
LOCUS: An environment description language for JASON

Ramon Fraga Pereira, Maurı́cio Cecı́lio Magnaguagno,
Felipe Meneguzzi, Anibal Sólon Heinsfeld

1School of Computer Science (FACIN)
Pontifical Catholic University of Rio Grande do Sul (PUCRS)

Porto Alegre – RS – Brazil

{ramon.pereira, mauricio.magnaguagno, anibal.heinsfeld}@acad.pucrs.br

felipe.meneguzzi@pucrs.br

Abstract. JASON is an AGENTSPEAK interpreter for multi-agent system devel-
opment, in which agents are described in the AGENTSPEAK language. There-
fore, we only have to describe the agent behavior, but the environment does not
follow this style, it requires a Java description of how the actions and percep-
tions operate. This choice of implementation guarantees that even complex envi-
ronments can be created for JASON, but it requires knowledge about both Java
and JASON’s Application Programming Interface (API). In this paper we aim
to fill the gap between the languages with an AGENTSPEAK-like description of
the environment. To overcome this gap we propose LOCUS, a source-to-source
compiler which generates a Java description of the environment for JASON, pro-
viding the user with an easier starting point to create complex environments with
a consistent description for both the agents and the environment. The output of
LOCUS can be further modified if required, not limiting the user to the features
already provided by LOCUS.

1. Introduction
A multi-agent system consists of a population of autonomous computational entities sit-
uated in a shared structured environment. From this definition, we emphasize the im-
portance of the environment, agents are not isolated entities since they share the same
space. In several situations we want to simulate agents that perceive, reason, and act to
achieve their goals within an environment. To describe agent behavior concisely a spe-
cific paradigm is used, Agent Oriented Programming (AOP) [Shoham 1993]. This behav-
ior must match the restrictions of the environment to enable an agent to act successfully
while pursuing its interests. Therefore, it is extremely important to model the environment
correctly in multi-agent systems. However, most work on AOP, focuses on the formal de-
scription of the agents, rather than the environment. Some frameworks opt to use an AOP
language to better describe the agents, while the environment remains described in an im-
perative language. Many researchers neglected to integrate the environment as a primary
abstraction in models and tools for multi-agent systems, and much research is concerned
exclusively with agents [Weyns et al. 2005].

In this paper, we describe a declarative approach to create virtual environments
in an AGENTSPEAK-like language. We target JASON, a platform for the development of
multi-agent systems, due to the familiarity with the platform and current use of AGENTS-
PEAK to describe agent behavior. Currently, the environment specification in JASON must

be encoded in Java, which mix levels of abstraction used between agent and environment
description. In this way, we propose LOCUS1, a source-to-source compiler that converts
an AGENTSPEAK-like description of the environment into a Java version with the corre-
sponding bindings to the JASON API2. Although there is no gain in expressivity of the
environment behavior, our aim is to allow designers to write simpler code that is easier
to read. Without the common worries of API usage, the user is able to focus on what
matters the most, i.e. the correct operation of the desired environment. Thus, our main
contribution is an approach to describe the environment without mixing abstractions while
maintaining the possibility to do so if required. We demonstrate the applicability of our
approach through a subset of the standard JASON application examples. Our proposed en-
vironment description is concise and yields the Java description of the environment based
on the JASON API, when the description is correct, and warns the developer otherwise.

This paper is organized as follows. Section 2 reviews the background on agents
and environments, AGENTSPEAK, and JASON. Section 3 presents LOCUS and some prac-
tical examples of its usage. In Section 4 we address related work on environment descrip-
tion for multi-agent systems. In Section 5 we conclude with final considerations and give
directions for future work.

2. Background
This section introduces essential background on agents, and important concepts related to
multi-agent system environments.

2.1. Agents and Environments

Agents act through actuators and perceive through sensors within an environ-
ment [Russell and Norvig 2009]. Actuators and sensors allow agents to interact with
the environment, these interactions environment encapsulate the abstraction that connects
agents and its environment, which are actions and perceptions [Weiss 2013]. More specif-
ically, actions are executed through actuators and produce an output that affect the envi-
ronment. Actions are fundamental because they represent the mechanism through which
agents change the environment. Perceptions are given as input to agents through sensors
from the environment. In general, the interactions with the environment describe the agent
behavior, for example, given an input of perceptions the agent can reason to act within
an environment in order to achieve a desired goal [Wooldridge 2009]. Figure 1 illustrates
how agents often interact with environments.

