., 2008a]. The specification and maintenance of nor-
mative systems has been the focus of recent research in agents, for example in the context of
electronic institutions [Garcia-Camino et al., 2005]. However, these efforts have been largely
at the macro level, such as managing global sets of norms in an environment [Vasconcelos
et al., 2007] and monitoring an agent’s actions within a society for compliance [Faci et al.,
2008], among others. By contrast, little work has been done on dealing with the desired
effects of norms at the level of an individual agent, and traditional agent architectures are
generally lacking in mechanisms to adapt agents to comply with newly perceived norms at
runtime. In practice, agents operating under normative restrictions are designed so that
they do not violate these restrictions, and if they do, this must be specifically provisioned
in their design. This, however, has little to do with the notion of autonomous agents.

In this chapter we further extend our agent architecture to enable agents to process norms
and modify their behaviour so as to comply with these norms, should they choose to do
so. In order to accomplish this, we extend a BDI language, allowing it to modify plans at
runtime in reaction to newly accepted norms. Our main contribution is the introduction
of plan manipulation strategies to enable reasoning about norms and to ensure compliance
with new norms. Moreover, we provide new AgentSpeak(L) constructs using Jason [Bordini
et al., 2005a] that allows our strategy to be implemented in AgentSpeak(L) agents.

The chapter is structured as follows: in Section 6.2 we outline our understanding of norms
in agent languages; in Section 6.3 we describe our behaviour modification algorithms; in
Section 6.6 we describe an AgentSpeak(L)-based implementation of our solution using a
meta-level toolkit; in Section 6.7 we summarise related work relevant to these normative
agents; and finally, in Section 6.8 we conclude the chapter.

6.2 Overview of Norm Processing

6.2.1 Norm Representation

In order to add normative processing to an agent language, it is necessary to provide some
sort of representation for norms. Norms are often situated within the context of an elec-
tronic institution, making norms part of the environment [Vasconcelos et al., 2007]. Here,
however, we are not concerned with the issues of electronic institutions or the modelling of
a normative environment, but with the aspects that arise after norms have been perceived
by an agent. We are concerned with the operational reasoning of agents, so our focus is on
the consequences of norm compliance on an agent reasoning process. It is important to note
that there are two major perspectives regarding normative systems: one with norms that, by
design, cannot be violated, which is the perspective taken by electronic institutions [Garcia-
Camino et al., 2005]; and another with norms that can be violated, potentially entailing
penalties for the violator [Jones and Pörn, 1986]. The latter perspective has been gaining
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Norm Meaning
obligation(p) add a goal to achieve state p
obligation(a) add a new plan with an action a in its body.

prohibition(p) prevent adoption of plans that bring about state p.
prohibition(a) prevent adoption of plans that execute action a.

Table 6.1: Summary of norms and their meaning.

increasing acceptance within computer science [Faci et al., 2008; Oren et al., 2008a], since
it considers that autonomous agents must always have choice over their behaviour. Since
this thesis focuses on autonomous agents and how to achieve flexible behaviour, we take
precisely this approach. Moreover, since we are concerned with agent languages, it is desir-
able to model norm acceptance in terms of agent language constructs, such as perception
events. Therefore, we require a norm representation schema that eases the connection to
agent languages.

From an individual agent’s perspective, the main effect of norms on its reasoning is to
determine which behaviours must be carried out, and which behaviours must not be carried
out or else some form of punishment ensues. Of course, other types of norms prescribing
preferences or more complex stipulations are possible, but from a practical perspective, the
possibility of non-binding recommendations can be ignored, leaving an agent’s own reasoning
process to determine the best courses of action. We assume a closed world where everything
not explicitly prohibited is permitted. This means that we ignore permissions, since they
just recommend behaviours rather than require behaviours to be changed. Although we
could include permissions as norm-modification operators in the sense that a permission
may invalidate an obligation or prohibition, the resulting system would have effectively the
same functionality in terms of behaviour modification, yet would complicate the discussion
in this thesis.

6.2.2 Norms and Goal Types

Norms may refer to either: declarative world-states, in which an agent must try to achieve or
refrain from achieving certain world-states; or actions, in which an agent must try to execute
or refrain from executing a particular action [Norman and Reed, 2001], as is summarised in
Table 6.1.

In our view, norms must have a well defined validity period; that is, a specification of when
a certain norm is in force and when it ceases to be in force. This validity period is crucial for
the enforcement of norms, particularly in the case of obligations, as without a deadline, an
obliged party is not compelled to fulfill its obligation at any particular time. For example,
if a consumer is obliged to pay his or her electricity bill, it is not possible to detect a
violation without knowing when this payment is due. Conversely, for prohibitions, certain
industrial research positions require a researcher to sign a form of non-disclosure agreement
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that includes provisions forbidding the researcher to engage in any competing research for a
set period of time, usually one year after the termination of the initial contract. Therefore,
norm encodings normally include a representation of the activation and expiration of each
norm, indicating when the deontic modality referred to in the norm (e.g. obligation and
prohibition) should be complied with.

Now, since most agent languages, such as AgentSpeak(L), 3APL, and others [Bordini et al.,
2005a] use first-order logic to represent beliefs, it is appropriate to adopt a similar type of
norm representation. Such a logic-based representation of norms allows for a more straight-
forward use of an agent language in detecting when norms are being complied with. More-
over, we leverage representational concepts from the formalisation of Oren et al. [Oren et al.,
2008b], which includes notions of activation and expiration of a norm, delimiting their va-
lidity through time, an important aspect of norms in a dynamic environment. We therefore
adopt a representation for norms in our system as follows:

norm(Activation, Expiration, Norm)

where Activation is the activation condition for the norm to become active, Expiration is
the expiration condition to deactivate the norm, and Norm is the norm itself. For example,
if an agent is obliged to drive on the left when it is in Britain, but not when it leaves, such
a norm is represented as norm(in( britain ) ,notIn ( britain ) , obligation (driveOn( left ))). In this
context, we focus on using norms to determine whether plans and actions may be executed,
and on the introduction of new triggering events linked to plans to satisfy new obligations.

It is important to note that we are not concerned, at this point, with handling more com-
plex norm representation schemes in the way that a complete deontic logic does. Rather,
we reduce norm representation to these two outcomes of prohibition and obligation to fa-
cilitate the creation of concrete agent behaviours aimed at complying with a set of norms.
Ultimately, however, norms created with a more complex representation language must be
reduced to these two outcomes in order to enable meaningful modifications to an agent’s
behaviour to be inferred.

There are many possible interpretations for such activation and expiration conditions, so it
is important to specify what each condition means for an agent. We consider the activation
condition to be a logical formula that, once entailed by an agent’s beliefs, results in the
norm being applicable to the agent. Conversely, we consider the expiration condition to be
a logical formula that, once entailed by an agent’s beliefs, results in the norm ceasing to be
applicable to the agent. In what follows, we assume these conditions under a monotonic logic
framework, so that when a condition becomes true, it will remain true in the future. We
make this assumption now in order to simplify the description of our behaviour modification
technique, so that norms can be activated and expire only once through their activation and
expiration conditions. In this way, once a norm has been accepted and acted upon, there
is no need for an agent to keep track of which norms have been accepted in the past, since
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monotonicity ensures their activation does not occur multiple times. We can later drop
this assumption, but it is useful to keep it for ease of explanation, eliminating the need for
more elaborate bookkeeping in our algorithms. If the monotonic assumption is dropped, our
unmodified system can still cope with multiple instances of norms, but each activation can
be considered in the context of a new norm addition, requiring the plans to be generated
multiple times and resulting in a minor loss of computational efficiency. Alternatively, we
can modify our algorithms to do the additional book keeping to cope with norms being
reactivated, thus avoiding the need to generate the same plans multiple times for the same
norm.

6.2.3 Norm Perception

In relation to accepting a norm, we consider its life cycle relative to an agent to start with
the norm being issued in an environment (or society), and perceived by an agent. When
an agent perceives new norms it decides whether or not to accept them (and modify its
behaviour) [Garcia-Camino et al., 2005], or reject them (and suffer potential sanctions). Our
view contrasts with that taken by electronic institutions, in which norms cannot be rejected
and are complied with by design. Although the issue of perceiving and deciding on accepting
a norm has seldom been considered in the literature, it is of considerable importance in open
dynamic systems regulated by norms. For example, in real human societies, norms are not
inherent to the world, but rather created by some relevant authority and then made known
to the parties to which a norm applies under the expectation that these norms will be
accepted and complied with, which is not always the case. Furthermore, when an agent
enters a new environment, it is possible that it will encounter a set of norms different from
those for which it was designed. Here, an agent must be made aware of these norms and
change its behaviour accordingly.

We use the distinction of perception and belief to denote whether or not a norm has been
accepted. If an agent has added a perceived norm to its belief-base, we consider the agent
to have implicitly accepted the norm, and behaviour modification must ensue. In order to
facilitate the integration of deontic states into an agent system, we adopt the view of Pörn
[Pörn, 1970] that deontic statements themselves can be seen as states of affairs. Thus, from
an agent’s perception point of view, the fact that a book is over a table is no different than
a norm obliging an agent to drive on the right. Given this representation, the difference
between perception and belief indicates a norm’s status in terms of acceptance by an agent.

After accepting a norm, an agent needs to make sure that the norm is not in conflict with
its set of norms already in effect and then modify its behaviour. For example, if an agent
accepts a norm n1 that prohibits it from performing an action act, and later perceives a
norm n2 that obliges it to perform action act, then n1 and n2 are in conflict. Thus, it is
necessary for an agent to make sure it does not accept conflicting norms which would result
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in inconsistent behaviours, such as creating and executing plans that carry out prohibited
actions.

These processes are illustrated in Figure 6.1, in which rectangles represent agent reasoning
processes, rounded rectangles represent environmental or societal processes, and diamonds
represent decisions within an agent. The flow starts with the receipt of norms from the
environment and the decision to accept or reject a norm. The processes that follow from
this decision (including potential sanctions) consist of verifying consistency and subsequently
changing behaviour. In this thesis, we focus only on the behaviour modification part at the
end of the flow in the figure, and indicated in a dashed box. In particular, we avoid the issue
of maintaining norm consistency, a very complex problem in itself, having been addressed
by other efforts [Vasconcelos et al., 2007] that can be easily integrated into ours, as we
discuss in our conclusions.

Environment /
Society

Accept?

Sanctions

Verify
Consistency

Change
Behaviour

Norms

Accept
Norm

Reject
Norm

Figure 6.1: Overview of norm processing in our system.

The point here is that while norms have been considered more generally, especially in the
context of societies, the impact of norms on agent architectures, in particular BDI archi-
tectures, has received little attention. Specifically, the impact of norms at the level of an
agent’s control cycle has largely been overlooked. Therefore, building on previous efforts, in
particular the planning capabilities described in Chapter 3, and the communication frame-
work explained in Chapter 5, we address norms from the point at which an agent receives
them.

In the following sections we proceed to detail the expected actions an agent must undertake
in order to comply with norms under various combinations of activation and expiration
conditions.

6.3 Norm Outcomes

As we have seen, our norm representation includes conditions for norm activation and expi-
ration, denoting when these norms are to affect an agent’s behaviour. The main consequence
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of these conditions when modifying behaviour lies in what must be done in reaction to the
agent accepting new norms. The two most evident situations regarding activation and ex-
piration conditions are: when the activation condition is already true, which means that
the norm must be enacted immediately and any contrary behaviours stopped; and when an
expiration condition is already true, which means that the norm has expired and can be
ignored. Clearly, there are a number of possible combinations of activation and expiration
conditions, and each combination results in a different set of actions an agent must carry
out in order to comply with the norm. We therefore analyse these combinations providing
an overview of the outcome of each combination for an agent wanting to comply with the
norm. Subsequently, we detail algorithms that generate these outcomes, starting with algo-
rithms to react to the activation of a norm in Section 6.4, followed by the results of norm
expiration in Section 6.5.

We summarise all norm condition combinations and their outcomes in Table 6.2, for each
type of deontic modality considered in this thesis (i.e. obligation and prohibition), and for
each type of target for the modality (either an action or a world-state). The activation and
expiration condition columns give the truth-value of these conditions at the time the agent
accepts the norm, so that (following our monotonic assumption) True means the expression
is true and will remain so, while False means the expression is not yet true.

The first case we consider for all deontic modalities is when both the activation and the
expiration condition are true, which results in the norm being ignored, as its expiration
condition has already elapsed. Norms are also ignored when the activation condition is false
but the expiration condition is true since, again, the norm has already expired. Now, if the
activation condition is already true when an agent accepts an obligation, it must react to
either achieve the world-state specified in an obligation(p), or execute the action specified
in an obligation(a).

If this same combination of conditions occurs for a prohibition, it means that an agent must
refrain from achieving the offending world-state or executing the offending action. Since
an agent might have already adopted an offending plan, it must not only suppress plans
that might violate the prohibition, but also drop any instances of these plans adopted as
intentions.

Finally, when both the activation and expiration conditions are false, an agent must create
new plans (using the planning capabilities introduced with AgentSpeak(PL) in Chapter 3)
to enforce compliance as soon as the activation condition holds and add them to the plan
library. This plan creation step is necessary because in this situation the norm has not yet
been activated, but the agent must be prepared for its activation in the future. In particular,
if the norm refers to an obligation to achieve a world-state, the agent must create a plan
that achieves the specified world-state whenever the activation condition holds, whereas if
it refers to an obligation to execute an action, the new plan must execute that action. Note
that plans to comply with obligations to achieve world-states are created using some kind of
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Deontic Activation Expiration Outcome
Modality Condition Condition

obligation(p) True True Ignore norm
True False Adopt plan to achieve p
False False Add plan to achieve p to the plan

library whenever the activation
condition holds

False True Ignore norm
obligation(a) True True Ignore norm

True False Adopt plan to that includes a
False False Add plan that includes a to the

plan library whenever the activation
condition holds

False True Ignore norm
prohibition(p) True True Ignore norm

True False Drop intentions to achieve p and
suppress plans that achieve p

False False Add plan to suppress plans that
achieve p whenever the activation
condition holds

False True Ignore norm
prohibition(a) True True Ignore norm

True False Drop intentions that include a and
suppress plans that include a

False False Add plan to suppress plans that
include a whenever the activation
condition holds

False True Ignore norm

Table 6.2: Combinations of activation and expiration conditions and their outcomes.

planning capability, of which there are many, though here we adopt that of AgentSpeak(PL)
in Chapter 3. Furthermore, if the norm refers to a prohibition to achieve a world-state, the
new plan must suppress all plans that achieve the prohibited world-state whenever the
activation condition holds, whereas if it refers to a prohibition to execute an action, the new
plan must suppress all plans containing the prohibited action. In both these cases, not only
must plans be suppressed, but violating intentions must also be dropped.

