LP-Based Approaches for Goal Recognition as Planning

Felipe Meneguzzi†

André Grahl Pereira Ramon Fraga Pereira

†Pontifical Catholic University of Rio Grande do Sul, Brazil Seconded at the University of Melbourne felipe.meneguzzi@pucrs.br

Melbourne, February, 2020

Table of Contents

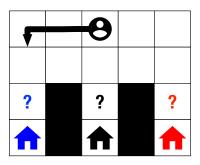
1 What is Goal Recognition?

- 2 Automated Planning and Goal Recognition
- 3 A Canned History of Current Approaches
- 4 Using LP-Constraints for Goal Recognition
- 5 Summary and Future Directions
 - 6 Acknowledgements

< ロト < 同ト < ヨト < ヨト

What is it?

- **Goal Recognition** is the task of recognizing agents' goal that explains a sequence of observations of its actions;
 - Related to plan recognition, i.e. recognizing a top-level action
 - A specific form of the problem of abduction
- Roughly two types of approach:
 - Plan-library based (classical plan recognition)
 - Domain-theory based (plan recognition as planning, or PRAP)



< 口 > < 同 >

Why do we need goal recognition?

- Recognizing plans and goals of others is critical for meaningful interaction:
 - important for humans/agents working in the same environment
 - increasingly important as we build more intelligent systems

- Overall area of Plan, Activity and Intent Recognition
 - Activity recognition: recognizing meaningful activities from low-level sensor data
 - Plan/Intent/Goal recognition: recognizing intentional higher-level sequences of activities

・ロト ・回ト ・ヨト ・ヨト

Why do we need goal recognition?

- Recognizing plans and goals of others is critical for meaningful interaction:
 - important for humans/agents working in the same environment
 - increasingly important as we build more intelligent systems

- Overall area of Plan, Activity and Intent Recognition
 - Activity recognition: recognizing meaningful activities from low-level sensor data
 - Plan/Intent/Goal recognition: recognizing intentional higher-level sequences of activities

< ロト < 同ト < ヨト < ヨト

Why do we need goal recognition?

- Recognizing plans and goals of others is critical for meaningful interaction:
 - important for humans/agents working in the same environment
 - increasingly important as we build more intelligent systems

- Overall area of Plan, Activity and Intent Recognition
 - Activity recognition: recognizing meaningful activities from low-level sensor data
 - Plan/Intent/Goal recognition: recognizing intentional higher-level sequences of activities

・ロト ・回ト ・ヨト ・ヨト

Э

990

Meneguzzi et al.

< ∃ > Melbourne, February, 2020 5/39

Э

990

Э

990

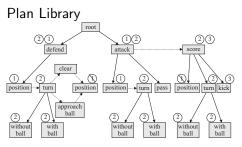
breaking egg

Meneguzzi et al.

Image: A math and A

Э

Flavors of Recognition Formalism



Domain Theory (PRAP)

```
(define (domain grid)

(:requirement: strips :typing)

(:types place shape key)

(:predicates (conn ?x ?y - place)

(key-shape ?x - hey ?s - shape)

(lock-shape ?x - place ?s - shape)

(at ?r - key ?x - place)

(locked ?x - place)

(carrying ?k - key)

(open ?x - place)
```

```
(:action unlock

:parameters (?curpos ?lockpos - place ?key - key ?shape - shape)

:precondition (and (conn ?curpos ?lockpos) (key-shape ?key ?shape)

(lock-shape ?lockpos ?shape) (at-robot ?curpos)

(locked ?lockpos) (carrying ?key)))

:effect (and (open ?lockpos) (not (locked ?lockpos))))
```

```
(:action move
:parameters (?curpos ?nextpos - place)
:percondition (and (at-robot ?curpos) (conn ?curpos ?nextpos) (open ?r
:effect (and (at-robot ?nextpos) (not (at-robot ?curpos))))
(:action pickup
```

```
:parameters (?curpos — place ?key — key)
:precondition (and (at-robot ?curpos) (at ?key ?curpos))
:effect (and (carrying ?key)
(not (at ?key ?curpos)))
)
```

Table of Contents

What is Goal Recognition?