Multi-agent environments are typically modeled depending on a variety of prop-
erties, for example: the environment can be deterministic or non-deterministic; fully or
partially observable; and interactions can happen instantly or with a time duration. These
properties tend to impact on how these agents interact with the environment, and conse-
quently on how agents have to reason in order to act in an environment. Agents commonly
represent the environment internally as a belief base, i.e, what the agents believe to be true
from the interactions with the environment and other agents. Conversely, the environment
contains an internal representation of the result of interactions between agents as a state
the current environment configuration.

1The word locus is latin for place.
2http://jason.sourceforge.net/wp/

Figure 1. An overview on how agents and environments interact.

2.2. AGENTSPEAK(L) and JASON

AGENTSPEAK(L) is a programming language based on logic programming for the Belief-
Desire-Intention (BDI) agent architecture which provides support for events and actions
[Rao 1996]. The BDI architecture is used to provide components that bring about a no-
tion of ”mental state” for agents. It is characterized by implementation of computational
analogues of human beliefs, desires, and intentions. The current state of the agent, which
is a model of itself, its environment, and other agents, can be viewed as its current belief
state. The states which the agent wants to accomplish are based on its external or internal
stimuli are desires. The adoption of programs to satisfy such stimuli can be viewed as
intentions. The behavior of the agent, i.e, its interaction with the environment is encoded
by the programs written in AGENTSPEAK(L). Thus, an AGENTSPEAK agent is created
by the specification of a set of base beliefs and a set of plans3 [Bordini and Hübner 2005].

JASON is an AGENTSPEAK interpreter for multi-agent system development, in
which agents are described in an extension of the AGENTSPEAK language, but the en-
vironment is described in Java [Bordini et al. 2007]. JASON infrastructure is developed
in Java and allows the customisation of the agent behaviors and reasoning. It provides
three main constructs for agent programming and reasoning: beliefs, goals and plans,
each described in turn below.

2.2.1. Beliefs

In JASON, beliefs are represented as predicates and stored in a collection called belief
base. Unlike classical logic, beliefs are not an absolute truth. Each agent has an individual
belief base and each stored belief is only true for its agent. As the logic programming
language Prolog, a belief is represented by an atom (a sequence of characters starting
with a lower-case letter) or a structure. Structures are useful to represent complex beliefs
composed by an atom followed by arguments, for example door(closed).

3Plans represent a sequence of actions that an agent is able to perform in a environment to achieve a
goal.

� �
1 triggeringEvent : context <- body.� �

Listing 1. The three plan parts in JASON.

JASON handles negation in two ways: using ’not’ and ∼ operators. The first will
lead the interpreter to result true about some formula if it cannot be derived using beliefs
and rules of the agent. The second is called strong negation and brings the notion that a
belief is explicitly false.

A difference from PROLOG syntax is the belief annotations. Annotations provide
meta-level information about beliefs, like the source of beliefs. The source is annotated
automatically in each belief by JASON, but custom annotations can be created in order
to provide useful information for agent reasoning, such as the moment that the agent
receives a belief. However, annotation’s data is meaningless to the JASON interpreter,
so the programmer must develop an expected behaviour for the annotations. Actually,
annotations could be represented as other beliefs, but JASON’s syntax provides a better
readability and linkage of information.

Another structure provided in JASON is the Rule. A rule is a logic formula that the
agent uses its belief base to reason about its truth. Rules bring brevity to the code, since
it is not necessary to always represent the formula that is encapsulated by the rule.

2.2.2. Goals

In JASON, goals represent the properties of the states of an agent’s environment that the
agent wishes to bring about. JASON has two types of goals: achievement goals and test
goals. Achievement goals ares denoted by an exclamation mark and a predicate. If the
goal is declarative, the agent believes that the predicate is not true and will act in order to
modify the state of its environment to make it true. Whereas, if the goal is a procedural
goal, the proposal of the goal is basically to group actions together, which is useful when
these actions are often used. Test goals are normally used to retrieve information from be-
lief base and are denoted by interrogation mark. When an agent adopts a goal, it executes
a sequence of actions in order to change environment states called Plan.