Now, we understand that creating new plans to comply with newly accepted norms, and
later removing these plans after a norm has expired, from a pragmatic point of view, is
not necessarily the optimal solution. For example, it is certainly possible for an agent to
use existing plans in its plan library to accomplish an obligation, avoiding the need to
generate a new plan from scratch. However, an agent must still ensure that the plan’s
invocation condition is compatible with the activation condition of the obligation, as well
as ensuring that it does not also bring about undesirable effects. This analysis process is
complex in itself, and it is unclear how the cost of this process compares to planning from
first principles. Furthermore, removing plans makes perfect sense under our monotonic
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assumption, since a norm will never occur in the exact same form again in the future.
However, if we drop the monotonic assumption, plans should no longer simply be deleted
after the norm has expired, but must instead be suppressed and stored for reuse for norms
with multiply recurring activation and expiration conditions. Therefore, the dropping of
the monotonic assumption does not invalidate our algorithms, but rather requires some
additional bookkeeping.

6.4 Norm Activation

Now that we have considered the possible high-level outcomes for an agent seeking to comply
with norms, we consider how to deal with the receipt of obligations and prohibitions in more
detail. In what follows, we assume only a BDI-type language with constructs for goals to
be or goals to do or both; and a plan library or similar construct to store plans, which can
be modified to reflect the set of possible plans an agent may adopt. This plan library is the
target of our norm processing mechanism, which generates changes in the set of possible
plans an agent may adopt either by adding new plans to comply with obligations or by
preventing existing plans from being executed to comply with prohibitions. To accomplish
these changes, we need to modify an agent’s reasoning ability to be able not only to deal
with the world through its actions, but also to deal with its own data structures, its available
plans in particular. As a consequence, we need meta-level operators that can suppress plans
from being selected from a plan library or from being generated by a planner, and can
introduce new plans to the plan library.

In the following sections we refer to some algorithms as templates, or abstract algorithms
that need to be further specified at runtime in order to be instantiated as concrete algorithms.
This is because most agent languages define agent behaviours in terms of reactions to certain
conditions in the environment, and the norm processing behaviours we specify are defined
in terms of their activation and expiration conditions. More specifically, we consider the
addition of plans to handle activation conditions for each type of deontic modality in the
algorithms shown in Sections 6.4.1 and 6.4.2, and the plans to handle expiration conditions
in Section 6.5.

Now, in order to illustrate the operation of these algorithms, we use an AgentSpeak(L) im-
plementation as an example, instantiating the algorithms appropriately. For this to be mean-
ingful, we must recap on the notation used for an AgentSpeak(L) plan e : b1& . . . &bm ←
h1; . . . ; hn., which contains a triggering event e, a context condition expressed by the
b1, . . . , bm belief literals, and a list h1, . . . , hn of goals or actions [Rao, 1996]. In addi-
tion, we need to differentiate actions (which can also include internal actions representing
some functionality internal to an agent) from beliefs, which we do with a preceding dot
symbol; then, the action to vacuum a room is represented as .vacuum(room), and the action
to remove a plan from the plan library is written as .remove_plan(Plan), whereas the belief
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that a room is clean is represented as clean(room). (Note that the specifics of how partic-
ular internal actions work are not important at this point, and we discuss them in detail
later in Section 6.6 along with other implementation concerns.) Finally, we adopt the plan
labelling convention used in the Jason interpreter [Bordini et al., 2007], whereby plans are
given unique labels in the form of predicates preceded by the at (@) sign. For example, a
plan @id e : c <− a. is uniquely identified by the label id, which can be used later for plan
manipulation operations referring to the plan e : c <− a..

6.4.1 Activating Obligations

When an agent chooses to comply with a newly perceived obligation, the steps it must take
are as stated in more detail in Algorithm 5. While this is an algorithm, it is also a plan,
since the algorithm must be encoded as a plan for an agent to be able to use it. The plan is
very simple and follows the basic requirements of the outcomes of accepting an obligation as
shown in Table 6.2. That is, if an obligation has already expired, it can be ignored; otherwise,
new plans must be added to handle the activation and expiration conditions of the norm. If
the obligation has been activated, it must be acted upon immediately. Thus, Line 1 checks
whether the agent believes the norm has expired, and if so, ignores it. Next in Line 4, the
agent adds a new plan, from Algorithm 6, to deal with the activation condition. If the norm
activation condition is true, this plan must be performed immediately, either achieving a
specified world-state or executing an action. Finally, the agent must add another new plan
to handle the expiration of the obligation, which we explain in Section 6.5. Since we are not
concerned in this thesis with the process by which an agent decides whether to comply with
a norm, in both plans we assume that acceptance has been determined, indicated in the
pre-requisites of each algorithm. In Algorithm 5, the requirements also refer to an agent’s
belief base, used to specify that the activation condition must hold before seeking to comply.

Algorithm 5 Plan to comply with an obligation.
Require: Receipt of norm(Activ, Exp, obligation(O))
Require: Acceptance of norm(Activ, Exp, obligation(O))
Require: Belief Base BF
Require: Plan Library PL
1: if BF |= Exp then
2: return
3: end if
4: Create plan LActiv,obligation(O) using Algorithm 6 template
5: Add LActiv,obligation(O) to PL
6: if BF |= Activ then
7: Execute plan from Algorithm 6
8: end if
9: Add plan from Algorithm 9 to deal with expiration

The newly added plan to deal with the activation condition is detailed in Algorithm 6, and
consists of either adding a new goal to achieve an obligatory world-state, or executing an
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obligatory action upon the perception of the norm activation event. Note that Algorithm 6
is a plan template; that is, it shows the general form of plans that are instantiated with
information about a specific norm and its associated activation condition.

Algorithm 6 Plan template to react to activation of an obligation.
Require: Acceptance of norm(Activ, Exp, obligation(O))
Require: Receipt of Activ event
Require: Plan is uniquely labelled with label LActiv,obligation(O)

1: if O is a world-state p then
2: Add goal to achieve p
3: else if O is an action a then
4: Add goal to execute a
5: end if

Example To illustrate these algorithms (plans), we use the example of a cleaner agent that
is capable of using a vacuum cleaner to clean a room. Suppose that the cleaner agent accepts
a norm to achieve a world-state in which the floor is clean at 8:00 hours everyday, until
Christmas Day, expressed as +norm(time(800), day(xmas), obligation(clean( floor ))) [ source(env

)]. In our solution, this results in the generation of two plans, one associated with the
activation condition, which leads to the adoption of a plan to achieve the obliged world-
state, and one associated with the expiration condition, which leads to the removal of all
the plans associated with the specified norm. The two plans, using our notation introduced
earlier, are shown in Table 6.3 (these plans contain implementation- specific detail, for which
we delay explanation until Section 6.6). The first plan, labelled obligationStart (clean( floor

)), has the activation condition time(800) as its trigger, which leads to the adoption of an
achievement goal !clean ( floor ), (and in turn a plan) assumed to achieve a state in which
clean( floor ) holds. This goal addition, shown in Line 3 of Table 6.3, corresponds to Line 2
of the generic Algorithm 6. The second plan, labelled obligationEnd(clean( floor )) has the
expiration condition day(xmas) as its trigger, and results in both plans being removed from
an agent’s plan library through two invocations of the .remove_plan internal action. Note
that the steps to remove the plans associated with the obligation’s expiration may seem
to be self-referential but, due to the AgentSpeak (BDI) reasoning cycle, on execution of
the plan of Table 6.3 these steps are loaded into an instantiated intention that removes the
original plans from the plan library.

1 @ob l i g a t i o n S t a r t ( c l e a n ( f l o o r ) )
2 +time (800) : t r u e
3 <− ! c l e a n ( f l o o r ) .
4
5 @ob l i g a t i onEnd ( c l e a n ( f l o o r ) )
6 +day ( xmas ) : t r u e
7 <− . remove_plan ( o b l i g a t i o n S t a r t ( c l e a n ( f l o o r ) ) ) ;
8 . remove_plan ( o b l i g a t i o nEnd ( c l e a n ( f l o o r ) ) ) .

Table 6.3: Plans for the clean state norm.
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1 @ob l i g a t i o n S t a r t ( vacuum ( f l o o r ) )
2 +time (800) : t r u e
3 <− . vacuum ( f l o o r ) .
4
5 @ob l i g a t i onEnd ( vacuum ( f l o o r ) )
6 +day ( xmas ) : t r u e
7 <− . remove_plan ( o b l i g a t i o n S t a r t ( vacuum ( f l o o r ) ) ) ;
8 . remove_plan ( o b l i g a t i o nEnd ( vacuum ( f l o o r ) ) ) .

Table 6.4: Plans for the vacuum action norm.

Conversely, when an agent is obliged to execute an action, a similar plan schema is gen-
erated, but instead of adopting a goal to achieve a specified state, the new plan needs
simply to execute the specified action. Thus, if a cleaner accepts a norm to vacuum the
floor at 8:00 hours every day, until Christmas day, expressed as +norm(time(800), day(xmas),

obligation (.vacuum(floor))) [ source(env)], very similar plans are adopted, but instead of adding
an achievement goal to its intention structure, the specified action is executed, as illustrated
in the plans of Table 6.4.

6.4.2 Activating Prohibitions

Now, when the accepted norm refers to a prohibition, we need to use Algorithm 7. This
consists of first checking for norm expiration, then adding a plan to handle norm activation,
and checking whether or not the norm has already been activated, in which case the added
plan must be executed.

Algorithm 7 Plan to comply with a prohibition.
Require: Receipt of norm(Activ, Exp, prohibition(P ))
Require: Acceptance of norm(Activ, Exp, prohibition(P ))
Require: Belief base BF
1: if BF |= Exp then
2: return
3: end if
4: Create plan LActiv,prohibition(P ) using Algorithm 8 template
5: Add LActiv,prohibition(P ) to PL
6: if BF |= Activ then
7: Execute plan from Algorithm 8
8: end if
9: Add plan from Algorithm 10 to deal with expiration

The plan to deal with prohibition activation, detailed in Algorithm 8, consists of first scan-
ning an agent’s intentions (i.e. the plans already adopted) for instances of the prohibited
action, or for plans having a prohibited world-state as a consequence. If plans violating
the prohibition are found as intentions, they must be dropped immediately. Afterwards,
the plan library is similarly scanned for plans that may violate the prohibition if executed.
If the prohibition refers to a state, all plans with this state as a consequence must be
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suppressed, while if the prohibition refers to an action, all plans with this action must be
suppressed. In addition to suppressing the plans, suppressed plans are stored in the set
SPlans,prohibition(P ), so that when the prohibition expires later, these plans can be restored.
Like in Algorithm 6, the plan of Algorithm 8 is a plan template (that is, a general form of
plan that becomes concrete after the information about a specific norm and its activation
and expiration conditions is known).

Algorithm 8 Plan template to react to state prohibition activation.
Require: Acceptance of norm(Activ, Exp, prohibition(P ))
Require: Receipt of Activ event
Require: Intention structure I
Require: Plan library PL
Require: Plan uniquely labelled with label LActiv,prohibition(P )

Ensure: Suppressed plans are stored in set SPlans,prohibition(P )

1: for all Intention i ∈ I do
2: if (P is a world-state p) and (p is a consequence of i) then
3: Drop intention i
4: else if P is an action a then
5: for all Steps s in remaining steps of i do
6: if s = a then
7: Drop intention i
8: end if
9: end for

10: end if
11: end for
12: for all Plans pl ∈ PL do
13: if (P is a world-state p) and (p is a consequence of i) then
14: Suppress pl
15: SPlans,prohibition(P ) = SPlans ∪ pl
16: else if P is an action a then
17: for all Steps s in pl do
18: if s = a then
19: Suppress pl
20: SPlans,prohibition(P ) = SPlans ∪ pl
21: end if
22: end for
23: end if
24: end for

It is important to note here that we leave the meaning of plan suppression relatively am-
biguous, since the details of how this is done depend on the particular way in which an
agent architecture operates. Later in this chapter we show how this can be achieved in an
AgentSpeak(L)-type agent.

Example If our example cleaning agent was prohibited from entering a room with classified
documentation in it, expressed as +norm(time(800), day(xmas), prohibition( in(classifRoom))) [

source(env)], two new plans need to be generated. First, for activation, we need to make
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sure that the plans that result in the cleaner being in the classified room are suppressed
from execution, as shown in Table 6.5. In this plan, Lines 3 to 5 of Table 6.5 correspond
to Lines 13 to 15 of the generic Algorithm 8. Moreover, when the prohibition expiration
condition becomes true, not only do the plans to handle the activation and expiration
conditions need to be removed, but also the plans that were suppressed by the activation
condition need to be unsuppressed.

1 @p r o h i b i t i o n S t a r t ( i n ( c l a s s i fRoom ) )
2 +!Sta r t : t r u e
3 <− ! f i n dP l a n sW i t hE f f e c t ( i n ( c l a s s i fRoom ) , SPlans ) ;
4 ! s u p p r e s s P l a n s ( SPlans ) ;
5 +suppre s sedP lans ( i n ( c l a s s i fRoom ) ,SP l an s ) .
6
7 @proh i b i t i o nEnd ( i n ( c l a s s i fRoom ) )
8 +!End : s upp r e s s e dP l an s ( i n ( c l a s s i fRoom ) ,SP l an s )
9 <− ! u n s upp r e s sP l a n s ( SPlans ) ;
10 − suppre s sedP lans ( i n ( c l a s s i fRoom ) ,SP l an s ) ;
11 . remove_plan ( p r o h i b i t i o n S t a r t ( i n ( c l a s s i fRoom ) ) ) ;
12 . remove_plan ( p r o h i b i t i o nEnd ( i n ( c l a s s i fRoom ) ) ) .

Table 6.5: Plans generated from a state prohibition.

Plans to effect restrictions on executing actions are very similar to those relating to achieving
world-states, the only difference being in the process for selecting the plans that need to be
suppressed. In this case, the plans searched for are those that contain a particular action.
For example, if the cleaning agent is obliged not to vacuum a table during its rounds of
cleaning through the norm +norm(time(800), day(xmas), prohibition(vacuum(table)))[source(env

)], the plans to effect this prohibition are those shown in Table 6.6.

1 @p r o h i b i t i o n S t a r t ( vacuum ( t a b l e ) )
2 +!Sta r t : t r u e
3 <− ! f i n dP l a n sW i t hAc t i o n ( vacuum ( t a b l e ) , SPlans ) ;
4 ! s u p p r e s s P l a n s ( SPlans ) ;
5 +suppre s sedP lans ( vacuum ( t a b l e ) , SP l an s ) .
6
7 @proh i b i t i o nEnd ( vacuum ( t a b l e ) )
8 +!End : s upp r e s s e dP l an s ( vacuum ( t a b l e ) , SP l an s )
9 <− ! u n s upp r e s sP l a n s ( SPlans ) ;
10 − suppre s sedP lans ( vacuum ( t a b l e ) , SP l an s ) ;
11 . remove_plan ( p r o h i b i t i o n S t a r t ( vacuum ( t a b l e ) ) ) ;
12 . remove_plan ( p r o h i b i t i o nEnd ( vacuum ( t a b l e ) ) ) .

