
How to write a (good)  
research paper

Felipe Meneguzzi
Slides adapted from Simon Peyton-Jones (Microsoft Research)

English English English
• Modern science is written in English

• If something is worth reading, it is written in English

• This is not cultural imperialism

• The Romans wrote science in Greek

• Even the French nowadays use English for scientific publication

Why should I write a paper?

• Fallacy of paper writing 
we write papers and give talks
mainly to impress others, gain
recognition, and get promoted

Why should we write a paper?
• Papers communicate ideas

• Your goal: to infect the mind of your reader with your idea, like a
virus

• Papers are far more durable than programs (think Mozart)

• Remember that FORTRAN library that sorts lists using the
quicksort function? Me neither!

• The greatest ideas are (literally) worthless if you keep them to
yourself

Writing papers: model I
Idea Do

Research
Write
Paper

Writing papers: model II

• Forces us to be clear, focused

• Crystallises what we don’t understand

• Opens the way to dialogue with others: reality check, critique, and collaboration

• Writing papers is a primary mechanism for doing research  
(not just reporting it)

Idea Do
Research

Write
Paper

Idea Write
Paper

Do
Research

Do not be intimidated

• Fallacy: You need to have a fantastic idea before you can write a
paper or give a talk. (Everyone else seems to.)  
 

• Write a paper, and give a talk, about any idea,  
no matter how weedy and insignificant it may seem to you

Do not be intimidated

 
Write a paper, and give a talk, about any idea, no matter how

insignificant it may seem to you

• Writing the paper is how you develop the idea in the first place"

• It usually turns out to be more interesting and challenging that it
seemed at first

The purpose of your paper is…
• To convey your idea"

• …from your head  
 to your reader’s head

• to infect your the mind of your  
reader with your idea, like a virus

• Everything serves this single goal

The purpose of your paper is not…

• To describe the WizWoz system  
 

• Your reader does not have a WizWoz

• She is primarily interested in re-usable brain-stuff, not executable
artefacts

The Idea

• Your paper should have just one “ping":  
one clear, sharp idea

• You may not know exactly what the ping is when you start writing,
but you must know when you finish"

• If you have lots of ideas, write lots of papers

Idea  
A re-usable insight,  
useful to the reader

Can you hear the “ping”?

• Many papers contain good ideas, but do not distill what they are

• Make certain that the reader is in no doubt what the idea is.  
Be 100% explicit

• “The main idea of this paper is …”

• “In his section, we present the main contributions of the paper.”

Conveying the idea
• Here is a problem

• It’s an interesting problem

• It’s an unsolved problem

• Here is my idea"

• My idea works (details, data)

• Here’s how my idea compares to other people’s approaches

I wish I knew
how to solve that!

I see how it works.
Ingenious!

Structure (conference paper)
• Title (1000 readers)

• Abstract (4 sentences, 100 readers)"

• Introduction (1 page, 100 readers)

• The problem (1 page, 10 readers)

• My idea (2 pages, 10 readers)

• The details (5 pages, 3 readers)

• Related work (1-2 pages, 10 readers)

• Conclusions and further work (0.5 pages)

The abstract
• I usually write the abstract last

• Used by program committee members to decide which papers to read

• Four sentences [Kent Beck]

1. State the problem

2. Say why it’s an interesting problem

3. Say what your solution achieves

4. Say what follows from your solution

Example
1. Many papers are badly written and hard to understand

2. This is a pity, because their good ideas may go unappreciated

3. Following simple guidelines can dramatically improve the quality of
your papers

4. Your work will be used more, and the feedback you get from others
will in turn improve your research

Structure
• Title (1000 readers)

• Abstract (4 sentences, 100 readers)

• Introduction (1 page, 100 readers)"

• The problem (1 page, 10 readers)

• My idea (2 pages, 10 readers)

• The details (5 pages, 3 readers)

• Related work (1-2 pages, 10 readers)

• Conclusions and further work (0.5 pages)

The introduction (1 page)
1. Describe the problem"

2. State your contributions  
 
...and that is all (according to Simon)  
I would add

3. Restate key items from the abstract  
(why the problem is interesting, etc) 
 
And use intuitive language (do the hallway test)

Molehills not mountains

• “Computer programs often have bugs. It is very important
to eliminate these bugs [1,2]. Many researchers have tried
[3,4,5,6]. It is really very important.”

• “Consider this program, which has an interesting bug.
<brief description>. We will show an automatic technique
for identifying and removing such bugs.”

Yawn

Cool!

Describe the problem

An approach to generate MDPs using HTN representations

Felipe Meneguzzi and Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{meneguzz, katia}@cs.cmu.edu

Yuqing Tang
Graduate Center

City University of New York
New York, NY, USA
ytang@cs.gc.cuny.edu

Simon Parsons
Brooklyn College

City University of New York
New York, NY, USA

parsons@sci.brooklyn.cuny.edu

Abstract
Planning for deterministic and probabilistic do-
mains differ significantly in representations they
require, the algorithms that solve them and the
way in which results are represented. Hierarchi-
cal Task Networks (HTN) and Markov Decision
Process (MDPs) are representative formalisms of,
respectively, deterministic and stochastic planning.
Stochastic domain specifications can easily become
opaque to a human designer, especially as the do-
main size increases. Our research aims to develop
algorithms for lossless and automatic mapping of
HTN models that are easily intelligible to humans
into MDPs. In this paper we develop algorithms to
convert deterministic planning domains with HTN
domain knowledge and an action error model into
MDPs that can then be solved, while maintaining a
bound on the number of MDP states.