2.2.3. Plans

A plan in JASON consists of three parts: the triggering event, the context and the body. The
triggering event can be an addition or a deletion of beliefs or goals, due to environment
changes. So, the plan will be executed as a sequence of actions as a consequence of such
event. The context is used to check the current circumstance in order to determine if the
plan is expected to succeed. Due to different circumstances, a plan that better fits in the
current state is chosen according to its context specified by agent designers. The body is
composed by a sequence of actions, containing sub-goals that the agent must assume to
proper handle the triggering event.

� �
1 init <- body.

2 beforeActions <- body.
3 +action(name[, terms]) : context <- body.
4 afterActions <- body.

5 stop <- body.� �
Listing 2. The environment main parts.

3. LOCUS Environment Description Language
LOCUS implements the counterpart of Agent Oriented Programming (AOP), targeting a
concise and correct environment description. In the same way an agent requires a belief
base to create an internal representation of the world, the environment requires a structure
to hold its own current state. The difference is the point of view, the agent beliefs have
a known or unknown degree of truth, due to the sensing capabilities of the agent who
perceives part of the world at specific moments. The environment represents the entire
state without errors, it contains the ground truth, and communicates parts of this truth as
perceptions to the corresponding agents. The agent with the perceptions and reasoning
may act, calling an environment action. The environment deals with the outcome of
actions, those actions can only happen if the preconditions are satisfied, i.e, the agent
class or the agent accuracy. With those concepts in mind, we create AGENTSPEAK-like
constructs to represent them.

In order to be easier to describe we divided the environment in three main parts:
an initial state (init), actions (beforeActions, +action, afterActions), and a stop call (stop),
they can be seen in Listing 2. Although the environment parts can be defined in any order,
we believe this order to be easier to understand. Firstly, we define an initial setup, in
which the initial state of the environment is defined along with the perceptions they create.
This creates a common starting point to the simulation. Secondly, we define how the
actions affect the environment and the restrictions imposed on specific action executions.
Additionally, in the second part, it is possible to define what happens before and after the
execution of actions. This part is essential to keep environment and agents interacting,
modifying the state and which perceptions happen during the simulation. Finally, the stop
setup defines what happens at the end of the simulation. Although not explored so far we
believe to be important to log data at the end of simulation.

The actions are the main part, as they may be called several times per execution.
The beforeActions controls what happens before any action takes place, usually clearing
a set of percepts for some or all agents. After that the action that was called by name by
an agent takes place and any term given as an argument is forwarded. If the context is
satisfied the body of the action is applied. We provide macros to test agent name and agent
class, agentName and agentClass respectively, to make it easier to test agent attributes.

Inside each part we find their respective body, a set of commands to describe what
happens with the environment. The commands in Listing 3 can be used in the body of
the following statements: init, actions, before and after actions, and stop. We focus on
commands about perceptions and state at the current stage of development. It is possible
that perceptions are broadcast to all agents or are restricted to a specific agent or subset of

� �
1 +percept(agent|all, predicate[, terms]) : context.
2 -percept(agent|all, predicate[, terms]) : context.

3 +state(predicate[, terms]);
4 -state(predicate[, terms]);
5 -+state(predicate[, terms]);� �

Listing 3. Modifying perceptions and the environment state.

� �
1 +!locked(door)[source(paranoid)] : ∼locked(door) <- lock.
2 +!∼locked(door)[source(claustrophobe)] : locked(door) <- unlock.� �

Listing 4. Porter agent.

agents. However, the context must be true to apply the desired perception, like a sensor
working properly and in range to capture the data. In order to handle the state of the
environment, it is possible to specify features of the environment as propositions to be
added or deleted from the state. The only impact of this approach is the generic structure
used to hold the state configuration, while handmade versions of the environment would
use tailored structures, like a single boolean variable to store a door state. The symbol
plus (+) represent addition, and the symbol minus (−) represent deletion of a feature.
These symbols are used as a prefix of the statement percept. Moreover, to update an
environment state, the symbol (−+) is declared as a prefix of the statement state. In
Listing 3 we exemplify how to add, remove, and update perceptions and states in LOCUS.
We also use the plus symbol to add actions to the environment, further investigation is
required to see how useful it would be to remove actions using a −action versus using a
context.

