A First-Order Formalization of Commitments and Goals for Planning **Felipe Meneguzzi**¹, Pankaj Telang² and Munindar Singh²

¹Pontifical Catholic University of Rio Grande do Sul felipe.meneguzzi@pucrs.br ²North Carolina State University

Motivation

- Commitments have been extensively studied in MAS
 - Encode high-level social relations between agents
 - Define communication protocols among agents
- Previous formalizations
 - Operational semantics for goals and commitments, and their interaction
 - Propositional planning formalization

Commitment Lifecycle

antecedent, consequent)

C(buyer, seller, goods, paid)

Goal Lifecycle

needsgoods,goods,deadline

Relating Commitments and Goals

- Practical Rules relating commitments and goals
 - Let G = G(buyer, \top , goods, \perp) and C = C (buyer, seller, goods, pay)
 - Entice Rule: If G is active and C is null, buyer creates C

$$\frac{\langle G^A, C^N \rangle}{create(C)}$$

• Motivation: Buyer can achieve its goals of goods by creating the commitment to pay for them to Seller

Hierarchical Task Network Planning

- Generates a plan by successive refinement of tasks
 - Non-primitive Tasks abstract, high-level tasks to be decomposed
 - Primitive Tasks cannot be further decomposed (operators)
- Multiple implementations (e.g. JSHOP2, SHOP2)

• Abstraction of choice for agent programming languages

HTN Planning for **Commitments and Goals**

- Formalization of commitment protocols in terms of HTN planning
 - Axioms enforcing state transition model for goals and commitments
 - Planning Operators describing transitions (e.g. create, suspend, etc.)
 - HTN Methods for practical rules (e.g. entice, negotiate, etc.)

• Allows HTN planner to be used to validate commitment protocols

A first-order formalization

- Propositional formalization had several limitations
 - Limited expressivity
- New First-order formalization:
 - Domain independent axioms, methods and operators
 - Domain dependent axioms, costs, methods and operators
 - Useful patterns of behavior

Domain Independent Axioms & Operators **Commitment Axioms Goal Axioms**

 $null(C, Ct, \vec{Cv}) \leftarrow \neg var(C, Ct, \vec{Cv})$ $conditional(C, Ct, \vec{Cv}) \leftarrow active(C, Ct, \vec{Cv}) \land \neg p(C, Ct, \vec{Cv})$ $detached(C, Ct, \vec{Cv}) \leftarrow active(C, Ct, \vec{Cv}) \land p(C, Ct, \vec{Cv})$

Commitment Operators

 $\langle operator | create(C, Ct, De, Cr, \vec{Cv}), \rangle$ $\mathbf{pre}(commitment(C, Ct, De, Cr) \land null(C, Ct, \vec{Cv})),$ $\operatorname{del}(), \operatorname{add}(var(C, Ct, \overline{Cv}))\rangle$ $\langle \mathbf{operator} \, ! suspend(C, Ct, De, Cr, \vec{Cv}), \rangle$ $\mathbf{pre}(commitment(C, Ct, De, Cr) \land active(C, Ct, \vec{Cv})),$ $del(), add(pending(C, Ct, Cv))\rangle$

 $null(G, Gt, \overline{Gv}) \leftarrow \neg var(G, Gt, \overline{Gv})$ $inactiveG(G, Gt, \vec{Gv}) \leftarrow \neg null(G, Gt, \vec{Gv})$ $\wedge \neg f(G, Gt, \vec{Gv}) \wedge \neg s(G, Gt, \vec{Gv})$ $\wedge \neg activeG(G, Gt, \overline{Gv})$

Goal Operators

 $\langle \mathbf{operator} | consider(G, Gt, X, \vec{Gv}), \rangle$ $\operatorname{del}(), \operatorname{add}(\operatorname{var}(G, Gt, \vec{Gv}))\rangle$ $\langle operator | activate(G, Gt, X, \vec{Gv}), \rangle$ $del(), add(activatedG(G, Gt, Gv))\rangle$

$\wedge \neg terminalG(G, Gt, \vec{Gv}) \land \neg suspendedG(G, Gt, \vec{Gv})$

 $\mathbf{pre}(goal(G, Gt, X) \land null(G, Gt, \vec{Gv}) \land pg(G, Gt, \vec{Gv})),$ $\mathbf{pre}(goal(G, Gt, X) \land inactiveG(G, Gt, \vec{Gv})),$

Domain Dependent Definitions

- Axioms plus Domain-dependent operators
- Commitment Axioms $p(C, Ct, \vec{Cv}) \leftarrow commitment(C, Ct, De, Cr) \land \varphi$ $q(C, Ct, \vec{Cv}) \leftarrow commitment(C, Ct, De, Cr) \land \varkappa$
- Goal Axioms

 $pg(G, Gt, \bar{Gv}) \leftarrow goal(G, Gt, X) \land \varpi$ $s(G, Gt, \overline{Gv}) \leftarrow goal(G, Gt, X) \land \varsigma$ $f(G, Gt, \vec{Gv}) \leftarrow goal(G, Gt, X) \land \vartheta$

- Axioms Generated automatically using a compilation tool
- Plus any domain-specific operators (e.g. purchase, ship, etc)

- C3 customer commits to pay \$80 upon receiving the goods
- By creating commitments C2 and C3, the customer has one possible way of achieving its goal

Conclusions and Future Work

- A FO formalization of goals and commitment protocols
 - Multiple interacting instances of the same goals and commitments
 - Piecemeal progress, concession, consolidation and compensation
- Future Work
 - Reasoning about probabilities
 - Modelling non-cooperative partners

Questions?