2 Automated Planning and Goal Recognition

- 3 A Canned History of Current Approaches
- 4 Using LP-Constraints for Goal Recognition
- 5) Summary and Future Directions
- 6 Acknowledgements

< ロト < 同ト < 三ト < 三ト

Definition (Planning)

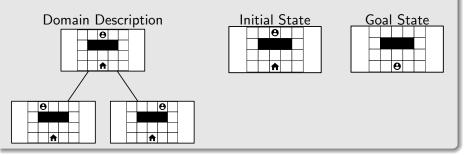
A planning instance is represented by a triple $\Pi = \langle \Xi, \mathcal{I}, G \rangle$, in which:

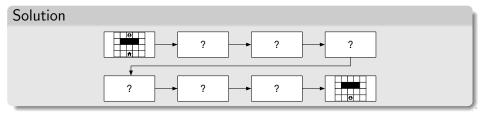
- $\Xi = \langle \Sigma, \mathcal{A} \rangle$ is the **domain definition**, and consists of a finite set of facts Σ and a finite set of actions \mathcal{A} (action costs typically 1);
- $\mathcal{I} \subseteq \Sigma$ and $G \subseteq \Sigma$ represent the planning problem, in which $\mathcal{I} \subseteq \Sigma$ is the initial state, and $G \subseteq \Sigma$ is the goal state.
- Actions $a \in \mathcal{A}$ are tuples $a = \langle pre(a), eff(a), cost(a) \rangle$
- Facts $\boldsymbol{\Sigma}$ can be modeled in a variety of ways:
 - As a logic language (restricted FOL): states are truth assignments
 - As a set of variables \mathcal{V} with finite domains: states are variable assignments

イロト イポト イヨト イヨト 二日

Automated Planning - Less boring

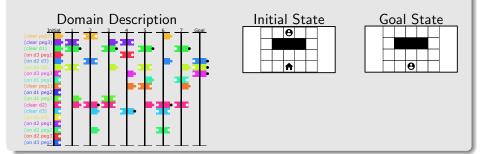
Planning problems have three key ingredients

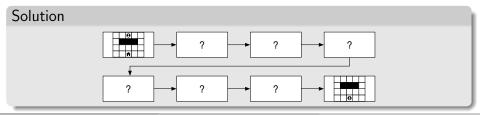




Automated Planning - Less boring

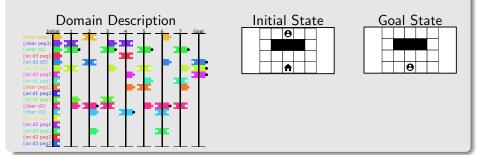
Planning problems have three key ingredients

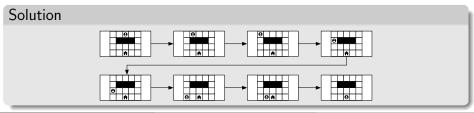




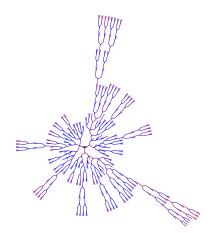
Automated Planning - Less boring

Planning problems have three key ingredients





Planning Heuristics

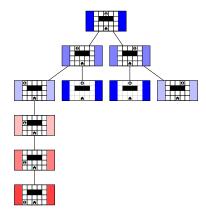


Most modern planners rely on heuristics to efficiently search the state-space.

Two key challenges in research on novel heuristics

- Informativeness of the heuristic
- Computational efficiency

Planning Heuristics



Most modern planners rely on heuristics to efficiently search the state-space.

Two key challenges in research on novel heuristics

- Informativeness of the heuristic
- Computational efficiency

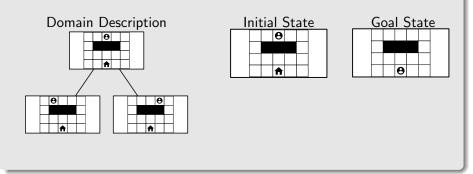
Definition (Goal Recognition Problem)

A goal recognition problem is a tuple $P = \langle \Xi, \mathcal{I}, \mathcal{G}, O \rangle$, where:

- $\Xi = \langle \Sigma, \mathcal{A} \rangle$ is the domain definition (facts and actions) ;
- $\mathcal{I} \subseteq \Sigma$ is the initial state;
- \mathcal{G} s.t. $\forall G \in \mathcal{G}, G \subseteq \Sigma$ is a set of candidate goals (with an assumed hidden goal G); and
- O is a sequence $\langle o_1, \ldots o_n \rangle$ of observations, where $o_i \in \mathcal{A}$
- The solution for a goal recognition problem is the hidden goal G ∈ G that is most consistent with observation sequence O.
- Caveat: we may have other representations for the observations
- This is what I will refer to as PRAP

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへへ

Goal/Plan Recognition problems have three key ingredients

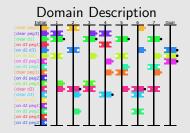


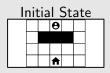
Э

A E + A E +

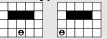
< A >

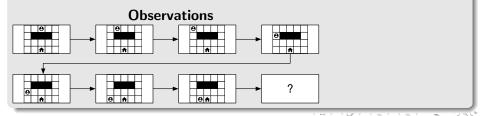
Goal/Plan Recognition problems have four key ingredients





Goal Hypotheses



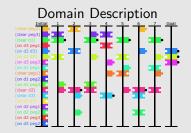


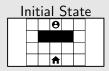
Meneguzzi et al.

LP-Based Approaches for Goal Recognition as Planning

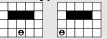
Melbourne, February, 2020 13 / 39

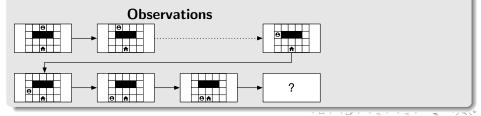
Goal/Plan Recognition problems have four key ingredients





Goal Hypotheses

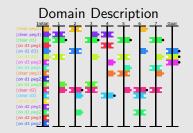


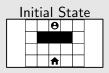


Meneguzzi et al.

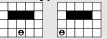
LP-Based Approaches for Goal Recognition as Planning

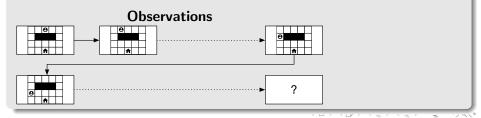
Goal/Plan Recognition problems have four key ingredients





Goal Hypotheses



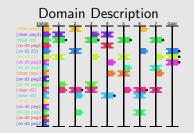


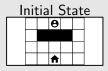
Meneguzzi et al.

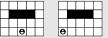
LP-Based Approaches for Goal Recognition as Planning

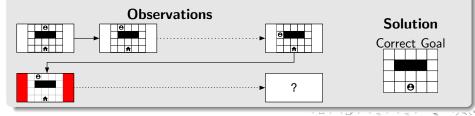
Melbourne, February, 2020 13 / 39

Goal/Plan Recognition problems have four key ingredients









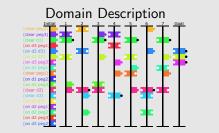
Meneguzzi et al.

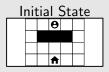
LP-Based Approaches for Goal Recognition as Planning

Melbourne, February, 2020

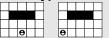
13/39

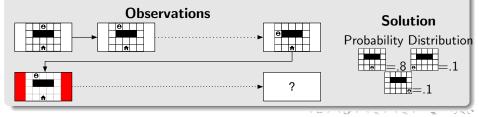
Goal/Plan Recognition problems have four key ingredients





Goal Hypotheses





Meneguzzi et al.

LP-Based Approaches for Goal Recognition as Planning

Melbourne, February, 2020

13/39

Table of Contents

1) What is Goal Recognition?

2 Automated Planning and Goal Recognition

3 A Canned History of Current Approaches

4 Using LP-Constraints for Goal Recognition

5 Summary and Future Directions

6 Acknowledgements

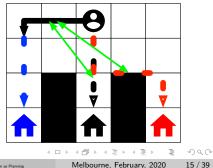
イロト イロト イヨト イヨト

Goal Recognition using Planning Domains I

Ramirez and Geffner (2009 and 2010)

- First approaches to goal recognition: Plan Recognition as Planning (PRAP)
- Probabilistic model aims to compute $P(G \mid O)$
- Following Bayes Rule $P(G \mid O) = \alpha P(O \mid G)P(G)$
- Given P(G) as a prior, key bottleneck is computing $P(O \mid G)$