Table 6.6: Plans generated from an action prohibition.

It is important to note at this point that our strategy does not address the issue of norm
consistency; that is, we assume that whenever plans are added to handle a certain norm, the
norm is consistent with both the agent’s objectives and other norms previously accepted by
the agent. It is, however, possible to extend our work with a norm consistency maintenance
strategy such as that proposed by Vasconcelos et al. [Vasconcelos et al., 2007], but such
issues are outside the scope of this thesis.
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6.5 Norm expiration

Now that we have seen the plans needed to start complying with norms under several
circumstances, we need to examine how agent behaviour is modified as a result of a norm
expiring. When an agent accepts a norm and changes its behaviour as a result of the norm
becoming active, it either includes extra plans to comply with obligations or suppresses some
of its plans in order not to violate a prohibition. However, these behaviour modifications
should not become permanent within an agent if the norms that caused them cease to be
active. Moreover, our monotonicity assumption entails that once a norm has been activated
and then expired, it will never become active again. Thus, Algorithms 5 and 7, containing
plans for reacting to norms, also include a final step to add a plan dealing with norm
expiration to the plan library. Such norm expiration plans aim to undo the behavioural
changes effected when the norms were activated, thus restoring the plan library to a state in
which an agent’s behaviour is not affected by them. Thus, the plan in Algorithm 9 consists
both of removing the plan responsible for dealing with obligation activation and afterwards
of removing itself from an agent’s plan library. Both these plans must be individually
identifiable within an agent’s plan library, so we label them respectively LActiv,obligation(O)

and LExp,obligation(O) in order to remove them when they are no longer needed.

Algorithm 9 Plan to react to the expiration of an obligation.
Require: Acceptance of norm(Activ, Exp, obligation(O))
Require: Receipt of Exp event
Require: Label LActiv,obligation(O) for a norm activation plan
Require: Plan library PL
Ensure: Plan is uniquely labelled with label LExp,obligation(O)

1: Remove plan LActiv,obligation(O) from PL
2: Remove plan LExp,obligation(O) from PL

The acceptance of prohibitions, on the other hand, not only adds new plans to react to
norm activation and expiration, it also affects which plans are available to an agent after a
prohibition has been activated. Thus, the plan to react to the expiration of a prohibition
must not only remove the new plans added to comply with the norm, it must also restore the
plans previously suppressed to their initial state of availability. The plan of Algorithm 10
accomplishes this by unsuppressing the initially suppressed plans which, according to the
plan of Algorithm 8, were stored in the set SPlans,prohibition(P ), and then removing plans
LActiv,prohibition(P ) and LExp,prohibition(P ) from the plan library.

6.6 Normative AgentSpeak(L)

In order to test the viability of our solution in a practical agent language, we have devel-
oped an implementation of the strategies outlined in Section 6.3 using an AgentSpeak(L)



Chapter 6 Normative processing 169

Algorithm 10 Plan to react to the expiration of a prohibition
Require: Acceptance of norm(Activ, Exp, prohibition(P ))
Require: Receipt of Exp event
Require: Label LActiv,prohibition(P ) for a norm activation plan
Require: Plan library PL
Require: SPlans,prohibition(P ) of suppressed plans
Ensure: Plan is uniquely labelled with label LExp,prohibition(P )

1: Unsuppress all plans from SPlans,prohibition(P )

2: Remove plan LActiv,prohibition(P ) from PL
3: Remove plan LExp,prohibition(P ) from PL

interpreter. An important part of this involves the manipulation of an agent’s own plan
library, necessitating a means to perform meta-level operations, allowing AgentSpeak(L)
plans to manipulate other plans. With such a meta-level facility in place, we can create
AgentSpeak(L) plans that accomplish the norm-induced behaviour modification described
above.

6.6.1 Norm acceptance in AgentSpeak(L)

As we have seen in Section 6.2.3, we consider that an agent’s perception of a norm is no
different to the perception of any other facts about the world. As a consequence, it is possi-
ble to model norm perception in AgentSpeak(L) in exactly the same way as environmental
perception, which in turn allows us to associate AgentSpeak(L) plans with the events con-
nected to new environment percepts. Here, when a norm is perceived, an agent receives an
event +norm(Act,Exp,obligation(O))[source(env)], which is handled by an AgentSpeak(L) plan
containing the procedure to decide whether or not to accept the norm. The annotation
mechanism serves to show who or what issued the norm, so that environmental norms (i.e.
norms inherent to a certain environment) that are not issued by any agent are different
from norms that are issued by other agents. The difference in origins of norms can then be
taken into account when deciding whether to comply with them. Norms coming from from
agents may be, for example, the result of signing a contract between them. When events in
the form norm(Activation, Expiration, Norm) are posted to an agent it must decide whether
or not to accept the new norm. The decision to accept or reject these newly discovered
norms can then be associated with plans having such events as their triggering conditions,
as illustrated in Table 6.7, which consists of first accomplishing a test goal querying whether
or not the norm should be accepted, and then accomplishing an achievement goal to process
the norm.

1 +norm( A c t i v a t i o n , E x p i r a t i o n , Norm) [ s ou r c e ( Src ) ] : t r u e
2 <− ?acceptNorm ( A c t i v a t i o n , E x p i r a t i o n , Norm, Src ) ;
3 !p rocessNorm ( A c t i v a t i o n , E x p i r a t i o n , Norm) .

Table 6.7: Plan for norm receipt.
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It is important to note that we do not detail how the decision to accept norms is made; for
our purposes, it suffices to provide a plan (in Table 6.8) that abstracts this procedure, by
accepting all norms unconditionally, but could easily include some stronger analysis of the
benefit of accepting a norm versus its associated penalties.

1 ?acceptNorm ( A c t i v a t i o n , E x p i r a t i o n , Norm, Src ) : t r u e
2 <− t r u e .

Table 6.8: Plan for norm acceptance.

With this norm representation, we can now describe the machinery necessary to process
newly acquired norms and modify an agent’s behaviour. As we have seen, norms can either
refer to the imposition of new behaviours or the suppression of existing ones, and norms
have activation conditions indicating when they become effective, as well as expiration
conditions indicating when they cease to be effective. From an AgentSpeak(L) perspective,
this coincides with the notion of triggering conditions in plans, thus requiring that new
plans be created to respond to both the activation condition and the expiration condition
of a norm, as illustrated in Figure 6.2.

Generate 
Plans

Plan for 
Activation Condition

Plan for 
Expiration Condition

Accepted
Norm

Figure 6.2: Effects of norm acceptance.

6.6.2 Meta-level actions for AgentSpeak(L)

The AgentSpeak(L) language does not have explicit constructs for the analysis of a plan
library, yet this is required in the strategies described in Section 6.3 and implemented in
Section 6.6.3. In particular, for an agent to evaluate its existing behaviours, encoded in its
plans, we require the introduction of meta-level operators that allow regular AgentSpeak(L)
plans themselves to explore and process other plans in the plan library. In our system, we
construct such operators, as summarised in Table 6.9, through the use of internal agent
actions. We have seen in Section 5.3.1 that internal actions are non-world changing operators
that can be executed instantaneously, and allow the construction of custom procedures
within AgentSpeak(L). We recap that internal actions are denoted by a preceding dot, so
the internal action to suppress a plan is represented as .suppress_plan(Plan).
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Action Effect
.plan_steps(P,S) takes a plan P and unifies its plan

steps as a list of literals with S
.plan_consequences(P,C) takes a plan P and unifies its

declarative consequences with C
.action(A) succeeds if the A atom refers

to an action
.literal(L) succeeds if the L atom refers

to a literal
.add_plan(P) adds P to the plan library

.remove_plan(P) removes P from the plan library
.suppress_plan(P) suppresses the specified plan from

being executed
.unsuppress_plan(P) allows a previously suppressed

plan to be executed

Table 6.9: Summary of the meta-level actions

Most of the meta-level actions of Table 6.9 either have simple outcomes or implement parts
of the algorithms described in Section 6.3. However, the first two actions in the table are
needed specifically to deal with the way in which AgentSpeak(L) operates, and we need to
clarify them further. The action .plan_steps(P,S) takes an AgentSpeak(L) plan in variable P

and unifies the steps of this plan with a list in variable S, while .plan_consequences(P,C) takes
a plan in variable P and unifies the declarative consequences with a list in variable C. This
latter internal action works similarly to the process of extracting declarative information
used in AgentSpeak(PL) in Section 3.5.1. The next two actions in Table 6.9 are used in
the context conditions of the plans to deal with actions and literals, identifying whether
the target atom in a norm refers to an action or a belief literal. Finally, since we need to
manipulate plans in the plan library, we use action .add_plan(P) to add a plan P to the plan
library and .remove_plan(P) to remove the plan specified in P , while .suppress_plan(P) and
.unsuppress_plan(P) are used respectively to suppress (and therefore prevent from executing)
a plan, and to unsuppress a plan (reversing any possible suppression).

Plans to ensure compliance with prohibitions are more complex in that they require an
agent to scan its entire plan library looking for violating plans. For prohibitions relating
to executing an action, this requires finding all plans in the plan library that contain the
prohibited action and suppressing their execution. This is shown in Algorithm 11.

Prohibitions relating to achieving certain world-states require an agent to analyse the effects
of each of the plans in its plan library, and suppress the execution of those that have the
prohibited state as an effect. An algorithm to accomplish this is shown in Algorithm 12.
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Algorithm 11 Find plans with action.
Require: AgentSpeak plan library PL
Require: Action act
Ensure: A list PLA of plans containing act
1: for all Plans {t : c← b.} ∈ PL do
2: for all Steps si ∈ b do
3: if si unifies with act then
4: Add {t : c← b.} to PLA

5: end if
6: end for
7: end for
8: return PLA

Algorithm 12 Find plans with effect.
Require: AgentSpeak plan library PL
Require: Proposition p
Ensure: A list PLP of plans containing p
1: for all Plans {t : c← b.} ∈ PL do
2: Get the effects E of {t : c← b.}
3: for all Effects e ∈ E do
4: if e unifies with p then
5: Add {t : c← b.} to PLP

6: end if
7: end for
8: end for
9: return PLP

6.6.3 AgentSpeak plan modification mechanisms

Using these internal actions, we can create AgentSpeak(L) plans that add newly accepted
norms, as described in Section 6.2.3, to the set of active norms. As we have seen, adding
obligations is relatively straightforward, and we omit the meta-level plans for their addition,
focussing instead on those responsible for handling the addition of prohibitions. When a
prohibition referring to an action is added, we need to create two plans, one to handle the
start of the prohibition and another to handle the end of the prohibition.

Thus, when a prohibition on an action becomes effective, an agent needs first to find all
the plans with the prohibited action and then suppress each of the plans containing the
offending action. Finding these plans involves a !findPlansWithAction( Prohibition, SelPlans)

plan, which uses the .plan_steps(Plan,Steps) action to explore each plan step, corresponding
to step 2 of Algorithm 11. Once the plans are identified, the plan needs to suppress these
plans with the !suppressPlans (SelPlans) plan, which uses the .suppress_plan(Plan) action. In
our implementation, plans that are suppressed are removed from the plan library, and thus
not considered as options to achieve a certain goal. It is also important to keep track of
the suppressed plans so that they can be unsuppressed later. When the prohibition ceases
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to be effective, we need to unsuppress the plans previously suppressed, as well as remove
the plans related to this particular norm, since they will no longer be necessary. A meta-
plan responsible for creating these norm-related plans uses the start and end conditions to
create the triggers for two plans that accomplish the suppression and unsuppression of the
necessary plans, generating plans following the template shown in Table 6.10.

1 @p r o h i b i t i o n S t a r t ( P r o h i b i t i o n )
2 +!Sta r t : t r u e
3 <− ! f i n dP l a n sW i t hAc t i o n ( P r o h i b i t i o n , SPlans ) ;
4 ! s u p p r e s s P l a n s ( SPlans ) ;
5 +suppre s sedP lans ( P r o h i b i t i o n , SP l a n s ) .
6
7 @proh i b i t i o nEnd ( P r o h i b i t i o n )
8 +!End : s upp r e s s e dP l an s ( P r o h i b i t i o n , SP l a n s )
9 <− ! u n s upp r e s sP l a n s ( SPlans ) ;
10 − suppre s sedP lans ( P r o h i b i t i o n , SP l a n s ) ;
11 . remove_plan ( p r o h i b i t i o n S t a r t ( P r o h i b i t i o n ) ) ;
12 . remove_plan ( p r o h i b i t i o nEnd ( P r o h i b i t i o n ) ) .

Table 6.10: Template plans generated from an action prohibition.

To add the plans that handle prohibitions on world-states, the necessary steps are similar to
those for prohibitions on actions, with the only difference being that the search criterion for
offending plans involves the effects of these plans. We extract the effects of plans using the
.plan_consequences(Plan, Consequences) action, used in the !findPlansWithEffect ( Prohibition,

SelPlans) plan. Like in the prohibition for actions, a meta-plan responsible for creating
these norm-related plans creates two plans following the template shown in Table 6.11.

1 @p r o h i b i t i o n S t a r t ( P r o h i b i t i o n )
2 +!Sta r t : t r u e
3 <− ! f i n dP l a n sW i t hE f f e c t ( P r o h i b i t i o n , SPlans ) ;
4 ! s u p p r e s s P l a n s ( SPlans ) ;
5 +suppre s sedP lans ( P r o h i b i t i o n , SP l a n s ) .
6
7 @proh i b i t i o nEnd ( Ob l i g a t i o n )
8 +!End : s upp r e s s e dP l an s ( P r o h i b i t i o n , SP l a n s )
9 <− ! u n s upp r e s sP l a n s ( SPlans ) ;
10 . remove_plan ( p r o h i b i t i o n S t a r t ( P r o h i b i t i o n ) ) ;
11 . remove_plan ( p r o h i b i t i o nEnd ( P r o h i b i t i o n ) ) .

Table 6.11: Template plans generated from a state prohibition.