1 Introduction
Deterministic planning domains are generally easy to visual-
ize and understand, as the details of the meaning of transi-
tions between states are clearly defined in the operators, and
the resulting plans are intuitive and easily understood. One
particular formalism for domain representation in determin-
istic planning is the hierarchical task network (HTN) [Erol
et al., 1994], which encodes not only STRIPS/PDDL actions
with their preconditions and effects, but also domain knowl-
edge in the form of a hierarchy of tasks that can be refined
from a high-level objective into the actions required in the
environment. Conversely, one of the most widely studied for-
malisms for planning under uncertainty is the Markov deci-
sion process (MDP) [Bellman, 2003], in which the evolution
of the environment is modeled as a Markov chain, and the
goals of the planner are implicitly represented in a function
that defines, for each state, the reward of executing a cer-
tain action. The definition of stochastic planning problems
quickly becomes unwieldy as the number of state variables
increase.1 As the number of states goes up, so does the size of
the transition probability tables, with problems requiring one

1Of course the time and space complexity of solving these prob-
lems grows exponentially as well, but this is not our focus here.

such table for each action in the domain. As a consequence,
although MDPs are an elegant mathematical formalism for
representing stochastic domains, it is not straightforward for
non-specialists to model domains using this formalism.

Our goal is to use HTN models, which are more user-
friendly, to automatically construct MDPs. In this paper we
propose a step towards this overall aim, showing how to use
HTNs to describe MDPs, thus allowing stochastic domains to
be modeled using HTNs that are then translated into MDPs
in order to be solved. Together with a simple model of action
error, our conversion process allows efficient MEU planning
over the state space induced by the HTN. The benefits of the
approach are twofold: (a) reduction of the state space, and
consequent reduction of the computational burden is benefi-
cial since it enables the representation and solving of realistic
planning problems, and (b) starting from a declarative rep-
resentation makes planning more comprehensible to humans,
while extending the representation to stochastic domains.

2 Background
2.1 MDPs
We consider an MDP to be a tuple ⌃ = (S,A, Pr, u) where
S is a finite set of states, A is a finite set of actions, Pr is a
state-transition system and u is a reward (or utility) function
[Ghallab et al., 2004]. The state-transition system defines a
probability distribution for each state transition. Here, given
{s, s0} 2 S and a 2 A, Pra(s0|s) denotes the probability of
transitioning from state s to state s0 when executing action a.
The solution of an MDP is a policy, which indicates the best
action to take in each state. A policy ⇡ here is a total function
⇡ : S ! A mapping states into actions. The analogous to
goal states in MDPs are indirectly represented through util-
ity functions, which typically assign a value u(aj , si) to the
choices of actions aj in states si. Such information makes it
possible to compute the value of a given state under a partic-
ular policy ⇡ — it is the expected value of carrying out the
policy from that state (where a = ⇡(s)), given a discount fac-
tor.The optimal policy ⇡⇤(s) is then one that maximizes this
value, and can be found by various means.

2.2 HTNs
An HTN planning domain is a pair D = (A,M) where A
is a finite set of actions (or operators) and M is a finite set
of methods, and an HTN is a pair H = (T,C) where T

An approach to generate MDPs using HTN representations

Felipe Meneguzzi and Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{meneguzz, katia}@cs.cmu.edu

Yuqing Tang
Graduate Center

City University of New York
New York, NY, USA
ytang@cs.gc.cuny.edu

Simon Parsons
Brooklyn College

City University of New York
New York, NY, USA

parsons@sci.brooklyn.cuny.edu

Abstract
Planning for deterministic and probabilistic do-
mains differ significantly in representations they
require, the algorithms that solve them and the
way in which results are represented. Hierarchi-
cal Task Networks (HTN) and Markov Decision
Process (MDPs) are representative formalisms of,
respectively, deterministic and stochastic planning.
Stochastic domain specifications can easily become
opaque to a human designer, especially as the do-
main size increases. Our research aims to develop
algorithms for lossless and automatic mapping of
HTN models that are easily intelligible to humans
into MDPs. In this paper we develop algorithms to
convert deterministic planning domains with HTN
domain knowledge and an action error model into
MDPs that can then be solved, while maintaining a
bound on the number of MDP states.

1 Introduction
Deterministic planning domains are generally easy to visual-
ize and understand, as the details of the meaning of transi-
tions between states are clearly defined in the operators, and
the resulting plans are intuitive and easily understood. One
particular formalism for domain representation in determin-
istic planning is the hierarchical task network (HTN) [Erol
et al., 1994], which encodes not only STRIPS/PDDL actions
with their preconditions and effects, but also domain knowl-
edge in the form of a hierarchy of tasks that can be refined
from a high-level objective into the actions required in the
environment. Conversely, one of the most widely studied for-
malisms for planning under uncertainty is the Markov deci-
sion process (MDP) [Bellman, 2003], in which the evolution
of the environment is modeled as a Markov chain, and the
goals of the planner are implicitly represented in a function
that defines, for each state, the reward of executing a cer-
tain action. The definition of stochastic planning problems
quickly becomes unwieldy as the number of state variables
increase.1 As the number of states goes up, so does the size of
the transition probability tables, with problems requiring one

1Of course the time and space complexity of solving these prob-
lems grows exponentially as well, but this is not our focus here.

such table for each action in the domain. As a consequence,
although MDPs are an elegant mathematical formalism for
representing stochastic domains, it is not straightforward for
non-specialists to model domains using this formalism.

