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What is it?

Goal Recognition is the task of recognizing agents’ goal that
explains a sequence of observations of its actions;

Related to plan recognition, i.e. recognizing a top-level action
A specific form of the problem of abduction

Roughly two types of approach:

Plan-library based (classical plan recognition)
Domain-theory based (plan recognition as planning, or PRAP)

? ? ?
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Why do we need goal recognition?

Recognizing plans and goals of others is critical for meaningful
interaction:

important for humans/agents working in the same environment
increasingly important as we build more intelligent systems

Overall area of Plan, Activity and Intent Recognition

Activity recognition: recognizing meaningful activities from low-level
sensor data
Plan/Intent/Goal recognition: recognizing intentional higher-level
sequences of activities
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An example of Activity Recognition
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An example of Activity Recognition
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An example of Activity Recognition

breaking egg
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Flavors of Recognition Formalism
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Automated Planning

Definition (Planning)

A planning instance is represented by a triple Π = 〈Ξ, I,G 〉, in which:

Ξ = 〈Σ,A〉 is the domain definition, and consists of a finite set of
facts Σ and a finite set of actions A (action costs typically 1);

I ⊆ Σ and G ⊆ Σ represent the planning problem, in which I ⊆ Σ
is the initial state, and G ⊆ Σ is the goal state.

Actions a ∈ A are tuples a = 〈pre(a), eff (a), cost(a)〉
Facts Σ can be modeled in a variety of ways:

As a logic language (restricted FOL):
states are truth assignments
As a set of variables V with finite domains:
states are variable assignments
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Automated Planning - Less boring

Planning problems have three key ingredients

Domain Description Initial State Goal State

Solution

? ? ?

? ? ?
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Planning Heuristics
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Most modern planners rely on heuristics
to efficiently search the state-space.

Two key challenges in research on novel
heuristics

Informativeness of the heuristic

Computational efficiency
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Goal Recognition Problem

Definition (Goal Recognition Problem)

A goal recognition problem is a tuple P = 〈Ξ, I,G,O〉, where:

Ξ = 〈Σ,A〉 is the domain definition (facts and actions) ;

I ⊆ Σ is the initial state;

G s.t. ∀G ∈ G,G ⊆ Σ is a set of candidate goals (with an assumed
hidden goal G ); and

O is a sequence 〈o1, . . . on〉 of observations, where oi ∈ A

The solution for a goal recognition problem is the hidden goal G ∈ G
that is most consistent with observation sequence O.

Caveat: we may have other representations for the observations

This is what I will refer to as PRAP
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Goal Recognition Problem - Less boring

Goal/Plan Recognition problems have three key ingredients

Domain Description Initial State Goal State

Meneguzzi et al. LP-Based Approaches for Goal Recognition as Planning Melbourne, February, 2020 13 / 39



Goal Recognition Problem - Less boring

Goal/Plan Recognition problems have four key ingredients

Domain Description
(clear peg2)
(clear peg3)
(clear d1)
(on d3 peg1)
(on d2 d3)
(on d1 d2)
(on d3 peg3)
(on d1 peg1)
(clear peg1)
(on d1 peg2)
(on d1 peg3)
(clear d2)
(clear d3)
(on d1 d3)
(on d2 peg1)
(on d2 peg2)
(on d2 peg3)
(on d3 peg2)

Initial 1 2 3 4 5 6 7 Goal

Initial State Goal Hypotheses

Observations
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Goal Recognition Problem - Less boring

Goal/Plan Recognition problems have four key ingredients

Domain Description
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Probability Distribution

=.8 =.1

=.1

Meneguzzi et al. LP-Based Approaches for Goal Recognition as Planning Melbourne, February, 2020 13 / 39



Table of Contents

1 What is Goal Recognition?

2 Automated Planning and Goal Recognition

3 A Canned History of Current Approaches

4 Using LP-Constraints for Goal Recognition

5 Summary and Future Directions

6 Acknowledgements

Meneguzzi et al. LP-Based Approaches for Goal Recognition as Planning Melbourne, February, 2020 14 / 39



Goal Recognition using Planning Domains I

Ramirez and Geffner (2009 and 2010)

First approaches to goal recognition: Plan Recognition as Planning
(PRAP)

Probabilistic model aims to compute P(G | O)

Following Bayes Rule P(G | O) = αP(O | G )P(G )

Given P(G ) as a prior, key bottleneck is computing P(O | G )

