
A First-Order Formalization of
Commitments and Goals for Planning

Felipe Meneguzzi1, Pankaj Telang2 and Munindar Singh2

1Pontifical Catholic University of Rio Grande do Sul
felipe.meneguzzi@pucrs.br

2North Carolina State University

Wednesday, 17 July 13

mailto:felipe.meneguzzi@pucrs.br
mailto:felipe.meneguzzi@pucrs.br

Motivation

• Commitments have been extensively studied in MAS

• Encode high-level social relations between agents

• Define communication protocols among agents

• Previous formalizations

• Operational semantics for goals and commitments,
and their interaction

• Propositional planning formalization

Wednesday, 17 July 13

Commitment LifecycleCommitment Lifecycle
Expired (E) Null (N) Pending (P)

Conditional (C) Detached (D)

Terminated (T) Satisfied (S) Violated (V)

Active (A)

create
antecedent failure

antecedent

cancel cancel _
consequent failure

consequent
release

suspend
reactivate

NCSU and PCURS 3 / 12 Telang, Meneguzzi, Singh

• Formally
C(Debtor,
 Creditor,
 antecedent,
 consequent)

• E.g.
C(buyer,seller,goods,paid)

Wednesday, 17 July 13

Goal LifecycleGoal Lifecycle
Null (N)

Inactive (I) Active (A)

Suspended (U)

Terminated (T) Failed (F) Satisfied (S)

consider

activate

reconsider reactivate
suspend suspend

drop _ abort fail succeed

NCSU and PCURS 4 / 12 Telang, Meneguzzi, Singh

• Formally
G(Agent, pg, s, f)

• E.g.
G(buyer,
needsgoods,goods,deadline
)

Wednesday, 17 July 13

Relating Commitments and Goals

• Practical Rules relating commitments and goals

• Let G = G(buyer,⊤,goods,⊥)
and C = C (buyer, seller, goods, pay)

• Entice Rule: If G is active and C is null, buyer creates C

• Motivation: Buyer can achieve its goals of goods by creating the
commitment to pay for them to Seller

hGA, CN i
create(C)

Wednesday, 17 July 13

Hierarchical Task Network
Planning

• Generates a plan by successive refinement of tasks

• Non-primitive Tasks - abstract, high-level tasks to be
decomposed

• Primitive Tasks - cannot be further
decomposed (operators)

• Multiple implementations
(e.g. JSHOP2, SHOP2)

• Abstraction of choice for agent programming languages

nonprimitive task

primitive task primitive task

method
instance

operator
instance

operator
instance

precondprecond

precond

effects effectss0 s1 s2

Wednesday, 17 July 13

HTN Planning for
Commitments and Goals

• Formalization of commitment protocols in terms of HTN planning

• Axioms enforcing state transition model
for goals and commitments

• Planning Operators describing
transitions (e.g. create, suspend, etc.)

• HTN Methods for practical rules
(e.g. entice, negotiate, etc.)

• Allows HTN planner to be used to validate commitment protocols

HTN Planning Domain

axioms methods operators

Agent
Goals

Commitment
Protocols

HTN
Planner

Valid
Enactments

Wednesday, 17 July 13

A first-order formalization
• Propositional formalization had several limitations

• Limited expressivity

• New First-order formalization:

• Domain independent axioms, methods
and operators

• Domain dependent
axioms, costs, methods and operators

• Useful patterns of behavior

HTN Planning Domain

domain
axioms

domain
methods

operators

Agent
Goals

Commitment
Protocols

HTN
Planner

Multiple
Enactments +

Costs

axioms methods

domain
operators

Wednesday, 17 July 13

Domain Independent
Axioms & Operators

Commitment Axioms Goal Axiomschallenge is to capture different ways in which interaction
instances can (1) flexibly deviate from the initial specifica-
tion; (2) split off into two or more instances that together
accomplish the original interaction; (3) coalesce into larger
interactions. In particular, the above should be accomplished
in a modular manner, meaning that we should not have to
rewrite an interaction specification but should be able to
transform it in a systematic manner to produce the desired
interaction. Yolum and Singh (2002) introduced the idea of
digressions in protocols and Chopra and Singh (2006) intro-
duced the notion of protocol transformers, though both pa-
pers adopted propositional frameworks. Specifically, these
frameworks cannot encode domains containing the follow-
ing patterns of behavior.

Piecemeal progress. The customer may pay the merchant
in installments. The challenge to accommodate here is of
arithmetic: we would like to handle the situation that, for
example, a payment of $6 followed by a payment of $4 is
equivalent to a payment of $10. (Note that domain regula-
tions would determine whether payments may be split).