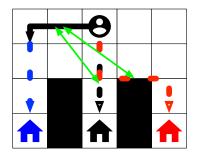
- Compute $P(O \mid G)$ in terms of a cost difference $c(G, O) - c(G, \overline{O})$
- Costs two planner calls per goal hypothesis



LP-Based Approaches for Goal Recognition as Planning

Sohrabi et al. (2016)

- Conceptually similar to Ramirez and Geffner: aims to compute $P(G \mid O)$ via $\alpha P(O \mid G)P(G)$
- Compilation of plan recognition problem into **multiple planning** problems (one for each *G*)
- Compute Top-k or diverse plans π to approximate $P(O \mid G) = \sum_{\pi} P(O \mid \pi) \cdot P(\pi \mid G)$
- Compensate noisy observations by imposing a cost on dropped Observations



イロト イヨト イヨト

Goal Recognition using Planning Heuristics

Pereira, Oren and Meneguzzi (2017):

- Obviate the need to execute a planner multiple times for recognizing goals; and
- Novel goal recognition heuristics that use planning landmarks.
- More accurate and orders of magnitude faster than all previous approaches.

Planning Landmarks:

- Are **necessary conditions** for any valid plan
- Theoretical cost of computation is the same as planning

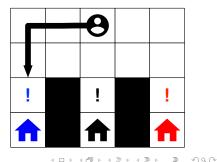
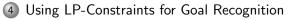


Table of Contents

1) What is Goal Recognition?

2 Automated Planning and Goal Recognition

3 A Canned History of Current Approaches



5 Summary and Future Directions

Acknowledgements

< ロト < 同ト < ヨト < ヨト

- Based on the idea of Cost Partitioning for Landmarks
- Represents cost of a planning problem in terms of linear constraints:¹
 - Variables: Count_o for each operator o
 - **Objective:** Minimize $\sum \text{Count}_o \cdot \text{cost}(o)$, subject to

•
$$\sum_{o \in L} \text{Count}_o \ge 1$$
 for all landmarks L

- Numbers of operator occurrences in any plan satisfy constraints
- $\, \bullet \,$ Minimizing total cost \rightarrow admissible heuristic

¹Adapted from Helmert and Röger's planning course \square

Operator Counting

Operator-counting Constraints²

linear constraints whose variables denote *number of occurrences* of a given operator

must be satisfied by every plan

Examples:

- $\mathsf{Count}_{o1} + \mathsf{Count}_{o2} \geq 1$ "must use o_1 or o_2 at least once"
- $Count_{o1} Count_{o3} \le 0$

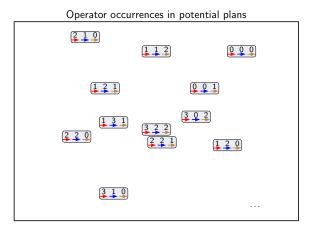
"cannot use o_1 more often than o_3 "

Motivation:

- declarative way to represent knowledge about the solution
- allows reasoning about solutions to derive heuristic estimates
- elegant framework to combine information from multiple heuristics

²Adapted from Helmert and Röger's planning course $\langle \Box \rangle \langle B \rangle \langle B \rangle \langle E \rangle \langle E \rangle \langle E \rangle$

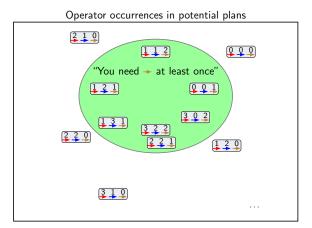
OC variables correspond to unordered actions in potential plans.³



Meneguzzi et al.

Sac

OC variables correspond to unordered actions in potential plans.³

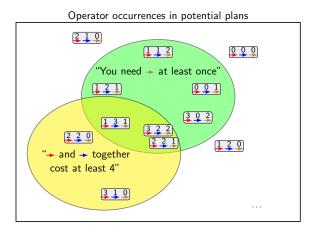


Meneguzzi et al.