Our goal is to use HTN models, which are more user-
friendly, to automatically construct MDPs. In this paper we
propose a step towards this overall aim, showing how to use
HTNs to describe MDPs, thus allowing stochastic domains to
be modeled using HTNs that are then translated into MDPs
in order to be solved. Together with a simple model of action
error, our conversion process allows efficient MEU planning
over the state space induced by the HTN. The benefits of the
approach are twofold: (a) reduction of the state space, and
consequent reduction of the computational burden is benefi-
cial since it enables the representation and solving of realistic
planning problems, and (b) starting from a declarative rep-
resentation makes planning more comprehensible to humans,
while extending the representation to stochastic domains.

2 Background
2.1 MDPs
We consider an MDP to be a tuple ⌃ = (S,A, Pr, u) where
S is a finite set of states, A is a finite set of actions, Pr is a
state-transition system and u is a reward (or utility) function
[Ghallab et al., 2004]. The state-transition system defines a
probability distribution for each state transition. Here, given
{s, s0} 2 S and a 2 A, Pra(s0|s) denotes the probability of
transitioning from state s to state s0 when executing action a.
The solution of an MDP is a policy, which indicates the best
action to take in each state. A policy ⇡ here is a total function
⇡ : S ! A mapping states into actions. The analogous to
goal states in MDPs are indirectly represented through util-
ity functions, which typically assign a value u(aj , si) to the
choices of actions aj in states si. Such information makes it
possible to compute the value of a given state under a partic-
ular policy ⇡ — it is the expected value of carrying out the
policy from that state (where a = ⇡(s)), given a discount fac-
tor.The optimal policy ⇡⇤(s) is then one that maximizes this
value, and can be found by various means.

2.2 HTNs
An HTN planning domain is a pair D = (A,M) where A
is a finite set of actions (or operators) and M is a finite set
of methods, and an HTN is a pair H = (T,C) where T

If possible, use an example
to describe to problem

State your contributions

• Write the list of contributions first

• The list of contributions drives the entire paper:  
the paper substantiates the claims you have made

• Reader thinks “gosh, if they can really deliver this, that’s be exciting;
I’d better read on”

State your contributions
• Do not leave the reader to

guess what your
contributions are!

An approach to generate MDPs using HTN representations

Felipe Meneguzzi and Katia Sycara
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA, USA

{meneguzz, katia}@cs.cmu.edu

Yuqing Tang
Graduate Center

City University of New York
New York, NY, USA
ytang@cs.gc.cuny.edu

Simon Parsons
Brooklyn College

City University of New York
New York, NY, USA

parsons@sci.brooklyn.cuny.edu

Abstract
Planning for deterministic and probabilistic do-
mains differ significantly in representations they
require, the algorithms that solve them and the
way in which results are represented. Hierarchi-
cal Task Networks (HTN) and Markov Decision
Process (MDPs) are representative formalisms of,
respectively, deterministic and stochastic planning.
Stochastic domain specifications can easily become
opaque to a human designer, especially as the do-
main size increases. Our research aims to develop
algorithms for lossless and automatic mapping of
HTN models that are easily intelligible to humans
into MDPs. In this paper we develop algorithms to
convert deterministic planning domains with HTN
domain knowledge and an action error model into
MDPs that can then be solved, while maintaining a
bound on the number of MDP states.

1 Introduction
Deterministic planning domains are generally easy to visual-
ize and understand, as the details of the meaning of transi-
tions between states are clearly defined in the operators, and
the resulting plans are intuitive and easily understood. One
particular formalism for domain representation in determin-
istic planning is the hierarchical task network (HTN) [Erol
et al., 1994], which encodes not only STRIPS/PDDL actions
with their preconditions and effects, but also domain knowl-
edge in the form of a hierarchy of tasks that can be refined
from a high-level objective into the actions required in the
environment. Conversely, one of the most widely studied for-
malisms for planning under uncertainty is the Markov deci-
sion process (MDP) [Bellman, 2003], in which the evolution
of the environment is modeled as a Markov chain, and the
goals of the planner are implicitly represented in a function
that defines, for each state, the reward of executing a cer-
tain action. The definition of stochastic planning problems
quickly becomes unwieldy as the number of state variables
increase.1 As the number of states goes up, so does the size of
the transition probability tables, with problems requiring one

1Of course the time and space complexity of solving these prob-
lems grows exponentially as well, but this is not our focus here.

such table for each action in the domain. As a consequence,
although MDPs are an elegant mathematical formalism for
representing stochastic domains, it is not straightforward for
non-specialists to model domains using this formalism.

Our goal is to use HTN models, which are more user-
friendly, to automatically construct MDPs. In this paper we
propose a step towards this overall aim, showing how to use
HTNs to describe MDPs, thus allowing stochastic domains to
be modeled using HTNs that are then translated into MDPs
in order to be solved. Together with a simple model of action
error, our conversion process allows efficient MEU planning
over the state space induced by the HTN. The benefits of the
approach are twofold: (a) reduction of the state space, and
consequent reduction of the computational burden is benefi-
cial since it enables the representation and solving of realistic
planning problems, and (b) starting from a declarative rep-
resentation makes planning more comprehensible to humans,
while extending the representation to stochastic domains.