6.7 Related work

In this chapter, we have taken the basic notions of norms within agent systems and have
used them to define individual agent behaviour modification mechanisms to comply with
them, thus filling a gap in normative agent research. Previous work has also addressed
similar concerns, in moving from largely intractable deontic modalities into simpler, yet
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useful representations of norms to be used in a concrete system. For example, one of the
first practical architectures for a norm-driven agent was Kollingbaum and Norman’s NoA
[Kollingbaum and Norman, 2003], which takes a BDI-like agent architecture and changes
the focus of agent behaviour from achieving desires to fulfilling norms. As in NoA, we use an
explicit representation of the effects of an agent’s plans to detect potential norm violations,
as well as deciding which plans are more suitable for achieving an obligation, but our agents
are still driven by their desires like traditional BDI agents. In contrast, Vazquez-Salceda et
al. [Vázquez-Salceda et al., 2005] take the ISLANDER [Esteva et al., 2001] formalism and
use it to establish guidelines for the implementation of a normative system, its monitoring
and the enforcement of its norms. Our work can be seen as complementary, since we provide
the machinery to modify the behaviour of an agent willing to accept norms, as opposed to
being concerned with the rest of the system. Unlike other approaches, such as electronic
institutions [Garcia-Camino et al., 2005], which typically require compliance, our agents
may choose to ignore a norm, even if it may lead to potential penalties.

Due to the rather large scope of normative agents, we have explicitly not considered the
important issue of maintaining the consistency of a set of norms. Other types of potential
clashes involve overlapping of norm conditions, including their activation and expiration.
For example, if an agent accepts a norm prohibiting work from time 12 to time 14, and
another prohibiting work from time 11 to time 15, plans may be modified due to the acti-
vation of the second prohibition at time 11, and then modified again due to the expiration
of the first prohibition at time 14, jeopardising the second prohibition in the process. How-
ever, it is important to point out that a solution for addressing this could be easily adapted
from the work of Vasconcelos et al. [Vasconcelos et al., 2007], which provides an algorithm
for resolving conflicts and inconsistencies in sets of norms using a unification-based tech-
nique. Similarly, our agents could resolve norm conflicts by adapting the mechanism used
by Kollingbaum’s [Kollingbaum and Norman, 2003] NoA architecture for the same purpose.
Thus, by assuming an existing norm consistency maintenance process, we have reduced
the problem we address, to focus on individual norm additions and deletions, avoiding the
dilution of our efforts, and facilitating a more specific consideration of the relevant issues.

6.8 Conclusions

In this chapter, we have described a framework of concrete behaviours for classical agent
languages that enable them to effect changes in their own plan libraries to conform to new
norms accepted from the environment. Our framework is sufficiently generic that it can be
extended into any traditional BDI style agent language. Importantly, we have also developed
these general algorithms further into a concrete instantiation in AgentSpeak(L) (using a new
toolkit of meta-level operators, that has not been considered previously), providing a novel
contribution in itself, as well as an illustration and realisation of the algorithms. We show
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how our framework can generate new plans to enable agents to comply with norms, and
remove the plans when the norms are no longer relevant, through a series of examples
throughout the chapter, demonstrating the practicality of our approach.

Regarding the evaluation of our normative processing technique, it is difficult to evaluate in
a quantitative empirical analysis, and we have therefore demonstrated it through examples
of the effects of the mechanism on concrete AgentSpeak(L) agents. Further analysis of
the power and limits of our mechanism, however, is an ongoing process, and can only be
achieved as more agents and normative systems are implemented using our norm processing
techniques. This can and should be undertaken through extensive deployment and use,
with experience feeding into evaluation and subsequent refinement. As for Chapter 5, while
this is beyond the scope of what is possible in this thesis, it offers opportunities for further
research.

The norm processing mechanism described in this chapter has been fully implemented us-
ing the Jason interpreter extended with the AgentSpeak(PL) planning capabilities1. Agents
built using this system include a default addition to the plan library containing the strate-
gies described in Section 6.6 as AgentSpeak(L) plans, as well as the set of meta-level actions
described in Section 6.6.2. Moreover, this system was used in the implementation of the
cleaning robot example described in this chapter. An important characteristic of our proto-
type is that it requires no knowledge from a designer that there is an underlying normative
processing mechanism, that is, the designer can implement an agent using his or her regular
development methodology since the mechanism we implemented imposes no restrictions on
how existing plans are structured.

1The implementation is available for download at www.meneguzzi.eu/felipe/software.html.

http://www.meneguzzi.eu/felipe/software.html#iovis


Chapter 7

Conclusion

Practical agent programming languages make up a rapidly developing subfield within agent
systems research, yet there are still many unresolved problems. In this thesis we have
addressed several of these problems, and have advanced the state-of-the-art in clear and
well-defined ways through the contributions in this thesis. Bringing the different aspects
of the thesis together in this chapter, we step back and review the thesis more generally,
outlining our contributions and examining limitations and possibilities for future work.
First, we summarise our efforts over the various chapters in Section 7.1, reviewing the main
aspects of each chapter. Then, we restate the contributions of our work in Section 7.2,
taking note of the limitations we identified in our work, and pointing towards avenues for
further research in Section 7.3. Finally, we make some concluding remarks in relation to
the thesis in Section 7.4.

7.1 Thesis summary

Agent-based software is an established method for modelling an increasingly important
number of network-centred systems. Unlike traditional object-oriented approaches to system
modelling, agents are able to control their own internal state and behaviour, and have
dynamic relationships among themselves and the environment in which they operate.

In order to effectively operate in an uncertain environment populated by heterogeneous
agents, an agent needs not only to cooperate with unforeseen partners, but also to use its
ability to control its internal operation to adapt its behaviour to the changing environ-
mental circumstances. To facilitate the development of this kind of system, various agent
programming languages have been developed. Such agent languages have often been based
on a certain type of agent model that, in principle, allows for a wide range of autonomous
behaviour, but these languages seldom allow the full range of behaviours envisioned in all
theoretical models to be realised in practice. This is especially true for languages based on
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some BDI models (e.g. Rao’s BDI model [Rao, 1996]), where aspects such as means-ends
reasoning, and meta-reasoning, for example, are simply not considered. For agent program-
ming languages to be truly useful in the development of complete agent systems (and also
to be adopted more widely for real systems development), they must be able to implement
agents that can adapt their behaviour and cooperation with previously unknown partners.
These capabilities are often touted as being the distinguishing factor between traditional
systems and agent-based systems. However, existing agent languages provide little, if any,
support for agent cooperation and behaviour flexibility.

In seeking to address these concerns, the chapters in this thesis have addressed a series of
distinct, but related, aspects in turn. Chapter 3 describes our first step towards gearing
agent languages for the development of flexible systems, in which we introduced the ability
to generate new plans at runtime into a BDI-based language and its associated interpreter.
To do this, we took the popular AgentSpeak(L) language and developed a translation pro-
cess that takes the BDI mental components and translates them into the STRIPS planning
formalism, allowing an agent to tap into a planning algorithm to generate new plans to
achieve its desired states of affairs. Since planning is a computationally expensive process,
we also improved the long term efficiency of our planning agent by developing a plan caching
method that generates a minimum context condition for newly generated plans and adds
them to the plan library for future reference, eliminating the need to create plans multiple
times for recurring situations. AgentSpeak(L) is a procedural agent language, so the in-
troduction of this declarative planning process also allows AgentSpeak(L) agents to reason
about declarative goals.

Building on the notion of achieving declarative goals, we introduced a motivated reason-
ing mechanism into AgentSpeak(L) in Chapter 4. By ascribing motivations to an Agent-
Speak(L) agent, it is possible to generate goals independently from the stream of events,
allowing the agent to proactively adopt goals instead of directly responding to events in the
environment.

Now, the ability to plan at runtime allows an agent to develop new strategies based on in-
formation not available at design time, which is a key capability for effective operation in an
environment where agents form relationships dynamically. Thus, in Chapter 5, we leveraged
the planning capability introduced earlier to create a simple cooperation mechanism. Our
mechanism relies on cooperating agents sharing information about actions they are willing
to execute on behalf of others, so that a planning agent can include them in their newly
generated plans, allowing them to solve problems they would not individually be able to
solve.

Finally, we considered problems arising from the instability caused by undesirable be-
haviours being generated as a consequence of either individual agent interest, or the unfore-
seen effects of non-scripted cooperation. In order to prevent such systems from potential
instability, it is now increasingly common for agent societies to be regulated by norms
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prescribing which behaviours are permitted and which are not. This has led to the devel-
opment of a number of normative frameworks aimed at monitoring and enforcing norms at
the environment level [Aldewereld et al., 2006; Meneguzzi et al., 2008; Oren et al., 2008b;
Vázquez-Salceda et al., 2005], but which conspicuously lack methods for dynamically adapt-
ing agents to comply with them. As a result, we developed a norm processing mechanism in
Chapter 6, allowing agents to change their plan libraries at runtime to comply with norms,
thus ensuring our flexible, cooperating agents operate within the normative boundaries of
their environments.

7.2 Contributions

As should be clear from the summary above, in this thesis we have analysed key agent
concepts, including planning, motivated reasoning, cooperation and normative reasoning
and operationalised them into a traditional BDI agent language. In this process, we have
solved a number of problems prevalent in the area of practical agent languages suitable
for application to flexible multiagent domains. Thus, our main contributions comprise the
language extensions developed throughout the thesis, and span four distinct areas: plan
generation, meta-reasoning, cooperation and normative reasoning. We elaborate each of
these areas in the following subsections.

7.2.1 Planning capabilities

Underpinning most of our work is the requirement that agents must be able to change their
plan libraries to cope with varying circumstances, social and otherwise, in an environment.
In order to allow an agent to synthesise new plans at runtime and change its behaviour,
we developed AgentSpeak(PL), an AgentSpeak agent interpreter capable of generating new
plans at runtime using an external planning component. In achieving this, we also provided
three further contributions.

First, in order to bind the planning component to AgentSpeak(PL), we have provided a
translation mechanism from BDI mental attitudes into a classical planning formalism
and from this formalism back into mental states. This allows a BDI agent to convert its
mental state into planning problems that can be solved by any planning module based on
the classical planning formalism. The result of this process are plans that can be integrated
into the plan library of an autonomous agent, overcoming any omissions in that library by
the designer.

Our translation process is applied particularly to the AgentSpeak(L) language which, as a
procedural agent language, can only reason about goals to do. This language benefits from
the planning process not only by being able to produce new plans, but also by reasoning
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about declarative goals (or goals to be), which is the type of goal processed by classical plan-
ning. Thus, second, we have extended the AgentSpeak(L) language to handle declarative
goals in AgentSpeak(PL).

Since the process of generating new plans is also computationally expensive, our planning
extension has been designed so that it is used as a last resort when all known plans have
been exhausted. When plans do need to be created, the effort spent in creating them must
not be wasted, leading us to develop a plan reuse strategy based on adding new plans to the
plan library with an appropriate context condition. In order to achieve this, we have thirdly
developed a context generation algorithm that analyses newly created plans and creates
a minimum context condition that guarantees that the associated plan can be invoked only
when it has a chance of executing successfully.

7.2.2 Motivated meta-reasoning

In addition to changing an agent’s behaviours through planning, we have developed ameta-
reasoning mechanism through which an agent can adapt its behaviour selection in the form
of motivated reasoning. This mechanism was incorporated into AgentSpeak(MPL), which
is an extended AgentSpeak(PL) interpreter capable of meta-reasoning through motivations.
Here, motivations are used as an abstraction to define meta-reasoning strategies, such as
evaluating the subjective reward of certain plans, and assessing the importance of pursu-
ing different goals. As a result, we have developed a language for specifying motivations
within a BDI agent, as well as the corresponding processing mechanism attached to the
AgentSpeak(MPL) interpreter. This language allows the specification of generic motiva-
tional functions, including motivational intensity updates, goal generation and mitigation,
so that a number of meta-reasoning strategies can be defined using it.

7.2.3 Multiagent domains

Agent languages in particular are notoriously lacking with regard to support for multiagent
domains, inducing developers to implement cooperation methods in a more or less ad hoc
way. In response, we have provided a method to enable the standard BDI architecture to
be used in multi-agent domains, with cooperation and planning across multiple agents
with an underlying single-agent planner. This is accomplished by leveraging the planning
capabilities of AgentSpeak(PL), and by borrowing the web services notion of proxies for use
in BDI agent planning. Here, local proxy plans, representing the plans of others, can be used
locally in the construction of a new cooperative plan, encapsulating all the communication
required for delegation, resulting in a simple, yet effective cooperation technique.
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7.2.4 Normative processing

Having extended BDI agent languages to allow the generation of new plans at runtime,
adapting an agent’s behaviours, and using this plan generation mechanism for cooperation
in a dynamic society, we have considered how to constrain individual agent behaviour so
as not to create instability, particularly as a result of unforeseen behaviours. In order to
address this, we have provided a norm processing mechanism into the AgentSpeak(PL)
reasoning cycle by leveraging the previous contributions of planning and communication.

To accomplish this, we analysed the expected effects of a norm on an agent’s reasoning
cycle, resulting in the development of a generic norm processing mechanism for BDI agents.
This mechanism comprises a series of algorithms that deal with the various elements of
norms such as activation and expiration, resulting in changes to ensure that an agent’s plan
library is compliant with the norms accepted by an agent.

7.3 Limitations and Future Work

Our contributions span different and complex areas of agent research and, consequently,
some assumptions had to be made in order to focus our work on the issues intended to be
addressed. Similarly, while we have addressed the identified problems, providing strong and
valuable contributions to the development of agent languages, there are still a number of
avenues for future work arising from these contributions, which could enhance the work de-
veloped in this thesis in significant ways. In this section, therefore, we begin by enumerating
the limitations of our work, and identifying possibilities for further research.

7.3.1 Limitations

Environmental assumptions for planning We made two important assumptions re-
garding the environment in which our planning agents operate in the implementation of
AgentSpeak(PL) in Chapter 3. First, the rate at which the environment changes must be
slower than the capacity of the underlying planner to generate an average plan, otherwise
the planning agent runs the risk of generating plans that are no longer relevant at the end
of planning. This assumption is necessary to ensure that existing standalone planners can
be used to perform the planning, allowing our architecture to take advantage of future ad-
vances in planning. In order for this assumption to be dropped, we would need a customised
and dedicated planner, like that used in the work of Despouys and Ingrand [Despouys and
Ingrand, 2000]. Secondly, we assume that our agent only plans for non-numeric domains.
This is an inherited limitation associated with almost all planning algorithms, without which
planning must be modelled as an optimisation problem or become intractable.
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Lack of methodology for motivated agent design The language developed in Chap-
ter 4 for using motivations as an abstraction for meta-reasoning implies that it must be
used by a designer to describe motivations in order to create a desired meta-level strategy.
However, depending on the specific meta-level strategy it may not be trivial to specify the
motivations that lead to the desired behaviour, and may be necessary to provide some set
of guidelines to help designers specify motivations appropriately. At the same time, issues
of methodology are not trivial and constitute a vast area of research which warrants a
separate research effort altogether. Any sensible such effort would require consideration of
existing agent design methodologies, such as TROPOS [Bresciani et al., 2004], Prometheus
[Padgham and Winikoff, 2004], MaSE [García-Ojeda et al., 2008] and Gaia [Zambonelli
et al., 2003], which are outside the scope of this thesis.