LP-Based Approaches for Goal Recognition as Planning

Sac

OC variables correspond to unordered actions in potential plans.³



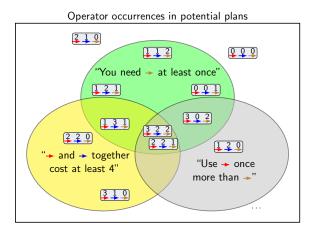
³Adapted from Helmert and Röger's planning course () + ()

Meneguzzi et al.

LP-Based Approaches for Goal Recognition as Planning

Sac

OC variables correspond to unordered actions in potential plans.³

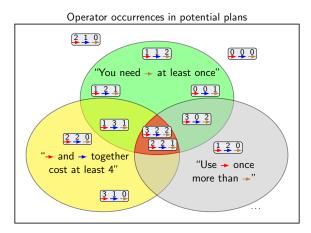


Meneguzzi et al.

LP-Based Approaches for Goal Recognition as Planning

Operator Counting heuristics

OC variables correspond to unordered actions in potential plans.³



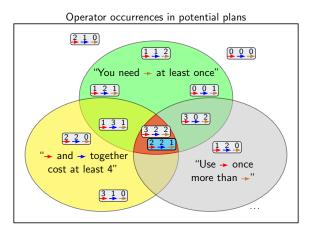
Meneguzzi et al.

LP-Based Approaches for Goal Recognition as Planning

500

Operator Counting heuristics

OC variables correspond to unordered actions in potential plans.³



Meneguzzi et al.

LP-Based Approaches for Goal Recognition as Planning

500

Definition: Operator-counting constraints

Let Π be a planning task with operators O and let s be a state. Let \mathcal{V} be the set of variables Count_o for each $o \in O$. A linear inequality over \mathcal{V} is called an **operator-counting constraint** for s of for every plan π for s setting each Count_o to the number of occurrences of o in π is a feasible variable assignment.

Definition: Operator-counting constraints

Let Π be a planning task with operators O and let s be a state. Let \mathcal{V} be the set of variables Count_o for each $o \in O$. A linear inequality over \mathcal{V} is called an **operator-counting constraint** for s of for every plan π for s setting each Count_o to the number of occurrences of o in π is a feasible variable assignment.

So, what are typical operator-counting constraints?

- Landmarks: L landmark operator has a constraint $\sum_{o \in I}$ Count_o ≥ 1
- Flow heuristic: one flow constraint per atom *a*: $[a \in s] + \sum_{o \in O:a \in eff(o)} Count_o = [a \in \gamma] + \sum_{o \in O:a \in pre(o)} Count_o$
- Post-hoc Optimization:

イロト イボト イヨト イヨト 二日

- Operator counting constraints represent knowledge about solutions
- allows reasoning about solutions to derive heuristic estimates

- Operator counting constraints represent knowledge about solutions
- allows reasoning about solutions that comply with additional constraints:

イロト イヨト イヨト

- Operator counting constraints represent knowledge about solutions
- allows reasoning about solutions that comply with additional constraints:
 - actual observations

- Operator counting constraints represent knowledge about solutions
- allows reasoning about solutions that comply with additional constraints:
 - actual observations
 - missing observations

A E > A E >

- Operator counting constraints represent knowledge about solutions
- allows reasoning about solutions that comply with additional constraints:
 - actual observations
 - missing observations
 - noisy observations

* E > * E >

- Operator counting constraints represent knowledge about solutions
- allows reasoning about solutions that comply with additional constraints:
 - actual observations
 - missing observations
 - noisy observations
 - goal hypotheses
 - other constraints

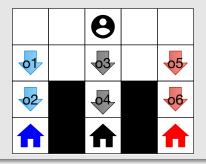
* E > * E >

Computing intersection of OC and Observations

Initial idea: compute operator-counts and compare with observations

Example

Consider an observation containing o_2 and o_3 (from a plan for g_1):



Compute $h^{G}(\mathcal{I})$ for:

- **g**1
- g₂
- *g*₃

Return goal with maximum overlap

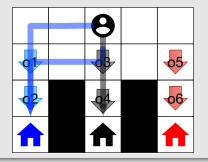
イロト イヨト イヨト

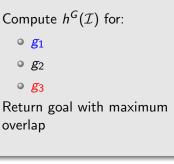
Computing intersection of OC and Observations