2 Background
2.1 MDPs
We consider an MDP to be a tuple ⌃ = (S,A, Pr, u) where
S is a finite set of states, A is a finite set of actions, Pr is a
state-transition system and u is a reward (or utility) function
[Ghallab et al., 2004]. The state-transition system defines a
probability distribution for each state transition. Here, given
{s, s0} 2 S and a 2 A, Pra(s0|s) denotes the probability of
transitioning from state s to state s0 when executing action a.
The solution of an MDP is a policy, which indicates the best
action to take in each state. A policy ⇡ here is a total function
⇡ : S ! A mapping states into actions. The analogous to
goal states in MDPs are indirectly represented through util-
ity functions, which typically assign a value u(aj , si) to the
choices of actions aj in states si. Such information makes it
possible to compute the value of a given state under a partic-
ular policy ⇡ — it is the expected value of carrying out the
policy from that state (where a = ⇡(s)), given a discount fac-
tor.The optimal policy ⇡⇤(s) is then one that maximizes this
value, and can be found by various means.

2.2 HTNs
An HTN planning domain is a pair D = (A,M) where A
is a finite set of actions (or operators) and M is a finite set
of methods, and an HTN is a pair H = (T,C) where T

Bulleted list of
contributions

Evidence
• Your introduction makes claims

• The body of the paper provides evidence to support each claim

• Check each claim in the introduction, identify the evidence, and
forward-reference it from the claim

• Evidence can be: analysis and comparison, theorems,
measurements, case studies

Contributions should be refutable
We describe the WizWoz system.
It is really cool.

We give the syntax and semantics of a language that
supports concurrent processes (Section 3). Its innovative
features are...

We study its properties. We prove that the type system is sound, and that type
checking is decidable (Section 4)

We have used WizWoz in practice.
We have built a GUI toolkit in WizWoz, and used it to
implement a text editor (Section 5). The result is half the
length of the Java version.

No “rest of this paper is…”

• Avoid signposting paragraphs like: "The rest of this paper is
structured as follows. Section 2 introduces the problem. Section 3 ...
Finally, Section 8 concludes”

• Instead, use forward references from the narrative in the
introduction. 
The introduction (including the contributions) should survey the
whole paper, and therefore forward reference every important part.

Structure
• Title (1000 readers)

• Abstract (4 sentences, 100 readers)

• Introduction (1 page, 100 readers)

• The problem (1 page, 10 readers)"

• My idea (2 pages, 10 readers)"

• The details (5 pages, 3 readers)"

• Related work (1-2 pages, 10 readers)

• Conclusions and further work (0.5 pages)

No related work yet!

We adopt the notion of transaction from Brown [1], as modified for distributed systems by White
[2], using the four-phase interpolation algorithm of Green [3]. Our work differs from White in our
advanced revocation protocol, which deals with the case of priority inversion as described by
Yellow [4].

Related
Work

No related work yet

• Problem 1: describing alternative approaches gets
between the reader and your idea

• Problem 2: the reader knows nothing about the
problem yet; so your (carefully trimmed) description
of various technical tradeoffs is absolutely
incomprehensible

I feel tired

I feel stupid

Instead…
• Concentrate single-mindedly on a narrative that

• Describes the problem, and why it is interesting

• Describes your idea"

• Defends your idea, showing how it solves the problem, and filling
out the details

• On the way, cite relevant work in passing, but defer discussion to the
end

The payload of your paper

• Sounds impressive...but

• Sends readers to sleep

• In a paper you must provide the details,  
but first convey the idea

Consider a bufircuated semi-lattice D, over a hyper-modulated
signature S. Suppose pi is an element of D. Then we know for every
such pi there is an epi-modulus j, such that pj < pi.

The payload of your paper

• Remember: explain as if you were  
speaking to someone using a whiteboard

Introduce the problem, and your idea, using
!

Examples"
!

and only then present the general case

Using examples

episode [14]. Recomputing the policy allows the agent to
visit other states by picking di↵erent actions than the ini-
tial policy would otherwise induce, which provides the agent
with a closer approximation of the actual value of a state.
Nevertheless, changing policies still limits an agent to the
exploration of states closer to the initial policy, and active
RL techniques often use an exploration policy to induce the
agent to visit states out of the path of the initial (or the
recomputed policies). In order to implement an exploration
policy in TD-RL, the usual technique is to employ a function
that inflates the value of a state that should be visited when
computing a new policy, thus changing the Equation (7) to
compute the policy into Equation (9), below. This function
uses a threshold Ie that indicates that the calculated utility
value for a state s should only be used to compute a pol-
icy once the state has been visited Ie times, and otherwise,
the largest reward known R

+ should be used, as shown in
Equation 10.

⇡

⇤(s) = argmax
a

X

s02S

T (s, a, s0)fe(U(s0), I 0s) (9)

f

e(U(s), Is) =
(
R

+ if Is < Ie

U(s) otherwise.
(10)

Given that the agent is aware of the expected non-normative
instantaneous reward at each state, it is straightforward to
detect when a sanction has been applied. Since the instan-
taneous reward r received by the agent in each state s tra-
versed during a learning trial, whenever there is a sanction at
state s, r 6= R(s). By accruing the number of times a state
has been sanction as well as the number of times it has not,
an agent can estimate the overall detection probability for
that state.