Compute P(O | G ) in terms of
a cost difference
c(G ,O)− c(G , Ō)

Costs two planner calls per
goal hypothesis
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Goal Recognition using Planning Domains II

Sohrabi et al. (2016)

Conceptually similar to Ramirez and Geffner: aims to compute
P(G | O) via αP(O | G )P(G )

Compilation of plan recognition problem into multiple planning
problems (one for each G )

Compute Top-k or diverse plans
π to approximate P(O | G ) =∑
π

P(O | π) · P(π | G )

Compensate noisy observations
by imposing a cost on dropped
Observations
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Goal Recognition using Planning Heuristics

Pereira, Oren and Meneguzzi (2017):

Obviate the need to execute a planner multiple times for
recognizing goals; and

Novel goal recognition heuristics that use planning landmarks.

More accurate and orders of magnitude faster than all previous
approaches.

Planning Landmarks:

Are necessary conditions for
any valid plan

Theoretical cost of computation
is the same as planning

! ! !
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Operator Counting Heuristics

Based on the idea of Cost Partitioning for Landmarks

Represents cost of a planning problem in terms of linear constraints:1

Variables: Counto for each operator o

Objective: Minimize
∑
o

Counto · cost(o), subject to∑
o∈L

Counto ≥ 1 for all landmarks L

Counto ≥ 0 for all operators o

Numbers of operator occurrences in any plan satisfy constraints
Minimizing total cost → admissible heuristic

1Adapted from Helmert and Röger’s planning course
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Operator Counting

Operator-counting Constraints2

linear constraints whose variables denote number of occurrences of a
given operator

must be satisfied by every plan

Examples:

Counto1 + Counto2 ≥ 1 “must use o1 or o2 at least once”

Counto1 − Counto3 ≤ 0 “cannot use o1 more often than o3”

Motivation:

declarative way to represent knowledge about the solution

allows reasoning about solutions to derive heuristic estimates

elegant framework to combine information from multiple heuristics

2Adapted from Helmert and Röger’s planning course
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Operator Counting heuristics

OC variables correspond to unordered actions in potential plans.3

Post-hoc Optimization Heuristic Operator-counting Framework Summary

Operator Counting Heuristics

Operator occurrences in potential plans
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0 0 0

· · ·

2 2 1

3Adapted from Helmert and Röger’s planning course
Meneguzzi et al. LP-Based Approaches for Goal Recognition as Planning Melbourne, February, 2020 21 / 39



Operator Counting heuristics

OC variables correspond to unordered actions in potential plans.3

Post-hoc Optimization Heuristic Operator-counting Framework Summary

Operator Counting Heuristics

Operator occurrences in potential plans

“You need at least once”

0 0 1

3 0 2

1 1 2

3 2 2

1 2 0
2 2 0

1 3 1

1 2 1

3 1 0

2 1 0

0 0 0

· · ·

2 2 1

3Adapted from Helmert and Röger’s planning course
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Operator-counting Constraint

Definition: Operator-counting constraints

Let Π be a planning task with operators O and let s be a state. Let V be
the set of variables Counto for each o ∈ O. A linear inequality over V is
called an operator-counting constraint for s of for every plan π for s
setting each Counto to the number of occurrences of o in π is a feasible
variable assignment.

So, what are typical operator-counting constraints?

Landmarks: L landmark operator has a constraint
∑
o∈L

Counto ≥ 1

Flow heuristic: one flow constraint per atom a:

[a ∈ s] +
∑

o∈O:a∈eff(o)

Counto = [a ∈ γ] +
∑

o∈O:a∈pre(o)

Counto

Post-hoc Optimization:

Meneguzzi et al. LP-Based Approaches for Goal Recognition as Planning Melbourne, February, 2020 22 / 39
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the set of variables Counto for each o ∈ O. A linear inequality over V is
called an operator-counting constraint for s of for every plan π for s
setting each Counto to the number of occurrences of o in π is a feasible
variable assignment.

So, what are typical operator-counting constraints?