3.1. Examples

In this section we use examples in JASON to show how our source-to-source compiler
can be used. Those examples describe small environments, but handle with state control
and agent perception. We make use of the room application, one of the JASON examples,
and Bakery application, an example created specifically to show how our approach handle
with different environments.

3.1.1. Room

This application consists of a room with a door, and contains the following agents: a
porter, a claustrophobic and a paranoid. The only object in this room is the door that may
be closed or not. The porter (Listing 4) is the only agent that modifies the door state,
using lock and unlock actions, while all agents can perceive the current state of the door.
When the claustrophobic agent (Listing 5) perceives the door closed the only option is
to ask the porter to open the door, after all this agent does not like to be confined. The
paranoid (Listing 6) does not share the same fear, instead this agent prefers to be safely
closed inside the room. Once the paranoid perceives the door opened the only option is to
ask the porter to close it. The porter only does as told.

The environment is extremely simple: it contains two different perceptions

� �
1 +locked(door) <-
2 .send(porter,achieve,∼locked(door)).� �

Listing 5. Claustrophobe agent.

� �
1 +∼locked(door) <-
2 .send(porter,achieve,locked(door)).� �

Listing 6. Paranoid agent.

� �
1 init <-
2 +state(doorLocked);
3 +percept(all, locked, door).

4 beforeActions <-
5 -percept(all).

6 +action(lock) : agentClass(porter) <-
7 -+state(doorLocked).

8 +action(unlock) : agentClass(porter) <-
9 -+state(∼doorLocked).

10 afterActions <-
11 +percept(all, locked, door) : state(doorLocked);
12 +percept(all, ∼locked, door) : state(∼doorLocked).� �

Listing 7. LOCUS description for Room application

and two different internal actions about the same door. In the Prometheus dia-
gram [Winikoff and Padgham 2004], in Figure 2, we see only one agent able to interact
with the door, the porter. Yet, in the current version of JASON these actions have no test
towards the agent class or name. This lack of test makes any agent eligible to close the
door, which creates no problem for this small example, but shows how hard it can be to
follow a specification when you need to code in two different styles. Our description in
LOCUS (Listing 7) covers almost the entire Prometheus design, it only lacks a description
of the message passing mechanism between agents, since message passing is done in JA-
SON without environment restrictions. The generated Java code matches the original Java
environment in JASON – it is able to replace that code without further modifications.

3.1.2. Bakery

In our second example we use a bakery application, containing two types of agents: a
boss and one or more bakers. The Prometheus diagram of this application is shown in
Figure 3. Our goal with this example is to create and perceive the existence of items in
the environment. The boss (Listing 8) perceives when there is one item missing from
the shelf, and since the boss likes to maintain the shelf full, pins a note with the task
to bake more of some item. The baker (Listing 9) perceives there is a new task, and
starts baking the new item. When finished the task, the new item is put directly in the

Figure 2. An overview of the room example.� �
1 +∼have(C) <- pinTask(C).
2 +have(C) <- .print("Done ", C).� �

Listing 8. Boss agent.

� �
1 +newTask(X) <- bake(X).� �

Listing 9. Baker agent.

shelf. The boss can now perceive the task was done. We could continue and add an agent
to sell and other to buy items randomly, and keep the system in a loop, but we believe
this subset of the application already shows how useful our source-to-source compiler
can be. Listing 10 contains the environment, with several perceptions targeting the boss
and explicitly declaring the existence or lack of each item. It is possible to observe the
redundancy that appears in the afterActions block, in which we are testing both positive
and negative cases. The lack of an ”else” construct is not a problem, but takes repeated
conditions to take care of. The good side effect is to have perceptions with independent
causes, but we hope to address the problem of code repetition as bigger applications
reveals them.

Figure 3. An overview of the bakery example.

� �
1 init <-
2 +state(∼have(pie));
3 +state(∼have(cake));
4 +state(∼have(donut));
5 +percept(boss, ∼have, pie);
6 +percept(boss, ∼have, cake);
7 +percept(boss, ∼have, donut).

8 beforeActions <-
9 -percept(all).

10 +action(pinTask, C) : agentName(boss) <-
11 +percept(all, newTask, C).

12 +action(bake, C) : agentClass(baker) <-
13 -+state(have, C).