Using this information, an agent can also estimate what
the learned value for a given state should be, if its estimation
of D is correct using Equation 1, but instead generating an
approximated value Ṽ(s). Using this approximated value, an
agent can then devise a norm focused exploration function
that induces the agent to go to states where it is unsure
about the actual enforcement intensity. In this paper we
propose such an exploration function by comparing the error
between the estimated value (Ṽ(s)) and the learned value
(U(s)), and if such error is greater than an error threshold
✏, reset the visit counter, as shown in Equation 11, below2.

f

e(U(s), Is) =

8
><

>:

R

+
, Is 0 if |Ṽ(s)� U(s)| > ✏

R

+ if Is < Ie

U(s) otherwise.

(11)

Given these definitions of how an agent learns about en-
forcement under asymmetric information, we note some par-
ticularities about these strategies. First, the active learning
approaches using both a fixed and variable ↵ and the stan-
dard exploration function of Equation 10 work exactly the
same for NDMPs as they do for standard MDP. That is, the
agent does not even need to be aware that norms are present
in the system, and will eventually learn the approximate util-
ity of the states with the average norm enforcement. This

2In an abuse of notation and for the sake of compactness,
we allow the function to not only return a value, but also
have the side e↵ect of resetting the visit counter Is

contrasts with our new exploration function described in
Equation 11, which takes into account perceived di↵erences
in enforcement as the basis for further exploration. We also
note that, while an active learning agent could use a model-
free learning method such as Q-Learning, the fact that the
agent does have access to parts of the model makes it more
e�cient to use as much information as possible through a
model-based learning method such as TD-RL.

3.3 Variable Enforcement
By varying the enforcement intensity D(n) for each agent

as it enters the society, an enforcer can bias the learning
of an agent that has recently joined a society in a way that
induces this agent’s behaviour. An example of how this vari-
ation can be used to the norm enforcer’s advantage is to use
a higher than usual enforcement intensity as the agent joins
the society (and thus has a high ↵ value), inducing an in-
flated value for D̃ and then lowering the actual D once the
agent’s update rule has converged. In this way, the enforcer
uses information asymmetry to optimise its costs of enforce-
ment by inducing agents to behave as if detection intensity
is higher than it really is.

4. INFORMATION ASYMMETRY AND EN-
FORCEMENT

In this section, we present a simple example of information
asymmetry, in which an agent has limited information about
the enforcement intensity of a norm. We evaluate the e↵ect
of information asymmetry regarding norm enforcement on
the policies and utilities of agents operating in normative
stochastic environments.

4.1 Parking World
In the example scenario, the agent’s environment is a grid

of cells as shown in Figure 1. The cell (1, 1) is designated
the start state, and cell (5, 5) is designated the end state.
The agent can move from cell to cell orthogonally and can
also perform a null action (which leaves the agent in the
same cell). In addition, the environment contains a ‘no-
parking cell’ (3, 3) in which stopping is prohibited. The
agent receives a positive reward for reaching the exit state,
and small negative rewards for visiting all cells other than
the no-parking cell. If the agent stops in the no-parking cell
and the violation of the norm is detected (i.e., the norm is
enforced), the agent receives a sanction of �1. If the viola-
tion is not detected (i.e., the organisation is not enforcing
the norm), the agent receives a small positive reward, i.e.,
violating the norm and parking illegally is beneficial.
This scenario is necessarily simplified, but it illustrates

how the behaviour of an agent can change depending on
its expectations regarding the enforcement of a norm. If
the agent believes the enforcement intensity is high, it will
avoid the no-parking zone. On the other hand if the en-
forcement intensity is su�ciently low, the agent can park
illegally for long periods (e.g, all day). If the enforcement
intensity is somewhere in between, the agent may park il-
legally for a short period (e.g., the agent may park briefly
to visit a store on the way home). This is illustrated in
Figure 2 which shows the optimal policies calculated for the
scenario of Figure 1 under di↵erent enforcement intensities,
assuming the agent has complete knowledge of D.

4.2 Assumed vs Actual Enforcement

Put an example as
soon as possible! 

(Ideally on the
introduction) 

Some papers even
have a dedicated
scenario section!

Conveying the idea

• Explain it as if you were speaking to someone using a whiteboard

• Conveying the intuition is primary, not secondary

• Once your reader has the intuition, she can follow the details (but
not vice versa)

• Even if she skips the details, she still takes away something valuable

Putting the reader first

• Do not recapitulate your personal journey of discovery. This route
may be soaked with your blood, but that’s not interesting to the
reader

• Instead, choose the most direct route to the idea

Structure
• Title (1000 readers)

• Abstract (4 sentences, 100 readers)

• Introduction (1 page, 100 readers)

• The problem (1 page, 10 readers)

• My idea (2 pages, 10 readers)

• The details (5 pages, 3 readers)

• Related work (1-2 pages, 10 readers)"

• Conclusions and further work (0.5 pages)

Related work

• Fallacy: To make my work look good, I have to make other people’s
work look bad

The truth: credit is not like money

• Warmly acknowledge people who have helped you

• Be generous to the competition. “In his inspiring paper [Foo98]
Foogle shows.... We develop his foundation in the following ways...”