Landmarks: L landmark operator has a constraint
∑
o∈L

Counto ≥ 1

Flow heuristic: one flow constraint per atom a:

[a ∈ s] +
∑

o∈O:a∈eff(o)

Counto = [a ∈ γ] +
∑

o∈O:a∈pre(o)

Counto

Post-hoc Optimization:
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Operator Counting Constraints for Goal Recognition

Motivation:

Operator counting constraints represent knowledge about solutions

allows reasoning about solutions to derive heuristic estimates

actual observations
missing observations
noisy observations
goal hypotheses
other constraints
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Computing intersection of OC and Observations

Initial idea: compute operator-counts and compare with observations

Example

Consider an observation containing o2 and o3 (from a plan for g1):

o1 o3 o5

o2 o4 o6

Compute hG (I) for:

g1

g2

g3

Return goal with maximum
overlap

Problem: LP has multiple (optimal) solutions
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Hard Constraints for the Observations

Second idea: force OCs that comply with observations

Observation constraints

Let ka be the number of occurrences of observations of the operator a in
the sequence of Observations O for a goal recognition problem P, the hard
constraint for a is:

Counta ≥ ka

We call the objective value of the resulting LP hHC

hHC Heuristic cost of reaching a goal G subject to the observations O
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Hard Constraints for the Observations

Example: Observations o2 and o3 (towards g1)

o1 o3≥1 o5

o2≥1 o4 o6

Compute hG (I) for:

hg1
hc(I) = 3

hg2
hc(I) = 4

hg3
hc(I) = 4

Solution: {G |G ∈ G ∧ hGhc ≤ minG hGhc} = {g1}
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Accounting for Uncertainty

Key Challenge: Observations are unreliable in Goal Recognition

Fast approaches (e.g. Pereira, Oren, and Meneguzzi) have a threshold
to handle ties due to missing observations
OC heuristics: lower bound on number of observations

Lower bound on observations

hg1
hc(I) = 3

hg2
hc(I) = 5 hg3

hc(I) = 7

|O| ≥ 3

U ← 1 + minG hGhc−|O|
minG hGhc

= 1.33

Solution: {G |G ∈ G ∧ hGhc ≤ minG hGhc ∗ U} = {g1}
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Properties of the heuristics

Proposition 1: hhc dominates h

Let h be the basic operator-counting heuristic, hhc be the over-constrained
heuristic hhc that accounts for all observations o ∈ O, and s a state of Π.
Then hhc(s) ≥ h(s).

Proposition 2

The set of goals returned by hhc with 100% of the observations always
contains the actual goal.
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Enforcement Delta

Problem: Noisy observations throw off over-constrained heuristic

Observations o2, o3, o7 (noisy) towards g1

o1

o7

o3 o5

o2 o4 o6

hg1
hc(I) = 7 hg2

hc(I) = 7 hg3
hc(I) = 10

hg1(I) = hg2(I) = hg3(I) = 2

δg1
hc(I) = 5 δg2

hc(I) = 5 δg3
hc(I) = 8

U = 1.57

Solution: Compute OCs twice, and return min δGhc = hGhc − hG

{G |G ∈ G ∧ δGhc ≤ minG δ
G
hc ∗ U} = {g1, g2, g3}
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Empirical Experiments (Accuracy)
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Empirical Experiments (Spread)

Non-noisy

0

2

4

6

8

10

δHC δHCU R&G POM

Spread

Noisy

0

2

4

6

8

10

δHC δHCU R&G POM

Spread

Meneguzzi et al. LP-Based Approaches for Goal Recognition as Planning Melbourne, February, 2020 31 / 39



Table of Contents

1 What is Goal Recognition?

2 Automated Planning and Goal Recognition

3 A Canned History of Current Approaches

4 Using LP-Constraints for Goal Recognition

5 Summary and Future Directions

6 Acknowledgements

Meneguzzi et al. LP-Based Approaches for Goal Recognition as Planning Melbourne, February, 2020 32 / 39



Goal Recognition using Operator-Counting Constraints

Meneguzzi, Pereira and Pereira (2020):

Use operator counting information to recognize goals; and

Operator counts and LP constraints cope explicitly with noisy
observations.

Key advantages:

More accurate than all
previous approaches; and

Extensible framework for
further goal recognition work.

! > 1 ! > 1 ! > 1

! > 1 ! > 1 ! > 1
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Future Directions

Introduce flexibility for noise in the constraints

Reason about all goals in one LP

Implement approaches Efficiently
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Internationalization Plug

If this talk was interesting and you want to know more, talk to me:

PUCRS PrInt

http://www.pucrs.br/print/

Areas of work (with me) and advantages:

Automated Planning and Goal Recognition

Machine Learning (within reason)

Excellent Food
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Thank you!
Questions?
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