14 afterActions <-
15 +percept(boss, ∼have, pie) : state(∼have(pie));
16 +percept(boss, ∼have, cake) : state(∼have(cake));
17 +percept(boss, ∼have, donut) : state(∼have(donut));
18 +percept(boss, have, pie) : state(have(pie));
19 +percept(boss, have, cake) : state(have(cake));
20 +percept(boss, have, donut) : state(have(donut)).� �

Listing 10. LOCUS description for Bakery application

4. Related Work

Regarding the environment description for multi-agent systems, we highlight two re-
lated work: ELMS (Environment Description Language for Multi-Agent Simulation) and
CArtAgO (Common Artifact infrastructure for Agent Open environments).

CArtAgO provides the infrastructure to develop environments based on the A&A
(Agent and Artifacts) meta-model [Ricci et al. 2010, Ricci et al. 2011]. This meta-model
describes three basic abstractions. First, the agents that represent pro-active components
of the system. Second, the artifacts, which represent passive components of the system
and support agents’ activities. Third, the workspaces, that provide a notion of topology for
the environment. In CArtAgO, artifacts are not autonomous and can not follow their own
course of action, serving as tools for agents. The programming of CArtAgO artifacts is
made using a Java-based API. This API provides Java annotations and classes to make ac-
cessible specific methods to JASON, aiming at the interaction of agents with the artifacts.
CArtAgO is part of the framework JaCaMo. JaCaMo [Boissier et al. 2013] combines the
environment description of CArtAgO with JASON and Moise, an organisational model
for multi-agent systems. This union of technologies provides a robust development en-
vironment, allowing cooperative and distributed agent behaviours. However, CArtAgO
and Moise require the use of different languages and paradigms, which can difficult the
development and the linkage of design concepts.

Okuyama et al. [Okuyama et al. 2004] propose ELMS. In order to describe the
environment, this work uses a markup language syntax, the XML. Due to generality of
XML, the authors defined a set of elements and attributes to describe the parts covered

by the work. First, the structures to define agent bodies specify ”physical” aspects of the
agents, such as the properties that may be perceived by other agents and the actions that
agents can perform in the environment. Second, the work provides a structure to define
2D or 3D grids, if the designer has chosen to have one. Attributes can be defined for each
cell of the grid to be perceived by agents. Reaction of actions also can be defined, as
a response to the actions of agents and changes to the attributes. Objects can be placed
on the environment via the notion of resources. Resources, as grid cells, have their own
attributes and reactions. Third, some elements are defined in order to specify the initialisa-
tion process and parametrizations of the environment. As noted by the authors, describing
the environment with XML can be cumbersome and may require a graphical interface to
ease the development process.

5. Conclusions

As JASON’s API gets more complex the direct use of Java constructs requires a good
understanding of the inner workings of Java, which takes time and is often not the goal
of JASON users. New users of JASON are LOCUS target audience, being able to use
the correct constructs without knowledge about JASON’s internal structures. Two other
advantages became clear during the development process, the first is the ability to include
the environment description, now much shorter, both complete or specific parts in tutorials
and papers. The second advantage is to be separate from the internal structures used by
JASON and its extensions, which may prevent updates in JASON’s API from breaking
legacy code (as is often the case even with minor JASON updates). There is a long way
before LOCUS supersedes the direct Java descriptions used today. Sometimes we see
specific constructs in Java and the limitations of our solution to recreate the behavior in the
current state. Those constructs could be solved right away, but then our implementation
would replicate the imperative paradigm of Java, telling how to solve the problem, instead
of representing the environment.

We now focus on several constructs expected to exist, being implemented to match
JASON’s AGENTSPEAK behavior, adding unification and lists to describe more complex
environments than what is currently possible. The goal is to use Java as a last resort,
keeping the description free of an internal architecture. In the current version we see the
current models and views as a problem to our goal. Models are tailored structures to hold
the state, while views are graphical interfaces to show the state. Model and view usually
appear together and we search for an abstraction to give as good results as them. The
model provides speed with the correct structures while the interface provides a visual-
ization method specifically for the application. Their only problem is the complexity to
maintain both working correctly, since they vary for each application. We hope to address
the view in the future and create some optimizations to our generic state structure to yield
a tailored one. Today the environment does not consult the agent information, like beliefs
and intentions, we believe this information must remain encapsulated. Maybe a specific
application will require an extension to do so. Another discussion that we had is related
to time-based events, happening at some point in time or with a duration, but we have
not explored this enough to create an abstraction. The current set of commands is small,
but shows it is possible to describe the environment without mixed levels of abstraction
while opening the subject of an AGENTSPEAK-like language to describe environments.