Lack of distribution for cooperative planning Although we have developed a mul-
tiagent cooperation mechanism in Chapter 5, we do not take advantage of the cooperating
parties to distribute the planning effort. In other words, we use centralised planning to
construct distributed plans. We have done so in order to leverage our previous planning
mechanism, resulting in our architecture missing potential efficiency gains from distributed
planning. This could be done, for example, by leveraging the work of Iwen and Mali [Iwen
and Mali, 2002] on a distributed Graphplan, but again, this is beyond the scope of our work.

Constrained to BDI architectures The BDI model has been overwhelmingly popular
within agent research since it provides an intuitive model for the description of human
reasoning, and can be easily transposed to agent models. As a result, a large number
of agent architectures have been developed drawing inspiration from the BDI model, and
important agent standards, such as the FIPA agent communication language [Foundation
for Intelligent Physical Agents, 2000], use BDI to underpin their semantics. For this reason,
we have placed a clear emphasis on BDI agents as the base platform of our contributions.
These contributions apply directly to a specific class of BDI agent architectures that include
PRS [Georgeff and Lansky, 1986] and its direct descendants such as dMARS [d’Inverno
et al., 2004] and AgentSpeak(L) [Rao, 1996]. However, most of our contributions can also
be applied to a more general class of BDI agent architectures that are structured around a
belief base, a plan library, goals and intentions, such as JACK [Howden et al., 2001], JADEX
[Pokahr et al., 2005b] and BOID [Broersen et al., 2001]. Nevertheless, the techniques in
this thesis are constrained to BDI architectures, and where agents are very different, such
as in reactive architectures [Agre and Chapman, 1987] or Soar [Laird et al., 1987], our
contributions are not directly applicable. However, the basic ideas and concepts presented
in this thesis may still be relevant, with considerable adaptation, to alternative architectural
approaches.
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Conflict free norms assumption The norm processing mechanism described in Chap-
ter 6 assumes that by the time norms to change behaviour start to be processed by an agent,
they have already been filtered, and consistency regarding other norms adopted by the agent
has been ensured. This assumption could be dropped by leveraging existing norm consis-
tency mechanisms such as the one by Vasconcelos et al. [Vasconcelos et al., 2007]. Moreover,
we have assumed that norms are activated and expired just once within an agent’s lifetime
so that the agent does not need to keep track of multiple instances of the same norm.

7.3.2 Future Work

As stated above, there are several potential areas for further work, building on the develop-
ments described in this thesis, as enumerated here.

Plan interference Our approach to the addition of new plans to the plan library of
AgentSpeak(PL) considers mainly the plan selection mechanism, while ignoring the problem
of adverse effects that multiple plans executing in parallel may have. Our solution to this
problem, as stated in Section 3.6.4, is to prevent multiple planner generated plans from
executing simultaneously. This solution hinders the potential for parallel computation in
cases where it would be possible for an agent to work on multiple disjoint goals at the same
time. This could be overcome through an analysis of how the consequences of plans adopted
as intentions might interfere, using algorithms similar to those developed by Thangarajah
et al. [Thangarajah et al., 2003a] in the detection of negative interference among plans (that
is, detecting when one executing plan jeopardises the goals of another).

Motivation and planning The addition of a model of motivations to underpin the gener-
ation of goals in autonomous agents provides a rational basis not only for adopting particular
goals, but also for the subsequent selection of plans to fulfill these goals, including the ac-
tions carried out in the execution of the selected plans. This information-rich connection
between key parts of the reasoning process can be exploited in the refinement of the plan
selection process or even the plan generation process. Thus, explicit knowledge of what
caused the adoption of a certain goal allows an agent to decide the best course of action
to achieve it. The approach we have taken in integrating motivated reasoning into Agent-
Speak(PL) separates the model of motivation, and the ensuing motivated goals, from the
planner used by the agent to achieve motivated goals. In consequence, the planner does
not have access to the model of motivation, and it is possible for the planner to generate
plans that, while satisfying one motivated goal (and mitigating its associated motivation),
jeopardises the accomplishment of other motivated goals.

A solution to this problem would consist of making the planner aware of the motivations
underlying the goals being planned for. This type of application of motivations has been
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proposed by Coddington [Coddington, 2007] for the MADbot System [Coddington et al.,
2005]. However, it is not clear how this can be accomplished with traditional planners such
as those based on the STRIPS formalism. This issue arises because STRIPS planning is in-
herently discrete in that it can only model finite goals without any quantitative information
associated to either goals or the intermediate world-states considered during the generation
of a plan. We believe that work towards this kind of integration between motivated rea-
soning and planning might benefit from some sort of constraint satisfaction-based planner
[Nareyek, 2001] in order to address the need to weight competing motivations with distinct
intensity variation functions.

Generalised meta-reasoning The language developed in Chapter 4 to describe meta-
level reasoning is based on the abstraction of motivation, and as such ties meta-level decisions
(such as when to adopt or prioritise goals) to specific events in the motivated reasoning
cycle. By contrast, many approaches to meta-level reasoning introduce specific meta-level
constructs, allowing a designer to specify in great detail what meta-reasoning actions certain
events warrant. Our meta-reasoning mechanism could be made more general by describing
meta-level actions, such as adopt, drop and suspend intention, and using them in explicit
meta-level plans. However, the implementation of these actions within the agent interpreter
is not trivial, requiring the analysis of plan flows and interdependencies, which falls outside
the scope of our work. Nevertheless, this expansion would bridge the gap between the
meta-level plans originally proposed in PRS [Georgeff and Lansky, 1987] and the motivation
literature.

Trust and reputation for cooperation As we have seen in Chapter 5, in order to ensure
the long-term viability of the plan library of an agent using our cooperation mechanism,
we provide a failure handling mechanism in Section 5.5 that removes consistently failing
cooperative plans from the plan library. This constitutes a fault recovery mechanism that
only takes place after faults occur, allowing a certain degree of inefficiency in the system.
A possible alternative to this mechanism could leverage work on trust and reputation (e.g.
[Teacy et al., 2006]) in the partner selection part of our cooperation mechanism, ensuring
that only trusted partners are selected, minimising the effort wasted with unreliable part-
ners. Although it may be straightforward to use trust information alongside our cooperation
mechanism to select partners, deriving information about trust from the outcome of coop-
erative plans is not as straightforward. It is overly simplistic to conclude that an agent is
untrustworthy from the fact that certain cooperative plans that included this agent failed,
as the failure may have taken place due to events outside this agent’s control. Therefore, in
order to fully take advantage of trust and reputation mechanisms, it is necessary to study
how to diagnose failures and assign blame to failures in cooperation.
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Norm consistency and norm expressions In Chapter 6 we developed a norm process-
ing mechanism that narrows norms into two types to allow their processing in the creation
and suppression of plans within a plan library. In that mechanism, we assume that norms
are kept consistent somehow in order to focus on the process of plan library modification.
This process, however, is critical for a normative agent to operate properly when faced
with multiple conflicting norms. For example, if an agent receives a norm prohibiting the
execution of an action and another obliging it to execute the same action under certain
conditions, there is no way of deciding which one of these two norms must prevail.

One way of solving conflicts such as this is to adapt the work of Vasconcelos et al. [Vascon-
celos et al., 2007], which deals with norm consistency for an entire society, to the reasoning
process of an individual agent. However, this adaptation needs to take into consideration
that a single agent may be under multiple jurisdictions, and must decide not only between
conflicting norms, but also between conflicting bodies of norms from multiple environments.
One solution to break this type of impasse, in turn, is to use motivational information to
prioritise norms.

7.4 Conclusions

In this thesis, we have pushed the envelope of agent programming languages by developing
key features of autonomous agents into a practical agent language. We have shown that
although many theoretical agent models foresee many properties necessary for autonomous
behaviour, such as the ability to cooperate and to change behaviour to take advantage
of new circumstances, their corresponding realisations in agent languages seldom actually
implement these properties.

This is particularly true when the implementation of these properties requires the integra-
tion of techniques from classic AI, such as planning and meta-reasoning. Our work has
integrated such techniques into an agent language, providing a practical platform for de-
veloping autonomous agents that can change their sets of plans at runtime and discover
new ways of accomplishing their objectives, both individually and cooperatively. We have
also shown how desirable behaviour can be attained in a multiagent system by enabling
agents to alter their plan library to comply with norms. By providing agent languages
with such capabilities, we have demonstrated very concretely how agents can be used as
practical receptacles of artificial reasoning. Thus, while many AI techniques are computa-
tionally expensive, we have argued in this thesis that they can be pragmatically employed
in autonomous agents to solve problems not foreseen by an agent designer before system
deployment, leading the way to truly adaptable systems.
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Important planning algorithms

The actual planning algorithm encapsulated by the planning function of Definition 3.5 can
vary significantly, covering any technique able to generate a plan to achieve a conjunction
of literals. We have described a STRIPS-like planning formalism in Section 3.2.1, but have
chosen to use modern representatives of propositional planners in our prototype, the most
important of which we describe in this appendix, namely graph-based planning and plan-
ning through satisfiability testing, which we proceed to describe in Sections A.1 and A.2.
Moreover, details of the conversion process from AgentSpeak to the specific planning lan-
guage are also abstracted away from the agent so that different planning formalisms can be
used, such as hierarchical task decomposition, described in Section A.3.

A.1 Graphplan

Graphplan is a planning algorithm based on the construction of and search in a graph [Blum
and Furst, 1997]. It is considered a breakthrough in terms of efficiency regarding previous
approaches to planning [Hoffmann and Nebel, 2001; Weld, 1999], and has been refined into a
series of other, more powerful planners, such as IPP1 [Köhler et al., 1997] and STAN2 [Long
and Fox, 1999], whose efficiency has been empirically verified in several planning algorithm
competitions [Ghallab et al., 2002; Long and Fox, 2000].

Planning in Graphplan is based on the concept of a planning graph, which is a data structure
in which information regarding the planning problem is stored in a directed and levelled
graph in such a way that the search for a solution can be optimised. The planning graph is
not a state-space graph in which a plan is a path through the graph. Instead, a plan in the
planning graph is essentially a flow in the network flow sense, which is composed of more

1Interference Progression Planner
2State Analysis
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Graph Expansion Solution Extraction

Graphplan

Consistent Goals?

No Solution

No

Yes

Solution Impossible Plan Found

Figure A.1: Overview of the Graphplan algorithm.

than one path in a directed graph with the added constraint that paths must not include
mutually exclusive nodes in the same graph level.

The planning graph consists of alternating levels of instantiated operators and propositions
representing temporally ordered actions and the world-states that occur between the ex-
ecution of these actions. Proposition levels contain nodes labelled with literals, and are
connected to the actions in the subsequent action level through precondition arcs. Action
nodes are labelled with operators and are connected to the nodes in the subsequent propo-
sition nodes by effect arcs. Every proposition level denotes literals that are possibly true at
a given time step, so the first proposition level represents the literals that are possibly true
before plan execution (e.g. time step 1), the next proposition level represents the literals
that are possibly true at the next time step (e.g. time step 2) and so forth. Action levels
denote operators that can be executed at a given moment in time in such a way that the
first action level represents the operators that may be executed at time step 1 and so forth.
The graph contains mutual exclusion relations (mutex ) between nodes in the same graph
level, denoting that two nodes connected by a mutex arc cannot be simultaneously present
in the same graph level for any solution. These mutual exclusion relations play a key role in
the efficiency of the algorithm, as the search for a solution can completely ignore any flows
that include mutually exclusive nodes in a given level.

Construction of this graph is efficient, having polynomial complexity for both graph size and
construction time regarding problem size [Blum and Furst, 1997]. This graph is then used
by the planner in the search for a solution to the planning problem using data regarding
the relations between operators and states to speed up the search. The basic Graphplan
algorithm (i.e. without the optimisations proposed by other researchers) is divided into
two distinct phases: graph expansion and solution extraction. The algorithm alternates
execution of graph expansion and solution extraction until a solution is found or it is proven
that no solution exists, as illustrated in Figure A.1.
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A.2 SAT Planning

Planning through satisfiability testing (SAT) follows the experiments made by Kautz and
Selman [Kautz and Selman, 1992] on the compilation of STRIPS-based planning problems
into logical formulas to be solved by programs that test the satisfiability of the generated
formulas. These experiments were motivated by performance improvements in the area of
propositional satisfiability verification [Cook and Mitchel, 1997].

Planning ProblemPlanning Problem Compiler Simplifier Solver

Decoder

SAT Planning

(CNF)

(Symbol Table)

If unsatisfiable / Increase Plan Size

(CNF)

(Satisfied Attribution)

Figure A.2: Activities of a typical SAT planner.

A typical SAT planner starts by taking the input planning problem, estimating a plan size,
and generating formula in propositional logic that, if satisfiable, implies the existence of
a plan that represents the solution to the input problem [Kautz and Selman, 1996]. A
symbol table stores the correspondence between the propositional variables created during
compilation and the planning problem received as input. A quick simplification process is
used to reduce the formula created by the compiler into conjunctive normal form (CNF). The
solver generally consists of an off-the-shelf satisfiability tester that tries to find a correct
assignment for the variables in the compiled formula. If such an assignment is found,
the decoder translates this variable assignment, using the symbol table, into a plan. If
the solver determines that the formula is unsatisfiable, then the compiler generates a new
encoding reflecting a longer plan. This process of systematic generation of increasingly
longer propositional encodings is repeated until a satisfiable assignment is found, or a stop
condition is reached (resulting in the failure to find a solution). The typical architecture of
a SAT planner is illustrated in Figure A.2.

A.3 Hierarchical Task Network Decomposition

Hierarchical task network (HTN) decomposition has evolved as an alternative approach to
planning [Erol et al., 1994], departing from the STRIPS specification in that a planning
problem representation is enriched with a hierarchy of goals and methods for refining these
goals into concrete actions.
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Task networks correspond to a set of tasks that need to be accomplished, as well as con-
straints on how these tasks must be carried out. Tasks are represented similarly to operator
headers (e.g. move(A,B)), with parameters that may consist of variables and constants.
Tasks may be non-primitive, requiring the planner to refine them further into primitive
tasks, which can be directly executed and are analogous constructs to STRIPS-like oper-
ators. An HTN planning problem must also include a set of methods specifying how to
perform non-primitive tasks, along with constraints for the application of these methods.
These methods allow the planner to refine a task into a more detailed task network if this
task can be replaced by the task network while respecting some set of constraints.

Planning in an HTN planner starts with a task network describing goal tasks, which are
analogous to STRIPS goals, and attempting to substitute tasks in the network until only
primitive tasks remain, allowing the execution of concrete operators. This process is similar
to how grammar rules are applied to generate strings.



Bibliography

Philip E. Agre and David Chapman. Pengi: An implementation of a theory of activity.
In Proceedings of the Sixth National Conference on Artificial Intelligence, pages 268–272,
1987.