Concession. The merchant may balk at providing the goods
(or goods above a certain value) in advance of any payment.
Therefore, we might amend the protocol so that the customer
makes a partial deposit first, upon which the merchant deliv-
ers the goods, upon which the customer makes the remaining
payment. Unlike piecemeal progress, this scenario involves
altering the structure of the commitments involved: the mer-
chant is committing to providing the goods only upon re-
ceiving a deposit and the customer is committing to paying
the remaining amount upon receiving the goods. Concession
is loosely inspired by Yolum and Singh’s (2007) approach,
which deals with nesting commitments to reduce the appar-
ent risk to each party in a protocol.

Consolidation. If a customer places two purchase orders in
close succession, the merchant may ship both of the ordered
goods in the same package. Likewise, the customer may pay
for both orders via one check. This is a clear case of flexibil-
ity in enactment that multiagent protocols ought to support.
To realize it requires a richer representation wherein some
actions (e.g., delivery) may be associated with more than
one protocol instance.

Compensation. The customer may return goods to the mer-
chant and the merchant would issue a refund. The refund
should match the goods returned. This should result from
a straightforward application of the first-order representa-
tion. Additionally, the protocol should ordinarily ensure that
for piecemeal payments, only the amount received may be
refunded. Further, the protocol may build in some fraud-
resistant measures, such as that a prior refund disables a sub-
sequent refund or that the total amount refunded in succes-
sive protocol instances does not exceed some threshold.

Proposed Formal Framework
We now develop the logical rules, operators, and methods in
the HTN formalism that operationalize the goal and commit-
ment dynamics introduced above. Existing techniques show

Table 1: Logical rules for commitment dynamics
null(C,Ct,

~

Cv) ¬var(C,Ct,

~

Cv)
conditional(C,Ct,

~

Cv) active(C,Ct,

~

Cv)^¬p(C,Ct,

~

Cv)
detached(C,Ct,

~

Cv) active(C,Ct,

~

Cv) ^ p(C,Ct,

~

Cv)
active(C,Ct,

~

Cv) ¬null(C,Ct,

~

Cv)
^ ¬terminal(C,Ct,

~

Cv) ^ ¬pending(C,Ct,

~

Cv)
^ ¬satisfied(C,Ct,

~

Cv)
terminated(C,Ct,

~

Cv) released(C,Ct,

~

Cv)
_ (¬p(C,Ct,

~

Cv) ^ cancelled(C,Ct,

~

Cv))
v iolated(C,Ct,

~

Cv) p(C,Ct,

~

Cv) ^ cancelled(C,Ct,

~

Cv)
satisfied(C,Ct,

~

Cv) ¬null(C,Ct,

~

Cv)
^ ¬terminal(C,Ct,

~

Cv) ^ q(C,Ct,

~

Cv)
terminal(C,Ct) commitment(C,Ct,De, Cr) ^

(cancelled(C,Ct,

~

Cv) _ released(C,Ct,

~

Cv)
_ expired(C,Ct,

~

Cv))

that it is straightforward to convert operational business pro-
cess models into HTN (Pistore et al. 2005), as well as to
convert business process languages into planning operators
(Hoffmann, Weber, and Kraft 2010). Based on these, we
assume that a large part of the domain-specific knowledge
used in HTN encoding can be generated from the business
processes being validated.

Commitment Dynamics
A commitment is a tuple hCt,De,Cr, P,Q, ~Cvi, where: Ct
is the commitment type; De is the debtor of the commitment;
Cr is the creditor of the commitment; P is the antecedent;
Q is the consequent, both P and Q are existentially quan-
tified first-order formulas; and, ~Cv is a list [v1, . . . , vn] of
variables identifying specific instances of Ct. The first chal-
lenge in encoding commitments in a first-order setting is
in ensuring that the components of a commitment are con-
nected through their shared variables. In order to accom-
plish that, we model the entire set of variables of a partic-
ular commitment within one predicate. Thus, the number
of variables n for a commitment is equivalent to the sum
of arities of all first-order predicates in P , and Q, so if
P = pa0(~ta0) . . . pak(~tak) and Q = pc0(~tc0) . . . pck(~tck),
then n =

Pi=ck
i=a0 |~ti|. Thus, for each commitment C =

hCt,De,Cr, P,Q, ~Cvi, where P is a formula ' and Q is
a formula { we define the rules below:

p(C,Ct,

~

Cv) commitment(C,Ct,De, Cr) ^ '

q(C,Ct,

~

Cv) commitment(C,Ct,De, Cr) ^ {
Given these two basic formulas from the commitment tu-
ple, we define rules that compute a commitment’s state in
Table 1, which follow from Figure 1. The null state for a
commitment is “instance dependent”, as each commitment
has a number of possible instantiations, depending on the
variables of the antecedent. In order to accomplish this, each
commitment instance has an associated var predicate con-
taining the commitment type and the list of variables asso-
ciated to the instance. An active commitment is conditional
if its antecedent (p) is false, and is detached otherwise. A
commitment is active if it is not null, terminal, pending, or
satisfied. Note that terminal is a shortcut for the states can-

Commitment Operators

Table 2: Planning operators for commitment dynamics.
hoperator !create(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ null(C,Ct,