Initial idea: compute operator-counts and compare with observations

Example

Consider an observation containing o_2 and o_3 (from a plan for g_1):





Problem: LP has multiple (optimal) solutions

イロト イヨト イヨト

Second idea: force OCs that comply with observations

Observation constraints

Let k_a be the number of occurrences of observations of the operator a in the sequence of Observations O for a goal recognition problem P, the hard constraint for a is:

 $Count_a \ge k_a$

We call the objective value of the resulting LP $h_{
m HC}$

Sac

イロト イ理ト イヨト イヨト

Second idea: force OCs that comply with observations

Observation constraints

Let k_a be the number of occurrences of observations of the operator a in the sequence of Observations O for a goal recognition problem P, the hard constraint for a is:

 $Count_a \ge k_a$

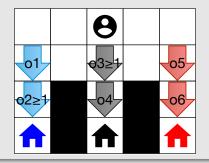
We call the objective value of the resulting LP $h_{
m HC}$

 $h_{
m HC}$ Heuristic cost of reaching a goal G subject to the observations O

イロト イポト イヨト イヨト 二日

Hard Constraints for the Observations

Example: Observations o_2 and o_3 (towards g_1)



Compute $h^{G}(\mathcal{I})$ for: • $h_{\text{uc}}^{g_{1}}(\mathcal{I}) = 3$

•
$$h_{\mathrm{HC}}^{g_2}(\mathcal{I}) = 4$$

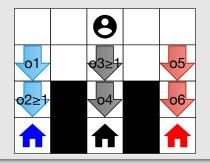
•
$$h_{\mathrm{HC}}^{\mathbf{g_3}}(\mathcal{I}) = 4$$

Sar

イロト イポト イヨト イヨト 二日

Hard Constraints for the Observations

Example: Observations o_2 and o_3 (towards g_1)

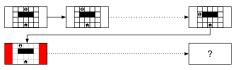


Compute $h^{\mathcal{G}}(\mathcal{I})$ for: • $h_{\mathrm{HC}}^{g_1}(\mathcal{I}) = 3$ • $h_{\mathrm{HC}}^{g_2}(\mathcal{I}) = 4$ • $h_{\mathrm{HC}}^{g_3}(\mathcal{I}) = 4$

Solution: $\{G|G \in \mathcal{G} \land h_{HC}^G \le \min_G h_{HC}^G\} = \{g_1\}$

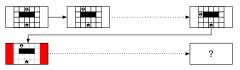
イロト イボト イヨト イヨト 二日

Key Challenge: Observations are unreliable in Goal Recognition



- Fast approaches (e.g. Pereira, Oren, and Meneguzzi) have a threshold to handle ties due to missing observations
- OC heuristics: lower bound on number of observations

Key Challenge: Observations are unreliable in Goal Recognition



- Fast approaches (e.g. Pereira, Oren, and Meneguzzi) have a threshold to handle ties due to missing observations
- OC heuristics: lower bound on number of observations

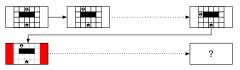
Lower bound on observations

•
$$h_{\scriptscriptstyle \mathrm{HC}}^{\mathbf{g}_1}(\mathcal{I})=3$$

•
$$h_{\mathrm{HC}}^{g_2}(\mathcal{I}) = 5 h_{\mathrm{HC}}^{g_3}(\mathcal{I}) = 7$$

4 1 1 4 1 1 1

Key Challenge: Observations are unreliable in Goal Recognition



- Fast approaches (e.g. Pereira, Oren, and Meneguzzi) have a threshold to handle ties due to missing observations
- OC heuristics: lower bound on number of observations

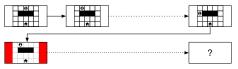
Lower bound on observations

• $h_{\text{HC}}^{g_1}(\mathcal{I}) = 3$ • $h_{\text{HC}}^{g_2}(\mathcal{I}) = 5 h_{\text{HC}}^{g_3}(\mathcal{I}) = 7$

•
$$|O| \ge 3$$

< ロ ト < 同 ト < 三 ト < 三 ト - 三

Key Challenge: Observations are unreliable in Goal Recognition



- Fast approaches (e.g. Pereira, Oren, and Meneguzzi) have a threshold to handle ties due to missing observations
- OC heuristics: lower bound on number of observations