• Acknowledge weaknesses in your approach

Giving credit to others does not diminish  
the credit you get from your paper

Credit is not like money

• If you imply that an idea is yours, and the referee knows it is not,
then either

• You don’t know that it’s an old idea (bad)

• You do know, but are pretending it’s yours (very bad)

Failing to give credit to others  
can kill your paper

Making sure related work is accurate
• A good plan: when you think you are done, send the draft to the

competition saying “could you help me ensure that I describe your
work fairly?”

• Often they will respond with helpful critique

• Beware of known baddies (but this is rare)

• They are likely to be your referees anyway, so getting their
comments up front is jolly good

The process
• Start early. Very early.

• Hastily-written papers get rejected

• Papers are like wine: they need time to mature

• Collaborate

• Use SVN/Git/Mercurial/(Your flavour of VCS)  
to support collaboration

Getting help

• Experts are good

• Non-experts are also very good

• Each reader can only read your paper for the first time once! So use
them carefully

• Explain carefully what you want (“I got lost here” is much more
important than “wibble is mis-spelt”.)

Get your paper read by as many friendly  
guinea pigs as possible

Your supervisor’s help

• You want your advisor to be able to critique your technical
contribution

• English errors are very distracting (to me at least)

• More people know English than stochastic planning algorithms

• Get help from your friends reading each other’s

You also want the English to be correct
before you send the paper to your advisor

Listening to your reviewers

• This is really, really, really hard

• But it’s really, really, really, really, really, really important

Every review is gold dust
Be (truly) grateful for criticism

as well as praise

Listening to your reviewers

• Read every criticism as a positive suggestion for something you
could explain more clearly

• DO NOT respond “you stupid person, I meant X”. Fix the paper so
that X is apparent even to the stupidest reader.

• Thank them warmly. They have given up their time for you.

Language and style

Basic stuff
• Submit by the deadline

• Keep to the length restrictions

• Do not narrow the margins

• Do not use 6pt font

• On occasion, supply supporting evidence (e.g. experimental data,
or a written-out proof) in an appendix

• Always use a spell checker

More Basic Stuff

• Never use jargon without explaining it first

Visual structure
• Give strong visual structure to your paper using

• sections and sub-sections

• bullets

• italics

• laid-out code (or algorithms)

• Find out how to draw pictures (vector graphics!!), and use them

Visual structure

Algorithm 4 Plan template to react to state prohibition activation.

Require: Acceptance of norm(Activ, Exp, prohibition(P))
Require: Receipt of Activ event
Require: Intention structure I; Plan library PL
Require: Plan uniquely labelled with label LActiv,prohibition(P)

Ensure: Suppressed plans are stored in set SPlans,prohibition(P)

1: for all Intention i ⇤ I do
2: if (P is a world state p) and (p is a consequence of i) then
3: Drop intention i
4: else if P is an action a then
5: for all Steps s in remaining steps of i do
6: if s = a then
7: Drop intention i
8: end if
9: end for

10: end if
11: end for
12: for all Plans pl ⇤ PL do
13: if (P is a world state p) and (p is a consequence of i) then
14: Suppress pl
15: SPlans,prohibition(P) = SPlans ⌅ pl
16: else if P is an action a then
17: for all Steps s in pl do
18: if s = a then
19: Suppress pl
20: SPlans,prohibition(P) = SPlans ⌅ pl
21: end if
22: end for
23: end if
24: end for

be unsuppressed.

1 @prohibitionStart(in(classifRoom))
2 +!Start : true
3 <- !findPlansWithEffect(in(classifRoom), SPlans);
4 !suppressPlans(SPlans);
5 +suppressedPlans(in(classifRoom),SPlans).
6
7 @prohibitionEnd(in(classifRoom))
8 +!End : suppressedPlans(in(classifRoom),SPlans)
9 <- !unsuppressPlans(SPlans);

10 .remove_plan(prohibitionStart(in(classifRoom)));
11 .remove_plan(prohibitionEnd(in(classifRoom))).

Listing 2: Plans generated from a state prohibition.

Plans to effect restrictions on executing actions are very simi-
lar to those relating to achieving world states, the only difference
being in the process for selecting the plans that need to be sup-
pressed. In this case, the plans searched for are those that contain
a particular action. For example, if the cleaning agent might be
obliged not to vacuum a table during its rounds of cleaning through
the norm +norm(time(800), day(xmas), prohibition(vacuum(

table)))[source(env)]. We do not include the example plans
due to space constraints, but they should be obvious.

3.3 Norm expiration
Now that we have seen the plans needed to start complying with

norms under several circumstances, we need to examine how an
agent behaviour is modified as a result of a norm expiring. When
an agent accepts a norm and changes its behaviour as a result of
the norm becoming active, it either includes extra plans to comply
with obligations or suppresses some of its plans in order to vio-
late a prohibition. However, these behaviour modifications should
not become permanent within an agent if the norms that caused
them cease to be active. Moreover, our monotonicity assumption

entails that once a norm has been activated and then expired, it will
never become active again. Thus, Algorithms 1 and 3, containing
plans for reacting to norms, also include a final step to add a plan
dealing with norm expiration to the plan library. Such norm ex-
piration plans aim to undo the behavioural changes effected when
the norms were activated, thus restoring the plan library to a state
in which an agent’s behaviour is not affected by them. Thus, the
plan in Algorithm 5 consists both of removing the plan responsible
for dealing with obligation activation and afterwards of removing
itself from an agent’s plan library. Both these plans must be individ-
ually identifiable within an agent’s plan library, so we label them
respectively LActiv,obligation(O) and LExp,obligation(O) in order
to remove them when they are no longer needed.