~

Cv)),
del(),add(var(C,Ct,

~

Cv))i
hoperator !suspend(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(pending(C,Ct,

~

Cv))i
hoperator !reactivate(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ pending(C,Ct,

~

Cv)),
del(pending(C,Ct,

~

Cv)),add()i
hoperator !expire(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^

conditional(C,Ct,

~

Cv) ^ timeout(C,Ct,

~

Cv)),
del(),add(expired(C,Ct,

~

Cv))i
hoperator !cancel(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(cancelled(C,Ct,

~

Cv))i
hoperator !release(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(released(C,Ct,

~

Cv))i

celled, released, or expired. A commitment is terminated if
it is released or it is cancelled when its antecedent is false. A
commitment is violated if it is cancelled when its antecedent
is true. A commitment is satisfied if it is not null and not ter-
minal, and its consequent (q) is true.

Finally, we encode the transitions from Figure 1 as the
planning operators in Table 2. For a commitment, the create
operator adds the var predicate if the commitment is null. If
a commitment is active, executing suspend adds the pend-
ing predicate. If a commitment is pending, executing reacti-
vate deletes the pending predicate. If a commitment is con-
ditional and a timeout has occurred, then executing expire
adds the expired predicate. If a commitment is active, exe-
cuting cancel adds the cancelled predicate. If a commitment
is active, executing release adds the released predicate.

Goal Dynamics
We represent a goal as a tuple hGt,X, Pg, S, F, ~Gvi, where:
Gt is the goal type; X is the agent that has the goal; Pg is
the goal precondition; S is the success condition; F is the
failure condition; and ~Gv is a list of variables identifying
specific instances of Gt. Similarly to commitments, the
number of variables for a commitment will be equivalent
to the sum of arities of all first-order predicates in Pg, S
and F . Likewise, for each goal G = hGt,X, Pg, S, F,Gvi,
where Pg is a formula $, S is a formula & , and F is a
formula # we define the following rules:

pg(G,Gt,

~

Gv) goal(G,Gt,X) ^$

s(G,Gt,

~

Gv) goal(G,Gt,X) ^ &

f (G,Gt,

~

Gv) goal(G,Gt,X) ^ #

Table 3 defines rules that compute a goal’s state following
Figure 2. Finally, Table 4 encodes the goal state transitions
from Figure 2 as planning operators. We omit their details
for brevity.

Table 3: Logical rules for goal dynamics.
null(G,Gt,

~

Gv) ¬var(G,Gt,

~

Gv)
inactiveG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬s(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
^ ¬activeG(G,Gt,

~

Gv)
activeG(G,Gt,

~

Gv) activatedG(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬satisfiedG(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
satisfiedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬terminal(G,Gt,

~

Gv) ^ pg(G,Gt,

~

Gv)
^ s(G,Gt,

~

Gv) ^ ¬f(G,Gt,

~

Gv)
f ailedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv) ^ f(G,Gt,

~

Gv)
terminatedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv))
terminalG(G,Gt,

~

Gv) goal(G,Gt,X)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv)

Formalizing the Patterns
This section applies our approach to capture the patterns
from the Technical Motivation section. Table 5 shows the
goals and commitments of a customer and a merchant. For
example, C1 is the customer’s commitment to the merchant
to paying if the merchant provides the goods. In C1, 123 is
the transaction identifier, and $100 is the payment amount.

Table 6 shows the methods that we employ in formaliz-
ing the patterns. For brevity, we only present a subset of the
methods and operators. The satisfy(C) method encodes the
plans for satisfying a commitment C. If C is of type CT1 and
is detached, then satisfy either invokes the pay method once
representing that the customer pays the entire amount to the
merchant, or invokes the pay method twice representing that
the customer pays the merchant in two installments. If C is
of type CT2 and is detached, then satisfy invokes the goods
method representing that the merchant provides the goods
to the customer. If C is of type CT3 and is detached, then
satisfy invokes refundpaid representing that the merchant
refunds the customer. The satisfy(C1, C2) method invokes
paytogether if commitments C1 and C2 are detached, and
paytogether invokes pay for C1 and C2. The pay method im-
plements the arithmetic to add up the payments for a trans-
action identifier. If the customer has paid an installment,
then the pay method invokes the updatepaid operator, which
deletes the previous paid predicate, and adds a paid predicate
with the new amount. Otherwise, the pay method invokes the
paid operator, which adds a paid predicate.

Note that our rules and operators from Tables 2–4 are
completely general, whereas the methods and operators
from Table 6 are specific to the patterns we present.