Rachid Alami, Sara Fleury, Matthieu Herrb, Franćois Félix Ingrand, and Frédéric Robert.
Multi-robot cooperation in the MARTHA project. IEEE Robotics and Automation Mag-
azine: Robotics & Automation in the European Union, 5(1):36–47, 1998.

Huib Aldewereld, Frank Dignum, Andrés García-Camino, Pablo Noriega, Juan Antonio
Rodríguez-Aguilar, and Carles Sierra. Operationalisation of norms for usage in electronic
institutions. In Proceedings of the Fifth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 223–225, New York, NY, USA, 2006. ACM.

Jose A. Ambros-Ingerson and Sam Steel. Integrating planning, execution and monitoring.
In Proceedings of the 7th National Conference on Artificial Intelligence, pages 83–88, St
Paul, MN, USA, 1988. American Association for Artificial Intelligence.

Davide Ancona, Viviana Mascardi, Jomi F. Hübner, and Rafael H. Bordini. Coo-agentspeak:
Cooperation in agentspeak through plan exchange. In Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, pages 696–705,
2004.

John L. Austin. How To Do Things With Words. Oxford University Press, Oxford, 1962.

Christian Balkenius. The roots of motivation. In Proceedings of the Second International
Conference on Simulation of Adaptive Behavior, pages 513–523, 1993.

Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.
Artificial Intelligence, 90(1-2):281–300, 1997.

Rafael H. Bordini, Ana L. C. Bazzan, Rafael de O. Jannone, Daniel M. Basso, Rosa M.
Vicari, and Victor R. Lesser. AgentSpeak(XL): efficient intention selection in BDI agents
via decision-theoretic task scheduling. In Proceedings of the First International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 1294–1302, 2002.

Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni. Multi-
Agent Programming: Languages, Platforms and Applications. Springer-Verlag, 2005a.

189



BIBLIOGRAPHY 190

Rafael H. Bordini, Jomi Fred Hübner, and Renata Vieira. Jason and the golden fleece
of agent-oriented programming. In Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and
Amal El Fallah-Seghrouchni, editors, Multi-Agent Programming: Languages, Platforms
and Applications, pages 3–37. Springer-Verlag, 2005b.

Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. Programming multi-agent
systems in AgentSpeak using Jason. Wiley, 2007.

Michael E. Bratman. Two faces of intention. Philosophical Review, 93:375–405, 1984.

Michael E. Bratman. Intention, Plans and Practical Reason. Harvard University Press,
Cambridge, MA, 1987.

Lars Braubach, Alexander Pokahr, Winifried Lamersdorf, and Daniel Moldt. Goal repre-
sentation for BDI agent systems. In Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and
Amal El Fallah-Seghrouchni, editors, Proceedings of the 2nd International Workshop on
Programming Multiagent Systems Languages and Tools, pages 7–9, 2004.

Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopoulos.
Tropos: An agent-oriented software development methodology. Autonomous Agents and
Multi-Agent Systems, 8(3):203–236, May 2004.

Jan Broersen, Mehdi Dastani, Joris Hulstijn, Zisheng Huang, and Leendert van der Torre.
The boid architecture: conflicts between beliefs, obligations, intentions and desires. In
Proceedings of the Fifth International Conference on Autonomous Agents, pages 9–16,
2001.

Rodney Brooks. A robust layered control system for a mobile robot. IEEE Journal of
Robotics and Automation, 2(1):14–23, 1986.

Dolores Cañamero. Modeling motivations and emotions as a basis for intelligent behavior. In
Proceedings of the First International Conference on Autonomous Agents, pages 148–155,
1997.

Lucas Carlson and Leonard Richardson. Ruby Cookbook: recipes for object-oriented script-
ing. O’Reilly, 2006.

Alexandra Coddington. Integrating motivations with planning. In Proceedings of the 6th
International Joint Conference on Autonomous Agents and Multiagent Systems, pages
1–3, New York, NY, USA, 2007. ACM.

Alexandra M. Coddington, Maria Fox, Jonathan Gough, Derek Long, and Ivan Serina.
MADbot: a motivated and goal directed robot. In Proceedings of the 20th National
Conference on Artificial Intelligence, pages 1680–1681, Menlo Park, California, 2005.
AAAI Press.

http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef


BIBLIOGRAPHY 191

Phillip R. Cohen and Hector J. Levesque. Intention is choice with commitment. Artificial
Intelligence, 42(2-3):213–261, 1990.

Stephen A. Cook and David G. Mitchel. Finding hard instances of the satisfiability problem:
A survey. In Dingzhu Du, Jun Gu, and Panos M. Pardalos, editors, Satisfiability Problem:
Theory and Applications, volume 35 of DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 11–13. American Mathematical Society, Providence,
RI, 1997.

Jeffrey S. Cox, Edmund H. Durfee, and Thomas Bartold. A distributed framework for solv-
ing the multiagent plan coordination problem. In Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 821–827. ACM
Press, 2005.

Michael Cox and Anita Raja. Metareasoning: A manifesto. In Proceedings of AAAI 2008
Workshop on Metareasoning: Thinking about Thinking, 2008.

Mehdi Dastani, Birna van Riemsdijk, Frank Dignum, and John-Jules Ch. Meyer. A pro-
gramming language for cognitive agents goal directed 3APL. In Proceedings of the In-
ternational Workshop on Programming Multiagent Systems Languages and Tools, volume
3067 of LNCS, pages 111–130. Springer-Verlag, 2004.

Mehdi Dastani, M. Birna van Riemsdijk, and John-Jules Ch. Meyer. Multi-Agent Program-
ming: Languages, Platforms and Applications, chapter 2: Programming Multi-Agent
Systems in 3APL, pages 39–68. Springer-Verlag, 2005.

Etienne de Sevin and Daniel Thalmann. An affective model of action selection for virtual
humans. In Proceedings of Agents that Want and Like: Motivational and Emotional Roots
of Cognition and Action; Artificial Intelligence and Social Behaviors 2005 Conference,
pages 110–113, 2005a.

Etienne de Sevin and Daniel Thalmann. A motivational model of action selection for virtual
humans. In Computer Graphics International 2005, pages 213–220, 2005b.

Keith S. Decker. Task environment centered simulation. In Simulating organizations: com-
putational models of institutions and groups, pages 105–128, Cambridge, MA, USA, 1998.
MIT Press.

Marie E. desJardins, Edmund H. Durfee, Charles L. Ortiz Jr., and Michael J. Wolverton.
A survey of research in distributed, continual planning. AI Magazine, 20(4):13–22, 1999.

Olivier Despouys and François Felix Ingrand. Propice-plan: Toward a unified framework
for planning and execution. In Proceedings of the 5th European Conference on Planning,
pages 278–293, London, UK, 2000. Springer-Verlag.

Frank Dignum. Autonomous agents with norms. Artificial Intelligence and Law, 7(1):69–79,
March 1999.

http://vrlab.epfl.ch/Publications/pdf/Sevin_Thalmann_AISB_05.pdf
http://vrlab.epfl.ch/Publications/pdf/Sevin_Thalmann_AISB_05.pdf
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=32165&arnumber=1500419&count=40&index=33
http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=32165&arnumber=1500419&count=40&index=33
http://citeseer.ist.psu.edu/rd/51335599%2C105589%2C1%2C0.25%2CDownload/http://citeseer.ist.psu.edu/cache/papers/cs/1744/ftp:zSzzSzftp.cs.umass.eduzSzpubzSzlesserzSzdecker-cod-book-taems.pdf/decker96task.pdf


BIBLIOGRAPHY 192

Mark d’Inverno and Michael Luck. Engineering AgentSpeak(L): A formal computational
model. Journal of Logic and Computation, 8(3):233–260, 1998.

Mark d’Inverno, Michael Luck, Michael Georgeff, David Kinny, and Michael Wooldridge.
The dMARS Architecture: A Specification of the Distributed Multi-Agent Reasoning
System. Autonomous Agents and Multi-Agent Systems, 9(1 - 2):5–53, July 2004.

Mark d’Inverno, Michael Luck, and Michael Wooldridge. Cooperation structures. In Pro-
ceedings of the Fifteenth International Joint Conference on Artificial Intelligence, pages
600–605, 1997.

J. E. Doran, S. Franklin, N. R. Jennings, and T. J. Norman. On cooperation in multi-agent
systems. Knowledge Engineering Review, 12(3):309–314, 1997.

Simon Duff, James Harland, and John Thangarajah. On proactivity and maintenance
goals. In Proceedings of the Fifth International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 1033–1040, 2006.

Edmund H. Durfee. Coordination of Distributed Problem Solvers. Kluwer Academic Pub-
lishers, 1988.

Edmund H. Durfee. Distributed problem solving and planning. In Multi-agents systems and
applications, pages 118–149, New York, NY, USA, 2001. Springer-Verlag New York, Inc.

Edmund H. Durfee and V. R. Lesser. Predictability versus responsiveness: coordinating
problem solvers in dynamic domains. In Readings in uncertain reasoning, pages 198–203,
San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

E.H. Durfee and V.R. Lesser. Partial global planning: a coordination framework for dis-
tributed hypothesis formation. IEEE Transactions on Systems, Man and Cybernetics, 21
(5):1167–1183, 1991.

Kutluhan Erol, James Hendler, and Dana S. Nau. HTN planning: Complexity and expressiv-
ity. In Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-
94), volume 2, pages 1123–1128, Seattle, Washington, USA, 1994. AAAI Press/MIT
Press.

Marc Esteva, Julian A. Padget, and Carles Sierra. Formalizing a language for institutions
and norms. In John-Jules Ch. Meyer and Milind Tambe, editors, Intelligent Agents VIII,
8th International Workshop, volume 2333 of LNCS, pages 348–366. Springer-Verlag, 2001.

Noura Faci, Sanjay Modgil, Nir Oren, Felipe Meneguzzi, Simon Miles, and Michael Luck.
Towards a monitoring framework for agent-based contract systems. In Matthias Klusch,
Michal Pechoucek, and Axel Polleres, editors, Proceedings of the Twelfth International
Workshop on Cooperative Information Agents, 2008.

http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1023/B:AGNT.0000019688.11109.19
http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1023/B:AGNT.0000019688.11109.19
file:citeseer.ist.psu.edu/24780.html
file:citeseer.ist.psu.edu/24780.html


BIBLIOGRAPHY 193

Innes A. Ferguson. Integrated control and coordinated behaviour: a case for agent models.
In Michael J. Wooldridge and Nicholas R. Jennings, editors, Intelligent Agents, volume
890 of LNCS, pages 203–218. Springer-Verlag, 1995.

Richard Fikes and Nils Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2(3-4):189–208, 1971.

Tim Finin, Richard Fritzson, Don McKay, and Robin McEntire. KQML as an agent commu-
nication language. In Proceedings of the Third International Conference on Information
and Knowledge Management, pages 456–463. ACM, 1994.

Foundation for Intelligent Physical Agents. FIPA ACL message structure specification.
http://www.fipa.org, 2000. SC00061.

Maria Fox and Derek Long. PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains. Journal of Artificial Intelligence Research, 20:61–124, 2003.

Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for
autonomous agents. In Intelligent Agents III, volume 1193 of LNCS, Berlin, Germany,
1996. Springer-Verlag.

A. Garcia-Camino, P. Noriega, and J. A. Rodriguez-Aguilar. Implementing norms in elec-
tronic institutions. In Proceedings of the Fourth International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 667–673. ACM Press, 2005.

Juan C. García-Ojeda, Scott A. DeLoach, Robby, Walamitien H. Oyenan, and Jorge Valen-
zuela. O-mase: A customizable approach to developing multiagent development processes.
In Michael Luck and Lin Padgham, editors, Agent-Oriented Software Engineering VIII,
volume 4951 of LNCS, pages 1–15. Springer-Verlag, 2008.

Michael R. Genesereth and Richard E. Fikes. Knowledge interchange format, version 3.0
reference manual. Technical Report Logic-92-1, Stanford University, Stanford, California,
1992.

Michael P. Georgeff and François Félix Ingrand. Decision-making in an embedded rea-
soning system. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence, pages 972–978, Detroit, MI, USA, 1989a. Morgan Kaufmann.

Michael P. Georgeff and François Félix Ingrand. Monitoring and control of spacecraft sys-
tems using procedural reasoning. In Proceedings of the Space Operations and Robotics
Workshop, Houston, USA, 1989b.

Michael P. Georgeff and Amy L. Lansky. Procedural knowledge. Proceedings of the IEEE,
Special Issue on Knowledge Representation, 74(10):1383–1898, 1986.

Michael P. Georgeff and Amy L. Lansky. Reactive reasoning and planning. In Proceedings
of the American Association for Artificial Intelligence (AAAI), pages 677–682, Seattle,
WA, USA, 1987. Morgan Kaufmann Publishers.

http://logic.stanford.edu/kif/Hypertext/kif-manual.html
http://logic.stanford.edu/kif/Hypertext/kif-manual.html


BIBLIOGRAPHY 194

Malik Ghallab, Joachim Hertzberg, and Paolo Traverso. Proceedings of the Sixth Interna-
tional Conference on Artificial Intelligence Planning Systems. AAAI, Toulouse, France,
April 23-27 2002.

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and Practice.
Elsevier, 2004.

Li Gong, Marianne Mueller, Hemma Prafullchandra, and Roland Schemers. Going Beyond
the Sandbox: An Overview of the New Security Architecture in the Java Development
Kit 1.2. In USENIX Symposium on Internet Technologies and Systems, 1997.

Stephen Grand and Dave Cliff. Creatures: Entertainment software agents with artificial
life. Autonomous Agents and Multi-Agent Systems, 1(1):39–57, 1998.

Nathan Griffiths and Michael Luck. Cooperative plan selection through trust. In Proceed-
ings of the Ninth European Workshop on Modelling Autonomous Agents in a Multi-Agent
World, volume 1647 of LNAI, pages 162–174, 1999.

Nathan Griffiths and Michael Luck. Coalition formation through motivation and trust.
In Proceedings of the Second International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 17–24. ACM Press, 2003.

William Grosso. Java RMI: Designing & Building Distributed Applications. O’Reilly, 2002.

Barbara Hayes-Roth. A blackboard architecture for control. Artificial Intelligence, 26(3):
251–321, 1985.

Koen V. Hindriks, Frank S. De Boer, Wiebe Van der Hoek, and John-Jules Ch. Meyer.
Agent programming in 3APL. International Journal of Autonomous Agents and Multi-
Agent Systems, 2(4):357–401, 1999.

Koen V. Hindriks, Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer.
Agent programming with declarative goals. In Intelligent Agents VII. Agent Theories
Architectures and Languages, Seventh International Workshop, volume 1986 of LNCS,
pages 228–243. Springer-Verlag, 2001.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research, 14:253–302, 2001.

Nick Howden, Ralph Rönnquist, Andrew Hodgson, and Andrew Lucas. Jack: Summary
of an agent infrastructure. In Proceedings of the 5th International Conference on Au-
tonomous Agents, Montreal, Canada, 2001.