Algorithm 5 Plan to react to the expiration of an obligation.

Require: Acceptance of norm(Activ, Exp, obligation(O))
Require: Receipt of Exp event
Require: Label LActiv,obligation(O) for a norm activation plan
Require: Plan library PL
Ensure: Plan is uniquely labelled with label LExp,obligation(O)

1: Remove plan LActiv,obligation(O) from PL
2: Remove plan LExp,obligation(O) from PL

The acceptance of prohibitions, on the other hand, not only adds
new plans to react to norm activation and expiration, it also affects
which plans are available to an agent after a prohibition has been
activated. Thus, the plan to react to the expiration of a prohibi-
tion must not only remove the new plans added to comply with the
norm, it must also restore the plans previously suppressed to their
initial state of availability. The plan of Algorithm 6 accomplishes
this by unsuppressing the initially suppressed plans which, in the
plan of Algorithm 4, were stored in the set SPlans,prohibition(P),
and then removing plans LActiv,prohibition(P) and
LExp,prohibition(P) from the plan library.

Algorithm 6 Plan to react to the expiration of a prohibition

Require: Acceptance of norm(Activ, Exp, prohibition(P))
Require: Receipt of Exp event
Require: Label LActiv,prohibition(P) for a norm activation plan
Require: Plan library PL
Require: SPlans,prohibition(P) of suppressed plans
Ensure: Plan is uniquely labelled with label LExp,prohibition(P)

1: Unsuppress all plans from SPlans,prohibition(P)

2: Remove plan LActiv,prohibition(P) from PL
3: Remove plan LExp,prohibition(P) from PL

4. NORMATIVE AGENTSPEAK(L)
In order to test the viability of our solution in a practical agent

language, we have developed an implementation of the strategies
outlined in Section 3 using an AgentSpeak(L) interpreter. An im-
portant part of this involves the manipulation of an agent’s own
plan library, necessitating a means to perform meta-reasoning, al-
lowing AgentSpeak(L) plans to manipulate other plans. With such
a meta-reasoning facility in place, we can create AgentSpeak(L)
plans that accomplish the norm-induced behaviour modification de-
scribed above. We also point out that, while the plans shown in Sec-
tion 3 use constructs that were not described in detail, this section
clarifies all the plan constructs used throughout the paper.

4.1 Meta-reasoning for AgentSpeak(L)
The AgentSpeak(L) language does not have explicit constructs

for the analysis of a plan library, yet this is required in the strate-
gies described in Section 3 and implemented in Section 4.2. In par-
ticular, for an agent to evaluate its existing behaviours, encoded in

Visual Structure
Unifications can be composed ; that is, for any substitu-

tions �1 = {x1/⌧1, . . . , xn

/⌧

n

} and �2 = {y1/⌧ 0
1, . . . , yk/⌧

0
k

},
their composition, denoted as �1 · �2, is defined as {x1/(⌧1 ·
�2), . . . , xn

/(⌧
n

· �2), z1/(z1 · �2), . . . , zm/(z
m

· �2)}, where
{z1, . . . , zm} are those variables in {y1, . . . , y

k

} that are not
in {x1, . . . , xn

}. A substitution � is a unifier of two terms
⌧1, ⌧2, if ⌧1 · � = ⌧2 · �.
Definition 4 (Unify Relation). Relation unify(⌧1, ⌧2,�) holds
i↵ ⌧1·� = ⌧2·�. Moreover, unify(p(⌧0, . . . , ⌧n), p(⌧

0
0, . . . , ⌧

0
n

),�)
holds i↵ unify(⌧

i

, ⌧

0
i

,�), for all 0 i n.

Thus, two terms ⌧1, ⌧2 are related through the unify rela-
tion if there is a substitution � that makes the terms syn-
tactically equal. In our representation and algorithms, we
adopt Prolog’s convention [1] and use strings starting with a
capital letter to represent variables and strings starting with
a small letter to represent constants.

3.3 Commitments
Social commitments are extensively studied in multiagent

literature [9, 11, 20]. Specifically, a commitment C(debtor,
creditor, antecedent, consequent) means that a debtor

agent commits to a creditor agent to bring about the con-
sequent if the antecedent holds [16]. For example, in the
purchase scenario, the customer commits to the merchant
to paying if the merchant provides the goods: C(customer,
merchant, goods, pay).
Figure 1 shows the commitment lifecycle [17]. Before a

commitment is created, it is in state null. When the debtor
creates a commitment, the commitment enter the state ac-
tive, which consists of two substates: conditional and de-
tached. An active commitment is conditional when its an-
tecedent is false, and detached when its consequent is true.
An active commitment expires if its antecedent fails. If the
consequent of an active commitment is brought about, then
the commitment satisfies. An active commitment becomes
pending when the debtor suspends it (e.g., to redirect its re-
sources to another more pressing goal or commitment), and
a pending commitment becomes active when the debtor re-
activates it. If the debtor cancels or the creditor releases a
conditional commitment, the commitment is terminated. If
the debtor cancels a detached commitment, then the com-
mitment is violated.