Piecemeal progress. Figure 3 shows an HTN decomposi-
tion tree for piecemeal progress. The customer creates C1 to
achieve its goal G1 (for clarity of presentation, we omit the
goal operations consider and activate in the HTN decom-
position trees). The merchant detaches C1 by sending the
goods. This presumes that merchant has a goal to get paid.
To satisfy C1, the customer needs to pay $100, which the

Goal OperatorsTable 2: Planning operators for commitment dynamics.
hoperator !create(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ null(C,Ct,

~

Cv)),
del(),add(var(C,Ct,

~

Cv))i
hoperator !suspend(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(pending(C,Ct,

~

Cv))i
hoperator !reactivate(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ pending(C,Ct,

~

Cv)),
del(pending(C,Ct,

~

Cv)),add()i
hoperator !expire(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^

conditional(C,Ct,

~

Cv) ^ timeout(C,Ct,

~

Cv)),
del(),add(expired(C,Ct,

~

Cv))i
hoperator !cancel(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(cancelled(C,Ct,

~

Cv))i
hoperator !release(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(released(C,Ct,

~

Cv))i

celled, released, or expired. A commitment is terminated if
it is released or it is cancelled when its antecedent is false. A
commitment is violated if it is cancelled when its antecedent
is true. A commitment is satisfied if it is not null and not ter-
minal, and its consequent (q) is true.

Finally, we encode the transitions from Figure 1 as the
planning operators in Table 2. For a commitment, the create
operator adds the var predicate if the commitment is null. If
a commitment is active, executing suspend adds the pend-
ing predicate. If a commitment is pending, executing reacti-
vate deletes the pending predicate. If a commitment is con-
ditional and a timeout has occurred, then executing expire
adds the expired predicate. If a commitment is active, exe-
cuting cancel adds the cancelled predicate. If a commitment
is active, executing release adds the released predicate.

Goal Dynamics
We represent a goal as a tuple hGt,X, Pg, S, F, ~Gvi, where:
Gt is the goal type; X is the agent that has the goal; Pg is
the goal precondition; S is the success condition; F is the
failure condition; and ~Gv is a list of variables identifying
specific instances of Gt. Similarly to commitments, the
number of variables for a commitment will be equivalent
to the sum of arities of all first-order predicates in Pg, S
and F . Likewise, for each goal G = hGt,X, Pg, S, F,Gvi,
where Pg is a formula $, S is a formula & , and F is a
formula # we define the following rules:

pg(G,Gt,

~

Gv) goal(G,Gt,X) ^$

s(G,Gt,

~

Gv) goal(G,Gt,X) ^ &

f (G,Gt,

~

Gv) goal(G,Gt,X) ^ #

Table 3 defines rules that compute a goal’s state following
Figure 2. Finally, Table 4 encodes the goal state transitions
from Figure 2 as planning operators. We omit their details
for brevity.

Table 3: Logical rules for goal dynamics.
null(G,Gt,

~

Gv) ¬var(G,Gt,

~

Gv)
inactiveG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬s(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
^ ¬activeG(G,Gt,

~

Gv)
activeG(G,Gt,

~

Gv) activatedG(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬satisfiedG(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
satisfiedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬terminal(G,Gt,

~

Gv) ^ pg(G,Gt,

~

Gv)
^ s(G,Gt,

~

Gv) ^ ¬f(G,Gt,

~

Gv)
f ailedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv) ^ f(G,Gt,

~

Gv)
terminatedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv))
terminalG(G,Gt,

~

Gv) goal(G,Gt,X)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv)

Formalizing the Patterns
This section applies our approach to capture the patterns
from the Technical Motivation section. Table 5 shows the
goals and commitments of a customer and a merchant. For
example, C1 is the customer’s commitment to the merchant
to paying if the merchant provides the goods. In C1, 123 is
the transaction identifier, and $100 is the payment amount.

Table 6 shows the methods that we employ in formaliz-
ing the patterns. For brevity, we only present a subset of the
methods and operators. The satisfy(C) method encodes the
plans for satisfying a commitment C. If C is of type CT1 and
is detached, then satisfy either invokes the pay method once
representing that the customer pays the entire amount to the
merchant, or invokes the pay method twice representing that
the customer pays the merchant in two installments. If C is
of type CT2 and is detached, then satisfy invokes the goods
method representing that the merchant provides the goods
to the customer. If C is of type CT3 and is detached, then
satisfy invokes refundpaid representing that the merchant
refunds the customer. The satisfy(C1, C2) method invokes
paytogether if commitments C1 and C2 are detached, and
paytogether invokes pay for C1 and C2. The pay method im-
plements the arithmetic to add up the payments for a trans-
action identifier. If the customer has paid an installment,
then the pay method invokes the updatepaid operator, which
deletes the previous paid predicate, and adds a paid predicate
with the new amount. Otherwise, the pay method invokes the
paid operator, which adds a paid predicate.

Note that our rules and operators from Tables 2–4 are
completely general, whereas the methods and operators
from Table 6 are specific to the patterns we present.