Lower bound on observations

•
$$h_{HC}^{g_1}(\mathcal{I}) = 3$$

• $h_{HC}^{g_2}(\mathcal{I}) = 5 \ h_{HC}^{g_3}(\mathcal{I}) = 7$
• $|O| \ge 3$
• $U \leftarrow 1 + \frac{\min_G h_{HC}^G - |O|}{\min_G h_{HC}^G} = 1.33$

Solution: $\{G | G \in \mathcal{G} \land h_{HC}^G \le \min_G h_{HC}^G * U\} = \{g_1\}$

Proposition 1: h_{HC} dominates h

Let *h* be the basic operator-counting heuristic, $h_{\rm HC}$ be the over-constrained heuristic $h_{\rm HC}$ that accounts for all observations $o \in O$, and *s* a state of Π . Then $h_{\rm HC}(s) \ge h(s)$.

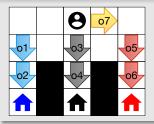
Proposition 2

The set of goals returned by $h_{\rm HC}$ with 100% of the observations always contains the actual goal.

A E > A E >

Problem: Noisy observations throw off over-constrained heuristic

Observations o_2 , o_3 , o_7 (noisy) towards g_1



•
$$h_{\mathrm{HC}}^{g_1}(\mathcal{I}) = 7 \ h_{\mathrm{HC}}^{g_2}(\mathcal{I}) = 7 \ h_{\mathrm{HC}}^{g_3}(\mathcal{I}) = 10$$

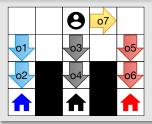
3

Sar

イロト イヨト イヨト

Problem: Noisy observations throw off over-constrained heuristic

Observations o_2 , o_3 , o_7 (noisy) towards g_1



•
$$h_{\rm HC}^{g_1}(\mathcal{I}) = 7 \ h_{\rm HC}^{g_2}(\mathcal{I}) = 7 \ h_{\rm HC}^{g_3}(\mathcal{I}) = 10$$

•
$$h^{g_1}(\mathcal{I}) = h^{g_2}(\mathcal{I}) = h^{g_3}(\mathcal{I}) = 2$$

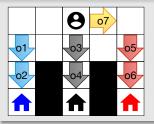
3

Sar

イロト イヨト イヨト

Problem: Noisy observations throw off over-constrained heuristic

Observations o_2 , o_3 , o_7 (noisy) towards g_1



•
$$h_{HC}^{g_1}(\mathcal{I}) = 7 \ h_{HC}^{g_2}(\mathcal{I}) = 7 \ h_{HC}^{g_3}(\mathcal{I}) = 10$$

• $h^{g_1}(\mathcal{I}) = h^{g_2}(\mathcal{I}) = h^{g_3}(\mathcal{I}) = 2$

•
$$\delta^{g_1}_{\scriptscriptstyle \mathrm{HC}}(\mathcal{I}) = 5 \,\, \delta^{g_2}_{\scriptscriptstyle \mathrm{HC}}(\mathcal{I}) = 5 \,\, \delta^{g_3}_{\scriptscriptstyle \mathrm{HC}}(\mathcal{I}) = 8$$

イロト イ押ト イヨト イヨト

3

Sar

Problem: Noisy observations throw off over-constrained heuristic

Observations o_2 , o_3 , o_7 (noisy) towards g_1



•
$$h_{HC}^{g_1}(\mathcal{I}) = 7 \ h_{HC}^{g_2}(\mathcal{I}) = 7 \ h_{HC}^{g_3}(\mathcal{I}) = 10$$

• $h^{g_1}(\mathcal{I}) = h^{g_2}(\mathcal{I}) = h^{g_3}(\mathcal{I}) = 2$
• $\delta_{HC}^{g_1}(\mathcal{I}) = 5 \ \delta_{HC}^{g_2}(\mathcal{I}) = 5 \ \delta_{HC}^{g_3}(\mathcal{I}) = 8$
• $U = 1.57$