Jomi Fred Hübner, Rafael H. Bordini, and Michael Wooldridge. Plan patterns for declar-
ative goals in agentspeak. In Proceedings of the Fifth International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 1291–1293, 2006.

http://www.dcs.warwick.ac.uk/~nathan/papers/aamas-2003.pdf


BIBLIOGRAPHY 195

Jomi Fred Hübner, Rafael H. Bordini, and Michael Wooldridge. Programming declarative
goals using plan patterns. In Matteo Baldoni and Ulle Endriss, editors, Proceedings of
the Fourth Workshop on Declarative Agent Languages and Technologies, volume 4327 of
LNCS, pages 123–140. Springer-Verlag, 2006.

Félix Ingrand and Olivier Despouys. Extending procedural reasoning toward robot actions
planning. In Proceedings of the 2001 IEEE International Conference on Robotics and
Automation, pages 9–10, Seoul, Korea, 2001.

François F. Ingrand, Michael P. Georgeff, and Anand S. Rao. An architecture for real-
time reasoning and system control. IEEE Expert, Knowledge-Based Diagnosis in Process
Engineering, 7(6):33–44, 1992.

Mark Iwen and Amol Dattatraya Mali. Distributed graphplan. In Proceedingds of the
14th IEEE International Conference on Tools with Artificial Intelligence, pages 138–145,
Washington, DC, USA, 2002. IEEE Computer Society.

Nicholas R. Jennings. On agent-based software engineering. Artificial Intelligence, 117(2):
277–296, 2000.

Nicholas R. Jennings, Anthony G. Cohn, Maria Fox, Derek Long, Michael Luck, Danius T.
Michaelides, Steve Munroe, and Mark J. Weal. Cognitive Systems: Information Processing
Meets Brain Science, chapter 8. Motivation, Planning and Interaction, pages 163–188.
Queen’s Printer and Controller of HMSO, 2006.

Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent research
and development. Autonomous Agents and Multi-Agent Systems, 1(1):7–38, 1998.

Andrew J. I. Jones and Ingmar Pörn. ‘ought’ and ‘must’. Synthese, 66(1):89–93, 1986.

Dionysis Kalofonos and Timothy J. Norman. An investigation into team-based planning. In
2004 IEEE International Conference on Systems, Man and Cybernetics, pages 5590–5595,
2004.

Henry Kautz and Bart Selman. Planning as satisfiability. In Proceedings of the Tenth
European Conference on Artificial Intelligence, pages 359–363, Chichester, UK, 1992.
Wiley.

Henry Kautz and Bart Selman. Pushing the envelope: Planning, propositional logic and
stochastic search. In Proceedings of the Thirteenth National Conference on Artificial
Intelligence and the Eighth Innovative Applications of Artificial Intelligence Conference,
pages 1194–1201, Menlo Park, August 1996. AAAI Press / MIT Press.

Jana Köhler. Solving complex planning tasks through extraction of subproblems. In Reid
Simmons, Manuela Veloso, and Stephen Smith, editors, Proceedings of the Fourth Inter-
national Conference on Artificial Intelligence Planning Systems, pages 62–69, Pittsburgh,
PA, USA, 1998. AAAI Press.

http://dx.doi.org/10.1007/BF00413581
http://www.i-exchange.org/Team%20Based%20Planning.pdf


BIBLIOGRAPHY 196

Jana Köhler, Bernhard Nebel, Joerg Hoffmann, and Yannis Dimopoulos. Extending plan-
ning graphs to an ADL subset. In S. Steel, editor, Proceedings of the 4th European Con-
ference on Planning, volume 1348 of Lecture Notes in Computer Science, pages 273–285.
Springer-Verlag, Germany, 1997.

Martin J. Kollingbaum and Timothy J. Norman. Norm adoption and consistency in the noa
agent architecture. In Programming Multi-Agent Systems, volume 3067 of LNCS, pages
169–186, 2003.

John E. Laird, Allen Newell, and Paul S. Rosenbloom. Soar: an architecture for general
intelligence. Artificial Intelligence, 33(1):1–64, 1987.

V. Lesser, K. Decker, N. Carver, D. Neiman, M. N Prasad, and T. Wagner. Evolution of
the gpgp domain-independent coordination framework. Technical report, Amherst, MA,
USA, 1998.

V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Horling, D. Neiman, R. Podor-
ozhny, M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan, and X.Q Zhang. Evolution of
the GPGP/TAEMS Domain-Independent Coordination Framework. Autonomous Agents
and Multi-Agent Systems, 9(1):87–143, July 2004.

Alessio Lomuscio and Marek Sergot. Deontic interpreted systems. Studia Logica, 75(1):
63–92, 2003.

Derek Long and Maria Fox. Efficient implementation of the plan graph in STAN. Journal
of Artificial Intelligence Research (JAIR), 10:87–115, 1999.

Derek Long and Maria Fox. Automatic synthesis and use of generic types in planning.
In Steve Chien, Subbarao Kambhampati, and Craig A. Knoblock, editors, Proceedings
of the Fifth International Conference on Artificial Intelligence Planning Systems, pages
196–205, Breckenridge, CO, USA, 2000. AAAI Press.

Fabiola Lopez y Lopez. Social Power and Norms: Impact on agent behaviour. PhD thesis,
University of Southampton, 2003.

Fabiola Lopez y Lopez and Michael Luck. Modelling norms for autonomous agents. In
Proceedings of the Fourth Mexican International Conference on Computer Science, pages
238–245, 2003.

Fabiola Lopez y Lopez, Michael Luck, and Mark d’Inverno. Normative agent reasoning in
dynamic societies. In Proceedings of the Third International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 732–739. IEEE Computer Society, 2004.

Fabiola Lopez y Lopez, Michael Luck, and Mark d’Inverno. A normative framework for
agent-based systems. In Proceedings of the First International Symposium on Normative
Multi-Agent Systems, 2005.

http://mas.cs.umass.edu/paper/268
http://mas.cs.umass.edu/paper/268
http://dx.doi.org/10.1023/A:1026176900459
http://eprints.ecs.soton.ac.uk/11787/
http://eprints.ecs.soton.ac.uk/11787/


BIBLIOGRAPHY 197

Michael Luck, Ronald Ashri, and Mark d’Inverno. Agent-Based Software Development.
Artech House, 2004.

Michael Luck and Mark d’Inverno. Motivated behavior for goal adoption. In Springer-
Verlag, editor, Selected Papers from the 4th Australian Workshop on Distributed Artificial
Intelligence, Multi-Agent Systems, pages 58–73, 1998.

Michael Luck, Steve Munroe, and Mark d’Inverno. Autonomy: Variable and Generative,
chapter Chapter 2, pages 9–22. Kluwer, 2003.

Sheila A. McIlraith and Ronald Fadel. Planning with complex actions. In Salem Benferhat
and Enrico Giunchiglia, editors, Proceedings of the 9th International Workshop on Non-
Monotonic Reasoning, pages 356–364, 2002.

Alfred R. Mele. Motivation and Agency. Oxford University Press, 2003.

Felipe Meneguzzi and Michael Luck. Composing high-level plans for declarative agent pro-
gramming. In Proceedings of the Fifth Workshop on Declarative Agent Languages, pages
115–130, 2007a.

Felipe Meneguzzi and Michael Luck. Motivations as an abstraction of meta-level reasoning.
In Hans-Dieter Burkhard, Gabriela Lindemann, Rineke Verbrugge, and László Z. Varga,
editors, Proceedings of the 5th International Central and Eastern European Conference
on Multi-Agent Systems, volume 4696 of LNAI, pages 204–214. Springer-Verlag, 2007b.

Felipe Meneguzzi and Michael Luck. Interaction among agents that plan. In Bernhard
Jung, Fabien Michel, Alessandro Ricci, and Paolo Petta, editors, Proceedings of the Sixth
International Workshop: From Agent Theory to Agent Implementation, pages 133–140,
2008a.

Felipe Meneguzzi and Michael Luck. Leveraging new plans in AgentSpeak(PL). In Matteo
Baldoni, Tran Cao Son, M. Birna van Riemsdijk, and Michael Winikoff, editors, Proceed-
ings of the Sixth Workshop on Declarative Agent Languages, pages 63–78, 2008b.

Felipe Meneguzzi and Michael Luck. Norm-based behaviour modification in BDI agents. In
Proceedings of the Eighth International Conference on Autonomous Agents and Multiagent
Systems, pages 177–184, 2009.

Felipe Meneguzzi, Simon Miles, Camden Holt, Michael Luck, Nir Oren, Sanjay Modgil,
Nora Faci, and Martin Kollingbaum. Electronic contracting in aircraft aftercare: A case
study. In Proceedings of the 7th International Conference on Autonomous Agents and
Multiagent Systems, pages 63–70, 2008.

Felipe Meneguzzi, Avelino Francisco Zorzo, Michael da Costa Móra, and Michael Luck.
Incorporating planning into BDI agents. Scalable Computing: Practice and Experience,
8:15–28, 2007.



BIBLIOGRAPHY 198

Felipe Rech Meneguzzi, Avelino Francisco Zorzo, and Michael Da Costa Móra. Proposi-
tional planning in BDI agents. In Proceedings of the 2004 ACM Symposium on Applied
Computing, pages 58–63, Nicosia, Cyprus, 2004. ACM Press.

Nicolas Meuleau and David E. Smith. Optimal limited contingency planning. In Proceedings
of the 19th Conference in Uncertainty in Artificial Intelligence, pages 417–426, Acapulco,
Mexico, 2003.

Marvin Minsky. The society of mind. Simon & Schuster, Inc., New York, NY, USA, 1986.

Andrew H. Mishkin, Jack C. Morrison, Tam T. Nguyen, Henry W. Stone, Brian K. Cooper,
and Brian H. Wilcox. Experiences with operations and autonomy of the mars pathfinder
microrover. Aerospace Conference, 1998. Proceedings., IEEE, 2:337–351, 1998.

David Moffat and Nico H. Frijda. Where there’s a will there’s an agent. In Proceedings
of the Workshop on Agent Theories, Architectures, and Languages on Intelligent agents,
volume 890 of LNCS, pages 245–260, New York, USA, 1995. Springer-Verlag.

Michael da Costa Móra, José Gabriel Pereira Lopes, Rosa Maria Vicari, and Helder Coelho.
BDI models and systems: Bridging the gap. In Intelligent Agents V, Agent Theories,
Architectures, and Languages, Fifth International Workshop, volume 1555 of LNCS, pages
11–27. Springer-Verlag, 1999.

Álvaro F. Moreira, Renata Vieira, and Rafael H. Bordini. Extending the operational se-
mantics of a BDI agent-oriented programming language for introducing speech-act based
communication. In João Alexandre Leite, Andrea Omicini, Leon Sterling, and Paolo
Torroni, editors, Proceedings of the First Workshop on Declarative Agent Languages and
Technologies, volume 2990 of LNCS, pages 135–154. Springer-Verlag, 2003.

Philippe Morignot and Barbara Hayes-Roth. Motivated agents. Technical report, Knowledge
Systems Laboratory – Stanford University, 1996.

Jörg Müller, Markus Pischel, and Michael Thiel. Modelling reactive behaviour in vertically
layered agent architectures. In Michael J. Wooldridge and Nicholas R. Jennings, editors,
Intelligent Agents, volume 890 of LNCS, pages 267–276. Springer-Verlag, 1995.

Steve Munroe, Michael Luck, and Mark d’Inverno. Motivation-based selection of negotiation
partners. In Proceedings of the Third International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 1520–1521, 2004.

Alexander Nareyek. Beyond the plan-length criterion. In Proceedings of the Workshop on
Local Search for Planning and Scheduling-Revised Papers, volume 2148 of LNAI, pages
55–78. Springer-Verlag, 2001.

Bernhard Nebel. On the compilability and expressive power of propositional planning for-
malisms. Journal of Artificial Intelligence Research, 12:271–315, 2000.



BIBLIOGRAPHY 199

Ulf Nilsson and Jan Maluszynski. Logic, Programming and Prolog. John Wiley & Sons Ltd.,
1995.

Timothy J. Norman and Derek Long. Goal creation in motivated agents. In Intelligent
Agents, volume 890 of LNCS, pages 277–290. Springer-Verlag, 1994.

Timothy J. Norman and Derek Long. Alarms: An implementation of motivated agency. In
Intelligent Agents II, volume 1037 of LNCS, pages 219–234. Springer-Verlag, 1995.

Timothy J. Norman, Alun Preece, Stuart Chalmers, Nicholas R. Jennings, Michael Luck,
Viet D. Dang, Thuc D. Nguyen, Vikas Deora, Jianhua Shao, W. Alex Gray, and Nick J.
Fiddian. Agent-based formation of virtual organisations. Knowledge-Based Systems, 17
(2-4):103–111, May 2004.

Timothy J. Norman and Chris Reed. Delegation and responsibility. In Cristiano Castel-
franchi and Yves Lespérance, editors, Intelligent Agents VII, volume 1986 of Lecture Notes
in Computer Science, pages 136–149. Springer-Verlag, 2001.

Hyacinth S. Nwana. Software agents: An overview of software agents. Knowledge Engineer-
ing Review, 1996.

James Odell. Objects and agents compared. Journal of Object Technology, 1(1):41–53, 2002.

Nir Oren, Michael Luck, and Timothy J. Norman. Argumentation for normative reasoning.
In Proceedings of the Symposium on Behaviour Regulation in Multi-Agent Systems, pages
55–60, 2008a.

Nir Oren, Sofia Panagiotidi, Javier Vazquez-Salceda, Sanjay Modgil, Michael Luck, and
Simon Miles. Towards a formalisation of electronic contracting environments. In Pro-
ceedings of Coordination, Organization, Institutions and Norms in Agent Systems, the
International Workshop at AAAI 2008, pages 61–68, Chicago, Illinois, USA, 2008b.

Lin Padgham and Michael Winikoff. Developing Intelligent Agent Systems: A Practical
Guide. Wiley, 2004.

Edwin P. D. Pednault. Adl: exploring the middle ground between strips and the situation
calculus. In Proceedings of the first international conference on Principles of knowledge
representation and reasoning, pages 324–332, San Francisco, CA, USA, 1989. Morgan
Kaufmann Publishers Inc.

Marco Pistore, Annapaola Marconi, Piergiorgio Bertoli, and Paolo Traverso. Automated
composition of web services by planning at the knowledge level. In Leslie Pack Kael-
bling and Alessandro Saffiotti, editors, Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, pages 1252–1259, 2005.

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. A goal deliberation strategy
for BDI agent systems. In Proceedings of the Third German Conference on Multiagent
System Technologies, pages 82–93, 2005a.

http://www.csd.abdn.ac.uk/~tnorman/publications/atal1995.pdf


BIBLIOGRAPHY 200

Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. Jadex: A BDI reasoning en-
gine. In Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fallah-Seghrouchni,
editors, Multi-Agent Programming: Languages, Platforms and Applications, pages 149–
174. Springer-Verlag, 2005b.