Piecemeal progress. Figure 3 shows an HTN decomposi-
tion tree for piecemeal progress. The customer creates C1 to
achieve its goal G1 (for clarity of presentation, we omit the
goal operations consider and activate in the HTN decom-
position trees). The merchant detaches C1 by sending the
goods. This presumes that merchant has a goal to get paid.
To satisfy C1, the customer needs to pay $100, which the

Table 4: Planning operators for goal dynamics.
hoperator !consider(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ null(G,Gt,

~

Gv) ^ pg(G,Gt,

~

Gv)),
del(),add(var(G,Gt,

~

Gv))i
hoperator !activate(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ inactiveG(G,Gt,

~

Gv)),
del(),add(activatedG(G,Gt,

~

Gv))i
hoperator !suspend(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ ¬terminalG(G,Gt,

~

Gv) ^
¬null(G,Gt,

~

Gv)),
del(activatedG(G,Gt,

~

Gv)),add(suspendedG(G,Gt,

~

Gv))i
hoperator !reconsider(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ suspendedG(G,Gt,

~

Gv) ^
¬terminalG(G,Gt,

~

Gv) ^ ¬null(G,Gt,

~

Gv)),
del(),add(suspendedG(G,Gt,

~

Gv))i
hoperator !reactivate(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ suspendedG(G,Gt,

~

Gv) ^
¬terminalG(G,Gt,

~

Gv) ^ ¬null(G,Gt,

~

Gv)),
del(activatedG(G,Gt,

~

Gv)),add(suspendedG(G,Gt,

~

Gv))i
hoperator !drop(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ ¬terminalG(G,Gt,

~

Gv) ^
¬null(G,Gt,

~

Gv)),
del(),add(dropped(G,Gt,

~

Gv))i
hoperator !abort(G,Gt,X,

~

Gv),
pre(goal(G,Gt,X) ^ ¬terminalG(G,Gt,

~

Gv) ^
¬null(G,Gt,

~

Gv)),
del(),add(aborted(G,Gt,

~

Gv))i

Table 5: Goals and commitments for the patterns.
Id Type Goal or commitment
G1 GT1 G(CUST,needsGoods(123),goods(123),deadline(123))
G2 GT1 G(CUST,needsGoods(456),goods(456),deadline(456))
C1 CT1 C(CUST, MER, goods(123), paid($100, 123))
C2 CT2 C(MER, CUST, pay($20, 123), goods(123))
C3 CT1 C(CUST, MER, goods(123), pay($80, 123))
C4 CT1 C(CUST, MER, goods(456), pay($200, 456))
C5 CT3 C(MER, CUST, return(123), refundpaid(123))

customer may pay either as a lump sum, or in two install-
ments. Figure. 3 shows a plan in which the customer pays
two installments of $50 each.

Concession. This pattern involves two commitments: the
merchant commits (C2) to providing the goods upon receiv-
ing a deposit of $20, and the customer commits (C3) to the
merchant to pay the remaining amount of $80 upon receiv-
ing the goods. Figure 4 shows an HTN decomposition tree
for concession. The customer and the merchant create C2

and C3, respectively. Then the customer detaches C2 by pay-
ing $20. The merchant satisfies C2 by providing the goods,
which also detaches C3. Next, the customer pays $80 to sat-
isfy C3. The detach method has a structure similar to the
satisfy method.

Consolidation. In this pattern, the customer has a second
goal G2 for goods(456) and C4 is the commitment from
the customer to the merchant to paying $200 if the merchant
provides the goods. Figure 5 illustrates the HTN decompo-

Table 6: Methods and operators for the patterns.
hmethod(satisfy(C)),

pre(commitment(C,CT1, cust,mer) ^ var(C,CT1,

(cAmount, tID)) ^ detached(C,CT1, (cAmount, tID)),
tn(pay(cust,mer, cAmount, tID)),
pre(commitment(C,CT1, cust,mer) ^ var(C,CT1,

(cAmount, tID)) ^ detached(C,CT1, (cAmount, tID))),
tn(pay(cust,mer, cAmount/2, tID) ^ pay(cust,mer,

cAmount/2 + cAmount%2, tID))
pre(commitment(C,CT2,mer, cust) ^ var(C,CT2,

(cAmount, tID)) ^ detached(C,CT2, (cAmount, tID))),
tn(goods(mer, cust, tID))
pre(commitment(C,CT3,mer, cust) ^ var(C,CT3,

(tID)) ^ detached(C,CT2, (tID))),
tn(refundpaid(mer, cust, tID))i

hmethod(satisfy(C1, C2)),
pre(commitment(C1, CT1, cust,mer) ^ var(C1, CT1,

(c1Amount, t1ID)) ^ detached(C2, CT1, (c1Amount,

t1ID)) ^ commitment(C2, CT1, cust,mer) ^ var(C2,

CT1, (c2Amount, t2ID)) ^ detached(C2, CT1,

(c2Amount, t2ID)))
tn(paytogether(cust,mer, amount, t1ID, t2ID))i

hmethod(paytogether(cust,mer, amount, t1ID, t2ID)),
pre(commitment(C1, CT1, cust,mer)
^var(C1, CT1, (c1Amount, t1ID))
^detached(C2, CT1, (c1Amount, t1ID))
^commitment(C2, CT1, cust,mer)
^var(C2, CT1, (c2Amount, t2ID))
^detached(C2, CT1, (c2Amount, t2ID))
^(amount = c1Amount+ c2Amount))
tn(pay(cust,mer, c1Amount, t1ID)
^pay(cust,mer, (amount� c1Amount), t2ID))