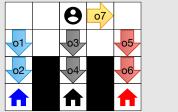
イロト イヨト イヨト

3

Sar

Problem: Noisy observations throw off over-constrained heuristic

Observations o_2 , o_3 , o_7 (noisy) towards g_1



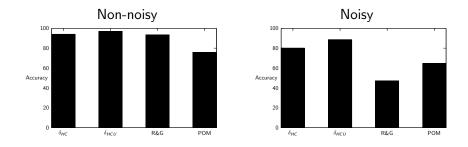
•
$$h_{\rm HC}^{g_1}(\mathcal{I}) = 7 \ h_{\rm HC}^{g_2}(\mathcal{I}) = 7 \ h_{\rm HC}^{g_3}(\mathcal{I}) = 10$$

• $h^{g_1}(\mathcal{I}) = h^{g_2}(\mathcal{I}) = h^{g_3}(\mathcal{I}) = 2$
• $\delta_{\rm HC}^{g_1}(\mathcal{I}) = 5 \ \delta_{\rm HC}^{g_2}(\mathcal{I}) = 5 \ \delta_{\rm HC}^{g_3}(\mathcal{I}) = 8$
• $U = 1.57$

Solution: Compute OCs twice, and return min $\delta_{\rm HC}^{G} = h_{\rm HC}^{G} - h^{G}$

$$\{{{\mathcal{G}}}|{{\mathcal{G}}}\in {{\mathcal{G}}}\wedge \delta^{{\mathcal{G}}}_{{}_{\mathrm{HC}}} \le \min_{{{\mathcal{G}}}} \delta^{{\mathcal{G}}}_{{}_{\mathrm{HC}}} \ast U\} = \{{{\mathbf{g}}}_1, {{\mathbf{g}}}_2, {{\mathbf{g}}}_3\}$$

Empirical Experiments (Accuracy)



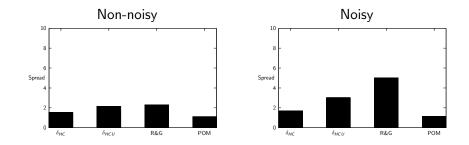
< ∃ > Melbourne, February, 2020 30 / 39

< □ > < 同 >

Э

990

Empirical Experiments (Spread)



 $\exists \rightarrow$ Melbourne, February, 2020 31/39

< A

Э

990

Table of Contents

1) What is Goal Recognition?

2 Automated Planning and Goal Recognition

3 A Canned History of Current Approaches

4 Using LP-Constraints for Goal Recognition

5 Acknowledgements

< ロト < 同ト < ヨト < ヨト

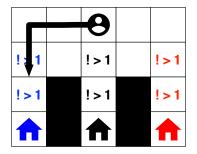
Goal Recognition using Operator-Counting Constraints

Meneguzzi, Pereira and Pereira (2020):

- Use operator counting information to recognize goals; and
- Operator counts and LP constraints cope explicitly with noisy observations.

Key advantages:

- More accurate than all previous approaches; and
- Extensible framework for further goal recognition work.



4 1 1 4 1 1 1

- Introduce flexibility for noise in the constraints
- Reason about all goals in one LP
- Implement approaches Efficiently

3

イロト イボト イヨト イヨト

Table of Contents

- 1) What is Goal Recognition?
- 2 Automated Planning and Goal Recognition
- 3 A Canned History of Current Approaches
- 4 Using LP-Constraints for Goal Recognition
- 5 Summary and Future Directions

6 Acknowledgements

< ロト < 同ト < ヨト < ヨト

People involved in this research

- Ramon Fraga Pereira (PhD Student)
- André Grahl Pereira (UFRGS)

My hosts in Melbourne

- Nir Lipovetzky (Melbourne University)
- Miquel Ramirez (Melbourne University)

A E + A E +

< □ > < □ >

Institutions

- Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
 Internalization Project (PrInt)
- Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) – PQ Fellowship

3

イロト イ押ト イヨト イヨト

If this talk was interesting and you want to know more, talk to me:

PUCRS PrInt

http://www.pucrs.br/print/

Areas of work (with me) and advantages:

- Automated Planning and Goal Recognition
- Machine Learning (within reason)
- Excellent Food

A E > A E >

Thank you! Questions?

ESCOLA POLITÉCNICA

Meneguzzi et al.

LP-Based Approaches for Goal Recognition as Planning

Melbourne, February, 2020 39 / 39