3.4 Goals

Expired (E) Null (N) Pending (P)

Conditional (C) Detached (D)

Terminated (T) Satisfied (S) Violated (V)

Active (A)

create

antecedent failure

antecedent

cancel cancel

consequent

release

suspend

reactivate

Figure 1: Commitment life cycle as a state transition

diagram.

Null (N)

Inactive (I) Active (A)

Suspended (U)

Terminated (T) Failed (F) Satisfied (S)

consider

activate

reconsider

reactivate

suspend

suspend

drop _ abort

fail succeed

Figure 2: Goal lifecycle as a state transition dia-

gram.

A goal is a state of the world that an agent wishes to bring
about. We formulate a goal as: G = G(x, pg, s, f), where x

is an agent, pg is the precondition of the goal, the truth of
which is required for the goal to be considered [17, 18]. s

is the success condition of G, and f is the failure condition.
A goal succeeds if s holds without f holding. For example,
in the purchase scenario, the customer has a goal of procur-
ing the goods before a deadline: G(customer, needsGoods,
goods, deadline). We note that, to improve readability, we
have slightly simplified the formulation of goals from [17] by
conflating the success condition of the goal with its e↵ect,
as well as the in-condition with the negation of the failure
condition.
Figure 2 shows our goal lifecyle [17]. A goal is in state null

before it is considered, if the goal’s precondition is true, then
a goal may be considered. When the agent considers a goal,
it becomes inactive. The agent may activate an inactive
goal, in which case the goal becomes active. The agent may
suspend an inactive or an active goal, which will transition
the goal to the suspended state. If the agent reconsiders a
suspended goal, the goal transitions to the inactive state,
and if the agent reactivates a suspended goal, the goal tran-
sitions to the active state. When the goal is inactive, active,
or suspended: (a) if the agent drops or terminates the goal,
then the goal transitions to state terminated ; (b) if the fail-
ure condition holds, then the goal transitions to the state
failed ; and (c) if the success condition holds, then the goal
transitions to the state satisfied.

3.5 Classical and HTN Planning
STRIPS-style planning defines a problem in terms of an

initial state and a goal state—both specified as sets of ground
atoms—and a set of operators. An operator has a precondi-
tion encoding the conditions under which the operator can
be used, and a postcondition encoding the outcome of ap-
plying the operator. Planning is concerned with sequencing
actions obtained by instantiating operators describing state
transformations. In our representation, an operator o is
a five-tuple hname(o), pre(o), del(o), add(o), cost(o)i, where
(1) name(o) = act(~x), the name of the operator, is a symbol
followed by a vector of distinct variables such that all free

Use the active voice
The passive voice is “respectable” but it DEADENS your paper.  

Avoid it at all costs.

No Yes

It can be seen that... We can see that...

34 tests were run We ran 34 tests

These properties were thought
desirable

We wanted to retain these
properties

It might be thought that this
would be a type error

You might think this would be
a type error

“We" = you
and the
reader

“We" = the
authors

“You" = the
reader

Use simple, direct language

No Yes

The object under study was displaced
horizontally The ball moved sideways

On an annual basis Yearly

Endeavour to ascertain Find out

It could be considered that the speed of  
storage reclamation left something to be

desired
The garbage collector was really slow

But do not be informal/imprecise

No Yes

The agent can’t call the move action The agent cannot execute the move action

We present an algorithm We develop/introduce an algorithm

The code doesn't run The code does not run

The AAC diagram shows that The Arrows and Circles (AAC) diagram
shows that

Other Documents
• The guidelines here are not necessarily universal for all science

documents, e.g:

• Journal papers (similar but not identical)

• Diploma theses (TC) / Masters dissertations / PhD theses

• You must be mindful of:

• Who is the target readership

• What is the purpose of the document you are writing

Journal Papers
• Very similar to conference papers, however:

• No page limit (usually)

• Presents mature research, for a wider audience

• Needs to be self-contained

• More background, more related work

• Extensive results and comparison with related work

Reader: Researchers in
your broader area

Purpose: Consolidate
Research

Academic Milestones
• Undergrad, MSc, PhD

• Serve two purposes:

• Convince your committee that you know your stuff

• Show that you have achieved what you committed to
do at TC1 / PEP / PT

• Needs to be self-contained

• Make no assumptions about the reader

• Needs to include signposting

Reader: Whoever is
available at the

department + someone
your advisor likes

Purpose: Convince a
committee that you
earned your degree

The Elements of Style

• Read this book (brochure really):  
The Elements of Style: William Strunk, Jr. (1918)

• Many important tips on good style for writing in English.

Summary
1. Don’t wait, write

2. Identify your key idea

3. Tell a story

4. Nail your contributions

5. Related work: later

6. Put your readers first (examples)

7. Listen to your readers

More Resources
• Website Simon Peyton-Jones at Microsoft Research  

http://research.microsoft.com/en-us/people/simonpj/

• Resources at my website  
http://www.meneguzzi.eu/felipe/students.shtml  
http://www.meneguzzi.eu/felipe/research.shtml

• Courses on Scientific Writing  
http://www.escritacientifica.com/en/

• Writing scientific articles for Portuguese speakers  
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935133/

http://research.microsoft.com/en-us/people/simonpj/
http://www.meneguzzi.eu/felipe/students.shtml
http://www.meneguzzi.eu/felipe/research.shtml
http://www.escritacientifica.com/en/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3935133/