hmethod(pay(cust,mer, amount, tID)),
pre(commitment(C,Ct, cust,mer) ^ var(C,Ct,

(cAmount, tID)) ^ paid(cust,mer, oldAmt, tID)),
tn(!updatepaid(cust,mer, (oldAmt+ amount), tID))
pre(commitment(C,Ct, cust,mer)
^var(C,Ct, (cAmount, tID)),
tn(!paid(cust,mer, amount, tID))i

hoperator !paid(cust,mer, amount, tID),
pre(agent(cust) ^ agent(mer)),
del(),add(paid(cust,mer, amount, tID))i

hoperator !updatepaid(cust,mer, amount, tID),
pre(agent(cust) ^ agent(mer)
^ paid(cust,mer, oldAmount, tID)),
del(paid(cust,mer, oldAmount, tID)),

add(paid(cust,mer, amount, tID))i

sition tree for consolidation, which shows that to achieve
its goals G1 and G2, the customer creates commitments
C1 and C4. The merchant detaches C1 and C4 by shipping
the goods (goods(123) and goods(456)) together using the
shiptogether method. The customer satisfies C1 and C4 by
making a consolidated payment of $300 to the merchant.
Table 6 shows the details of the paytogether method, which
splits the $300 into $100 and $200, and applies them to the
transactions 123 and 456.

Compensation. In this pattern, the merchant commits (C5)
to the customer to refunding the amount paid by the cus-
tomer if the customer returns the goods. Figure 6 illustrates

Wednesday, 17 July 13

• Axioms plus Domain-dependent operators

• Commitment Axioms

• Goal Axioms

• Axioms Generated automatically using a compilation tool

• Plus any domain-specific operators (e.g. purchase, ship, etc)

Table 2: Planning operators for commitment dynamics.
hoperator !create(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ null(C,Ct,

~

Cv)),
del(),add(var(C,Ct,

~

Cv))i
hoperator !suspend(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(pending(C,Ct,

~

Cv))i
hoperator !reactivate(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ pending(C,Ct,

~

Cv)),
del(pending(C,Ct,

~

Cv)),add()i
hoperator !expire(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^

conditional(C,Ct,

~

Cv) ^ timeout(C,Ct,

~

Cv)),
del(),add(expired(C,Ct,

~

Cv))i
hoperator !cancel(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(cancelled(C,Ct,

~

Cv))i
hoperator !release(C,Ct,De, Cr,

~

Cv),
pre(commitment(C,Ct,De, Cr) ^ active(C,Ct,

~

Cv)),
del(),add(released(C,Ct,

~

Cv))i

celled, released, or expired. A commitment is terminated if
it is released or it is cancelled when its antecedent is false. A
commitment is violated if it is cancelled when its antecedent
is true. A commitment is satisfied if it is not null and not ter-
minal, and its consequent (q) is true.

Finally, we encode the transitions from Figure 1 as the
planning operators in Table 2. For a commitment, the create
operator adds the var predicate if the commitment is null. If
a commitment is active, executing suspend adds the pend-
ing predicate. If a commitment is pending, executing reacti-
vate deletes the pending predicate. If a commitment is con-
ditional and a timeout has occurred, then executing expire
adds the expired predicate. If a commitment is active, exe-
cuting cancel adds the cancelled predicate. If a commitment
is active, executing release adds the released predicate.

Goal Dynamics
We represent a goal as a tuple hGt,X, Pg, S, F, ~Gvi, where:
Gt is the goal type; X is the agent that has the goal; Pg is
the goal precondition; S is the success condition; F is the
failure condition; and ~Gv is a list of variables identifying
specific instances of Gt. Similarly to commitments, the
number of variables for a commitment will be equivalent
to the sum of arities of all first-order predicates in Pg, S
and F . Likewise, for each goal G = hGt,X, Pg, S, F,Gvi,
where Pg is a formula $, S is a formula & , and F is a
formula # we define the following rules:

pg(G,Gt,

~

Gv) goal(G,Gt,X) ^$

s(G,Gt,

~

Gv) goal(G,Gt,X) ^ &

f (G,Gt,

~

Gv) goal(G,Gt,X) ^ #

Table 3 defines rules that compute a goal’s state following
Figure 2. Finally, Table 4 encodes the goal state transitions
from Figure 2 as planning operators. We omit their details
for brevity.