Ingmar Pörn. Logic of Power. Blackwell Publishers, 1970.

Anita Raja and Victor Lesser. Meta-level reasoning in deliberative agents. In Proceedings
of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pages
141–147, 2004.

Anand S. Rao. AgentSpeak(L): BDI agents speak out in a logical computable language. In
Walter Van de Velde and John W. Perram, editors, Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a Multi-Agent World, volume 1038 of
LNCS, pages 42–55. Springer-Verlag, 1996.

Anand S. Rao and Michael P. Georgeff. BDI-agents: from theory to practice. In Proceed-
ings of the First International Conference on Multiagent Systems, pages 312–319, San
Francisco, 1995a.

Anand S. Rao and Michael P. Georgeff. Formal models and decision procedures for multi-
agent systems. Technical Report 61, Australian Artificial Intelligence Institute, 1995b.
Technical Note.

Sebastian Sardiña, Lavindra de Silva, and Lin Padgham. Hierarchical Planning in BDI Agent
Programming Languages: A Formal Approach. In Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 1001–1008, 2006.

Sebastian Sardiña and Lin Padgham. Goals in the context of BDI plan failure and planning.
In Proceedings of the Sixth International Joint Conference on Autonomous Agents and
Multiagent Systems, pages 16–23, 2007.

Martijn Schut and Michael Wooldridge. The control of reasoning in resource-bounded
agents. The Knowledge Engineering Review, 16(3):215–240, 2001.

John R. Searle. Speech Acts : An Essay in the Philosophy of Language. Cambridge Univer-
sity Press, 1969.

Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51–92, 1993.

Yoav Shoham and Moshe Tennenholtz. On Social Laws for Artificial Agent Societies: Off-
Line Design. Artificial Intelligence, 73(1-2):231–252, 1995.

Munindar P. Singh. Agent communication languages: Rethinking the principles. IEEE
Computer, 31(12):40–47, 1998.

Kevin Smith. Clerks. Miramax Films, October 1995.

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1342936
http://portal.acm.org/citation.cfm?id=1160633.1160813&coll=&dl=&type=series&idx=1160633&part=Proceedings&WantType=Proceedings&title=International%20Conference%20on%20Autonomous%20Agents&CFID=15151515&CFTOKEN=6184618
http://portal.acm.org/citation.cfm?id=1160633.1160813&coll=&dl=&type=series&idx=1160633&part=Proceedings&WantType=Proceedings&title=International%20Conference%20on%20Autonomous%20Agents&CFID=15151515&CFTOKEN=6184618
http://www.imdb.com/title/tt0109445/


BIBLIOGRAPHY 201

Catherine Soanes and Sara Hawker, editors. Compact Oxford English Dictionary of Current
English. Oxford University Press, 3rd edition, 2005.

Luc Steels. A case study in the behavior-oriented design of autonomous agents. In Dave Cliff,
Philip Husbands, Jean-Arcady Meyer, and Stewart W. Wilson, editors, From Animals to
Animats, pages 445–452, Cambridge, MA, USA, 1994.

William Thomas Luke Teacy, Jigar Patel, Nicholas R. Jennings, and Michael Luck. Travos:
Trust and reputation in the context of inaccurate information sources. Journal of Au-
tonomous Agents and Multi-Agent Systems, 12(2):183–198, 2006.

John Thangarajah, James Harland, David Morley, and Neil Yorke-Smith. Aborting tasks in
BDI agents. In Proceedings of the Sixth International Joint Conference on Autonomous
Agents and Multiagent Systems, pages 8–15, 2007.

John Thangarajah, Lin Padgham, and Michael Winikoff. Detecting & avoiding interference
between goals in intelligent agents. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 721–726, 2003a.

John Thangarajah, Lin Padgham, and Michael Winikoff. Detecting & exploiting positive
goal interaction in intelligent agents. In Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent Systems, pages 401–408, 2003b.

S Rebecca Thomas. The placa agent programming language. In Michael J. Wooldridge and
Nicholas R. Jennings, editors, Intelligent Agents, volume 890 of LNCS, pages 355–370.
Springer-Verlag, 1995.

Alan Matheson Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.

Birna van Riemsdijk, Wiebe van der Hoek, and John-Jules Ch. Meyer. Agent programming
in dribble: from beliefs to goals using plans. In Proceedings of the Second International
Joint Conference on Autonomous Agents and Multiagent Systems, pages 393–400, Mel-
bourne, Australia, 2003. ACM Press.

M. Birna van Riemsdijk, Mehdi Dastani, and John-Jules Ch. Meyer. Semantics of declarative
goals in agent programming. In Proceedings of the Fourth International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 133–140, 2005.

Wamberto Vasconcelos, Martin J. Kollingbaum, and Timothy J. Norman. Resolving conflict
and inconsistency in norm-regulated virtual organizations. In Proceedings of the 6th
International Joint Conference on Autonomous Agents and Multiagent Systems, pages
1–8. ACM, 2007.

Javier Vázquez-Salceda, Huib Aldewereld, and Frank Dignum. Norms in multiagent sys-
tems: from theory to practice. International Journal of Computer Systems Science &
Engineering, 20(4):225–236, 2005.

http://portal.acm.org/citation.cfm?id=1329133
http://portal.acm.org/citation.cfm?id=1329133
http://www.loebner.net/Prizef/TuringArticle.html


BIBLIOGRAPHY 202

Renata Vieira, Álvaro F. Moreira, Michael Wooldridge, and Rafael H. Bordini. On the
formal semantics of speech-act based communication in an agent-oriented programming
language. Journal of Artificial Intelligence Research, 29:221–267, 2007.

T. Wagner, A. Garvey, and V. Lesser. Complex goal criteria and its application in design-
to-criteria scheduling. Technical report, Amherst, MA, USA, 1997.

Thomas Wagner and Victor R. Lesser. Relating quantified motivations for organizationally
situated agents. In Intelligent Agents VI, volume 1757 of LNAI, pages 334–348, London,
UK, 2000. Springer-Verlag.

Andrzej Walczak, Lars Braubach, Alexander Pokahr, andWinfried Lamersdorf. Augmenting
BDI Agents with Deliberative Planning Techniques. In Proceedings of the Fifth Interna-
tional Workshop on Programming Multiagent Systems, 2006.

Peter Wegner and Dina Goldin. Computation beyond turing machines. Communications of
the ACM, 46(4):100–102, 2003.

Eric W. Weisstein. Mathworld: Power set. Web, 1999. From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/PowerSet.html.

Daniel S. Weld. Recent Advances in AI Planning. AI Magazine, 20(2):93–123, 1999.

Michael Winikoff, Lin Padgham, James Harland, and John Thangarajah. Declarative &
Procedural Goals in Intelligent Agent Systems. In Dieter Fensel, Fausto Giunchiglia,
Deborah L. McGuinness, and Mary-Anne Williams, editors, Proceedings of the Eighth
International Conference on Principles and Knowledge Representation and Reasoning,
pages 470–481. Morgan Kaufmann, 2002.

Michael Wooldridge. Intelligent Agents, chapter 2. The MIT Press, 1999.

Michael Wooldridge. An Introduction to Multiagent Systems. John Wiley & Sons, 2002.

Michael Wooldridge and Nicholas Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115–152, 1995.

Franco Zambonelli, Nicholas R. Jennings, and Michael Wooldridge. Developing multiagent
systems: the gaia methodology. ACM Trans on Software Engineering and Methodology,
12(3):317–370, 2003.

Jian Feng Zhang, Xuan Thang Nguyen, and Ryszard Kowalczyk. Graph-based multi-agent
replanning algorithm. In Proceedings of the Sixth International Joint Conference on Au-
tonomous Agents and Multiagent Systems, pages 793–800, 2007.

http://www.drtomwagner.com/representative_pubs/control-mq/intelligent_agents_vi_2000.pdf
http://www.drtomwagner.com/representative_pubs/control-mq/intelligent_agents_vi_2000.pdf
http://mathworld.wolfram.com/PowerSet.html
http://www.informatik.uni-trier.de/~ley/db/conf/kr/kr2002.html#WinikoffPHT02
http://www.informatik.uni-trier.de/~ley/db/conf/kr/kr2002.html#WinikoffPHT02

	Acknowledgements
	1 Introduction
	1.1 Computing and Interaction
	1.2 Multiagent Systems
	1.3 Declarative Goals
	1.4 Research Objectives
	1.5 Research Contributions
	Action-directed reasoning:
	Meta-reasoning:
	Cooperation:
	Normative reasoning:



	1.6 Methodology
	1.7 Thesis Overview

	2 Agent languages and architectures
	2.1 Agents
	2.2 Agent Architectures
	2.2.1 Taxonomy
	2.2.2 Reactive Architectures
	2.2.3 BDI Architectures
	2.2.4 BOID Architecture
	2.2.5 Hybrid Architectures
	2.2.6 Discussion

	2.3 Agent Languages
	2.3.1 AGENT0 and PLACA
	2.3.2 AgentSpeak(L)
	2.3.3 3APL
	2.3.4 Discussion

	2.4 Meta Level Control
	2.4.1 Meta-level control in deliberative agents
	2.4.2 Thangarajah's Detection of Goal Interactions
	2.4.3 Pokahr's Goal Deliberation
	2.4.4 VHD++
	2.4.5 Motivational quantities and organisations
	2.4.6 Other
	2.4.7 Discussion

	2.5 Multiagent Systems
	2.5.1 Communication Languages
	2.5.2 Multiagent Planning
	2.5.2.1 Distributed plan generation
	2.5.2.2 Distributed plan execution
	2.5.2.3 Partial Global Planning
	2.5.2.4 Generalised Partial Global Planning

	2.5.3 Norms
	2.5.3.1 Levels of normative behaviour
	2.5.3.2 Norm types
	2.5.3.3 Norms for autonomous agents


	2.6 Discussion

	3 Plan Generation in AgentSpeak(PL)
	3.1 Introduction
	3.2 AI Planning
	3.2.1 Planning Problem Specification
	3.2.1.1 The logic language (Literals, Terms, Negation)
	3.2.1.2 States
	3.2.1.3 Operators and Plans

	3.2.2 Planning Example

	3.3 AgentSpeak
	3.3.1 Language
	3.3.1.1 Beliefs
	3.3.1.2 Goals and Events
	3.3.1.3 Actions and Plans
	3.3.1.4 Intentions

	3.3.2 Interpreter and Control Cycle
	3.3.3 Postman Scenario
	3.3.4 Summary

	3.4 AgentSpeak(PL): Planning
	3.4.1 Low-level plans versus high-level plans
	3.4.2 Low-level plans as analogues of STRIPS operators
	3.4.3 Integrating the planner component
	3.4.4 Goal conjunctions
	3.4.5 The planning action
	3.4.6 Failure in plan execution

	3.5 From AgentSpeak(L) to STRIPS
	3.5.1 Extracting declarative information
	3.5.2 Dealing with atomic actions
	3.5.3 Conversion process

	3.6 From STRIPS to AgentSpeak
	3.6.1 STRIPS actions to plan bodies
	3.6.2 Generating context information
	3.6.3 Adding new plans to the plan library
	3.6.4 Plan interference

	3.7 Experiments
	3.7.1 Production cell example
	3.7.2 Impact of plan reuse
	3.7.3 Abstract example

	3.8 Related Work
	3.8.1 Propice-Plan
	3.8.2 Jason
	3.8.3 GOAL, Dribble and their extensions
	3.8.4 Planning in JADEX
	3.8.5 HTN planning in BDI
	3.8.6 Regression of Web Services
	3.8.7 Comparison and Discussion

	3.9 Conclusions

	4 Motivations in meta-reasoning
	4.1 Reasons for Meta-reasoning
	4.2 An abstract model of motivation
	4.3 Griffiths's mBDI model
	4.4 Extended Model: mdBDI
	4.4.1 Overview of a Motivation
	4.4.2 Intensity Update Function
	4.4.3 Goal Generation Function
	4.4.4 Mitigation Function

	4.5 A Language of Motivation
	4.5.1 Requirements
	4.5.2 Language
	4.5.3 Language Example

	4.6 AgentSpeak(MPL): A Motivated AgentSpeak Interpreter
	4.6.1 Motivations and Belief Update
	4.6.2 Motivations and Plan Selection
	4.6.3 Motivations and Intention Selection
	4.6.4 Motivation update and timing
	4.6.5 Example of motivation dynamics

	4.7 Experimental Evaluation
	4.7.1 Mars Rover
	4.7.2 Results
	4.7.2.1 Specification size


	4.8 Conclusion and Discussion

	5 Social Agentspeak(L)
	5.1 Introduction
	5.2 Overview of Cooperation in AgentSpeak
	5.3 Technical Requirements for Cooperation
	5.3.1 Internal actions
	5.3.2 Annotations
	5.3.3 Speech act-based communication

	5.4 A multiagent planning mechanism
	5.4.1 Discovering Capabilities
	5.4.2 Plan patterns
	5.4.3 Creating proxy plans
	5.4.4 Creating external plans
	5.4.5 Creating cooperative plans

	5.5 Failure handling for new plans
	5.6 Related Work
	5.6.1 MARTHA Project
	5.6.2 Plan selection through trust
	5.6.3 Multiagent Graphplan

	5.7 Conclusion and Discussion

	6 Normative processing
	6.1 Introduction
	6.2 Overview of Norm Processing
	6.2.1 Norm Representation
	6.2.2 Norms and Goal Types
	6.2.3 Norm Perception

	6.3 Norm Outcomes
	6.4 Norm Activation
	6.4.1 Activating Obligations
	6.4.2 Activating Prohibitions

	6.5 Norm expiration
	6.6 Normative AgentSpeak(L)
	6.6.1 Norm acceptance in AgentSpeak(L)
	6.6.2 Meta-level actions for AgentSpeak(L)
	6.6.3 AgentSpeak plan modification mechanisms

	6.7 Related work
	6.8 Conclusions

	7 Conclusion
	7.1 Thesis summary
	7.2 Contributions
	7.2.1 Planning capabilities
	7.2.2 Motivated meta-reasoning
	7.2.3 Multiagent domains
	7.2.4 Normative processing

	7.3 Limitations and Future Work
	7.3.1 Limitations
	Environmental assumptions for planning
	Lack of methodology for motivated agent design
	Lack of distribution for cooperative planning
	Constrained to BDI architectures
	Conflict free norms assumption


	7.3.2 Future Work
	Plan interference
	Motivation and planning
	Generalised meta-reasoning
	Trust and reputation for cooperation
	Norm consistency and norm expressions



	7.4 Conclusions

	A Important planning algorithms
	A.1 Graphplan
	A.2 SAT Planning
	A.3 Hierarchical Task Network Decomposition

	Bibliography