The LOCUS project4 is available for download in the GitHub website. In this website
we provide a set of instructions on how to use the LOCUS description language to create
environments for JASON.

References
[Boissier et al. 2013] Boissier, O., Bordini, R. H., Hübner, J. F., Ricci, A., and Santi, A.

(2013). Multi-agent Oriented Programming with JaCaMo. Sci. Comput. Program.,
78(6):747–761.

[Bordini et al. 2007] Bordini, R. H., Hübner, J. F., and Wooldridge, M. (2007). Program-
ming Multi-Agent Systems in AgentSpeak Using Jason (Wiley Series in Agent Technol-
ogy). John Wiley & Sons.

[Bordini and Hübner 2005] Bordini, R. H. and Hübner, J. F. (2005). BDI Agent Program-
ming in AgentSpeak using Jason. In Proceeding of 6th International Workshop on
Computational Logic in Multi-agent Systems (CLIMA VI). Volume 3900 of LNCS,
pages 143–164. Springer.

[Okuyama et al. 2004] Okuyama, F. Y., Bordini, R. H., and da Rocha Costa, A. C. (2004).
ELMS: An Environment Description Language for Multi-agent Simulation. In Envi-
ronments for Multi-Agent Systems, First International Workshop, E4MAS 2004, New
York, NY, USA, July 19, 2004, Revised Selected Papers, pages 91–108.

[Rao 1996] Rao, A. S. (1996). AgentSpeak(L): BDI Agents Speak out in a Logical Com-
putable Language. In Proceedings of the 7th European Workshop on Modelling Au-
tonomous Agents in a Multi-agent World : Agents Breaking Away: Agents Breaking
Away, MAAMAW ’96, pages 42–55, Secaucus, NJ, USA. Springer-Verlag New York,
Inc.

[Ricci et al. 2011] Ricci, A., Piunti, M., and Viroli, M. (2011). Environment programming
in multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-
Agent Systems, 23(2):158–192.

[Ricci et al. 2010] Ricci, A., Viroli, M., and Piunti, M. (2010). Formalising the Environ-
ment in MAS Programming: A Formal Model for Artifact-based Environments. In
Proceedings of the 7th International Conference on Programming Multi-agent Sys-
tems, ProMAS’09, pages 133–150, Berlin, Heidelberg. Springer-Verlag.

[Russell and Norvig 2009] Russell, S. and Norvig, P. (2009). Artificial Intelligence: A Mod-
ern Approach. Prentice Hall Press, Upper Saddle River, NJ, USA, 3rd edition.

[Shoham 1993] Shoham, Y. (1993). Agent-oriented Programming. Artif. Intell., 60(1):51–
92.

[Weiss 2013] Weiss, G., editor (2013). Multiagent Systems. MIT Press, Cambridge, MA.

[Weyns et al. 2005] Weyns, D., Van Dyke Parunak, H., Michel, F., Holvoet, T., and Ferber,
J. (2005). Environments for Multiagent Systems State-of-the-Art and Research Chal-
lenges. In Weyns, D., Van Dyke Parunak, H., and Michel, F., editors, Environments for
Multi-Agent Systems, volume 3374 of Lecture Notes in Computer Science, pages 1–47.
Springer Berlin Heidelberg.
4https://github.com/Maumagnaguagno/Locus

https://github.com/Maumagnaguagno/Locus

[Winikoff and Padgham 2004] Winikoff, M. and Padgham, L. (2004). Developing Intelli-
gent Agent Systems: A Practical Guide. Halsted Press, New York, NY, USA.

[Wooldridge 2009] Wooldridge, M. (2009). An Introduction to MultiAgent Systems. Wiley
Publishing, 2nd edition.

	Introduction
	Background
	Agents and Environments
	AgentSpeak(L) and Jason
	Beliefs
	Goals
	Plans

	Locus Environment Description Language
	Examples
	Room
	Bakery

	Related Work
	Conclusions