Table 3: Logical rules for goal dynamics.
null(G,Gt,

~

Gv) ¬var(G,Gt,

~

Gv)
inactiveG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬s(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
^ ¬activeG(G,Gt,

~

Gv)
activeG(G,Gt,

~

Gv) activatedG(G,Gt,

~

Gv)
^ ¬f(G,Gt,

~

Gv) ^ ¬satisfiedG(G,Gt,

~

Gv)
^ ¬terminalG(G,Gt,

~

Gv) ^ ¬suspendedG(G,Gt,

~

Gv)
satisfiedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ ¬terminal(G,Gt,

~

Gv) ^ pg(G,Gt,

~

Gv)
^ s(G,Gt,

~

Gv) ^ ¬f(G,Gt,

~

Gv)
f ailedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv) ^ f(G,Gt,

~

Gv)
terminatedG(G,Gt,

~

Gv) ¬null(G,Gt,

~

Gv)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv))
terminalG(G,Gt,

~

Gv) goal(G,Gt,X)
^ (dropped(G,Gt,

~

Gv) _ aborted(G,Gt,

~

Gv)

Formalizing the Patterns
This section applies our approach to capture the patterns
from the Technical Motivation section. Table 5 shows the
goals and commitments of a customer and a merchant. For
example, C1 is the customer’s commitment to the merchant
to paying if the merchant provides the goods. In C1, 123 is
the transaction identifier, and $100 is the payment amount.

Table 6 shows the methods that we employ in formaliz-
ing the patterns. For brevity, we only present a subset of the
methods and operators. The satisfy(C) method encodes the
plans for satisfying a commitment C. If C is of type CT1 and
is detached, then satisfy either invokes the pay method once
representing that the customer pays the entire amount to the
merchant, or invokes the pay method twice representing that
the customer pays the merchant in two installments. If C is
of type CT2 and is detached, then satisfy invokes the goods
method representing that the merchant provides the goods
to the customer. If C is of type CT3 and is detached, then
satisfy invokes refundpaid representing that the merchant
refunds the customer. The satisfy(C1, C2) method invokes
paytogether if commitments C1 and C2 are detached, and
paytogether invokes pay for C1 and C2. The pay method im-
plements the arithmetic to add up the payments for a trans-
action identifier. If the customer has paid an installment,
then the pay method invokes the updatepaid operator, which
deletes the previous paid predicate, and adds a paid predicate
with the new amount. Otherwise, the pay method invokes the
paid operator, which adds a paid predicate.

Note that our rules and operators from Tables 2–4 are
completely general, whereas the methods and operators
from Table 6 are specific to the patterns we present.

Piecemeal progress. Figure 3 shows an HTN decomposi-
tion tree for piecemeal progress. The customer creates C1 to
achieve its goal G1 (for clarity of presentation, we omit the
goal operations consider and activate in the HTN decom-
position trees). The merchant detaches C1 by sending the
goods. This presumes that merchant has a goal to get paid.
To satisfy C1, the customer needs to pay $100, which the

challenge is to capture different ways in which interaction
instances can (1) flexibly deviate from the initial specifica-
tion; (2) split off into two or more instances that together
accomplish the original interaction; (3) coalesce into larger
interactions. In particular, the above should be accomplished
in a modular manner, meaning that we should not have to
rewrite an interaction specification but should be able to
transform it in a systematic manner to produce the desired
interaction. Yolum and Singh (2002) introduced the idea of
digressions in protocols and Chopra and Singh (2006) intro-
duced the notion of protocol transformers, though both pa-
pers adopted propositional frameworks. Specifically, these
frameworks cannot encode domains containing the follow-
ing patterns of behavior.

Piecemeal progress. The customer may pay the merchant
in installments. The challenge to accommodate here is of
arithmetic: we would like to handle the situation that, for
example, a payment of $6 followed by a payment of $4 is
equivalent to a payment of $10. (Note that domain regula-
tions would determine whether payments may be split).

Concession. The merchant may balk at providing the goods
(or goods above a certain value) in advance of any payment.
Therefore, we might amend the protocol so that the customer
makes a partial deposit first, upon which the merchant deliv-
ers the goods, upon which the customer makes the remaining
payment. Unlike piecemeal progress, this scenario involves
altering the structure of the commitments involved: the mer-
chant is committing to providing the goods only upon re-
ceiving a deposit and the customer is committing to paying
the remaining amount upon receiving the goods. Concession
is loosely inspired by Yolum and Singh’s (2007) approach,
which deals with nesting commitments to reduce the appar-
ent risk to each party in a protocol.

Consolidation. If a customer places two purchase orders in
close succession, the merchant may ship both of the ordered
goods in the same package. Likewise, the customer may pay
for both orders via one check. This is a clear case of flexibil-
ity in enactment that multiagent protocols ought to support.
To realize it requires a richer representation wherein some
actions (e.g., delivery) may be associated with more than
one protocol instance.

Compensation. The customer may return goods to the mer-
chant and the merchant would issue a refund. The refund
should match the goods returned. This should result from
a straightforward application of the first-order representa-
tion. Additionally, the protocol should ordinarily ensure that
for piecemeal payments, only the amount received may be
refunded. Further, the protocol may build in some fraud-
resistant measures, such as that a prior refund disables a sub-
sequent refund or that the total amount refunded in succes-
sive protocol instances does not exceed some threshold.

Proposed Formal Framework
We now develop the logical rules, operators, and methods in
the HTN formalism that operationalize the goal and commit-
ment dynamics introduced above. Existing techniques show

Table 1: Logical rules for commitment dynamics
null(C,Ct,

~

Cv) ¬var(C,Ct,

~

Cv)
conditional(C,Ct,

~

Cv) active(C,Ct,

~

Cv)^¬p(C,Ct,

~

Cv)
detached(C,Ct,

~

Cv) active(C,Ct,

~

Cv) ^ p(C,Ct,

~

Cv)
active(C,Ct,

~

Cv) ¬null(C,Ct,

~

Cv)
^ ¬terminal(C,Ct,

~

Cv) ^ ¬pending(C,Ct,

~

Cv)
^ ¬satisfied(C,Ct,

~

Cv)
terminated(C,Ct,

~

Cv) released(C,Ct,

~

Cv)
_ (¬p(C,Ct,

~

Cv) ^ cancelled(C,Ct,

~

Cv))
v iolated(C,Ct,

~

Cv) p(C,Ct,

~

Cv) ^ cancelled(C,Ct,

~

Cv)
satisfied(C,Ct,

~

Cv) ¬null(C,Ct,

~

Cv)
^ ¬terminal(C,Ct,

~

Cv) ^ q(C,Ct,

~

Cv)
terminal(C,Ct) commitment(C,Ct,De, Cr) ^

(cancelled(C,Ct,

~

Cv) _ released(C,Ct,

~

Cv)
_ expired(C,Ct,

~

Cv))

that it is straightforward to convert operational business pro-
cess models into HTN (Pistore et al. 2005), as well as to
convert business process languages into planning operators
(Hoffmann, Weber, and Kraft 2010). Based on these, we
assume that a large part of the domain-specific knowledge
used in HTN encoding can be generated from the business
processes being validated.

Commitment Dynamics
A commitment is a tuple hCt,De,Cr, P,Q, ~Cvi, where: Ct
is the commitment type; De is the debtor of the commitment;
Cr is the creditor of the commitment; P is the antecedent;
Q is the consequent, both P and Q are existentially quan-
tified first-order formulas; and, ~Cv is a list [v1, . . . , vn] of
variables identifying specific instances of Ct. The first chal-
lenge in encoding commitments in a first-order setting is
in ensuring that the components of a commitment are con-
nected through their shared variables. In order to accom-
plish that, we model the entire set of variables of a partic-
ular commitment within one predicate. Thus, the number
of variables n for a commitment is equivalent to the sum
of arities of all first-order predicates in P , and Q, so if
P = pa0(~ta0) . . . pak(~tak) and Q = pc0(~tc0) . . . pck(~tck),
then n =

Pi=ck
i=a0 |~ti|. Thus, for each commitment C =

hCt,De,Cr, P,Q, ~Cvi, where P is a formula ' and Q is
a formula { we define the rules below:

p(C,Ct,

~

Cv) commitment(C,Ct,De, Cr) ^ '

q(C,Ct,

~

Cv) commitment(C,Ct,De, Cr) ^ {
Given these two basic formulas from the commitment tu-
ple, we define rules that compute a commitment’s state in
Table 1, which follow from Figure 1. The null state for a
commitment is “instance dependent”, as each commitment
has a number of possible instantiations, depending on the
variables of the antecedent. In order to accomplish this, each
commitment instance has an associated var predicate con-
taining the commitment type and the list of variables asso-
ciated to the instance. An active commitment is conditional
if its antecedent (p) is false, and is detached otherwise. A
commitment is active if it is not null, terminal, pending, or
satisfied. Note that terminal is a shortcut for the states can-

Domain Dependent Definitions

Wednesday, 17 July 13

achieveGoal(G1)

create(C2) satisfy(C2)detach(C2)

!paid(20, 123)

pay(20, 123) !goods(123)

create(C3) satisfy(C3)

!paid(80, 123)

pay(80, 123)

Patterns of Behavior

• Concession Pattern
2 commitments

• C2 - merchant commits to delivering the
goods upon a $20 payment from the customer

• C3 - customer commits to pay $80 upon receiving the goods

• By creating commitments C2 and C3, the customer has one possible
way of achieving its goal

Wednesday, 17 July 13

Conclusions and Future Work

• A FO formalization of goals and commitment protocols

• Multiple interacting instances of the same goals and commitments

• Piecemeal progress, concession, consolidation and compensation

• Future Work

• Reasoning about probabilities

• Modelling non-cooperative partners

Wednesday, 17 July 13

Questions?

Wednesday, 17 July 13

