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Abstract

Recent approaches to goal recognition have progressively re-
laxed the requirements about the amount of domain knowl-
edge and available observations, yielding accurate and ef-
ficient algorithms. These approaches, however, assume that
there is a domain expert capable of building complete
and correct domain knowledge to successfully recognize an
agent’s goal. This is too strong for most real-world appli-
cations. We overcome these limitations by combining goal
recognition techniques from automated planning, and deep
autoencoders to carry out unsupervised learning to generate
domain theories from data streams and use the resulting do-
main theories to deal with incomplete and noisy observations.
Moving forward, we aim to develop a new data-driven goal
recognition technique that infers the domain model using the
same set of observations used in recognition itself.

Introduction
Goal recognition is the task of identifying the desired goal
of an agent by observing its behavior in an environment.
Plan recognition approaches aim to identify the specific
plan to which the observed agent has committed to per-
form to achieve a particular goal. Most approaches to goal
and plan recognition require a substantial amount of do-
main knowledge (Sukthankar et al. 2014, Chapter 1). How-
ever, such approaches assume that a domain expert can pro-
vide a correct and complete domain knowledge for the algo-
rithm to successfully recognize an agent’s goal. The depen-
dence on an expert limits the applicability of such algorithms
in many real-world domains, so recent work has relaxed
such requirements (Pereira, Pereira, and Meneguzzi 2019;
Pereira et al. 2019; Zhuo 2019). We overcome this limita-
tion in LATREC by building planning domain knowledge
using an unsupervised learning algorithm to generate do-
main theories from raw images. LATREC uses the learned
domain knowledge on traditional goal recognition tech-
niques (Pereira, Oren, and Meneguzzi 2017) to recognize the
correct intended goal from image data. Our domain knowl-
edge is automatically generated using a transition function
derived from a state representation learned by auto-encoder.
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Thus, our approach applies modern goal recognition algo-
rithms directly on real-world data, rather than using a do-
main expert to describe domain knowledge.
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Figure 1: Pipeline for recognizing goals in latent space

Goal recognition in Latent Space
Planning algorithms are based on the factored transition
function that represents states as discrete facts. This transi-
tion function is traditionally encoded manually by a domain
expert, and virtually all existing plan recognition approaches
require varying degrees of domain knowledge in order to
recognize observations. Automatically generating such do-
main knowledge involves at least two processes: converting
real-world data into a factored representation (i.e., predicates
for the planning process); and generating a transition func-
tion (i.e., the set of possible actions in the planning domain)
from traces of the factored representation. A recent approach
by Asai and Fukunaga (Asai and Fukunaga 2018) uses an
auto-encoder (Vincent et al. 2008) neural network to auto-
matically generate domain models from images of simple
games and problems. The neural network uses an encoder to



convert an input image into a discretized representation. Our
encoder receives 42x42 black and white images and outputs
a 6x6 latent representation activated by Gumbel-Softmax
(Jang, Gu, and Poole 2016). The decoder reconstructs the
input image from the discretized representation.

Images processed through the encoder become bit vectors
that provide analogues for states comprising propositional
attributes. Sequences of such propositional states implicitly
represent sequences of action executions, which, in turn, al-
low us to infer a PDDL domain by comparing states before
and after the execution of such implicit actions. We use bit-
wise comparisons from the states before and after an action
to infer preconditions and effects for a number of unique
actions, and then try to group unique actions together to ac-
count for potential noise in the actions. Thus, we compute all
the elements of a PDDL action and call this process Action
Learner, as illustrated in Figure 1 (b).

To be able to plan using this domain we generate a plan-
ning problem by providing two images to the auto-encoder:
one corresponding to the initial state and one correspond-
ing to the desired state. This, in turn, allows us to gener-
ate a goal recognition problem as formalized by previous
work (Ramı́rez and Geffner 2009) and apply off-the-shelf
goal recognition techniques1, such as (Ramı́rez and Geffner
2009; Pereira, Oren, and Meneguzzi 2017). The output of
such techniques is a list of goals ordered by probability of
being the correct one. We then decode the recognized goal,
obtaining its image representation using the decoder. We il-
lustrate this process in Figure 1(c), and detail the process
in Amado et al. 2018.

Data-driven model
To compute a data-driven model capable of recognizing
goals in latent space, we train an LSTM (Hochreiter and
Schmidhuber 1997) that receives a sequence of encoded
states and predicts an encoded goal. To perform a fair com-
parison to the state-of-the-art, we use as input encoded states
generated by the encoder module from the autoencoder cre-
ated by Asai and Fukunaga (2018). Thus, we convert each
image-state into a latent representation (a 6x6 binary ma-
trix). First, given a set of image-states representing a se-
quence of states and the goal of a certain plan, we use the
encoder to generate the latent representation for each im-
age. Second, we train the LSTM to predict the goal given
the latent states. The output is a representation of this goal.
Finally, we use the decoder from Asai and Fukunaga autoen-
coder to convert the produced representation into an image.

To train the LSTM network, we require data extracted
from plans for each domain. We use plan traces generated
by LatPlan(Asai and Fukunaga 2018), observing the states
that were reached in each plan. Each trace generated a list
of states, and then we included the goal of each trace as a
class to the LSTM. To improve accuracy in low observabil-
ity scenarios, we included partially observable traces (which
means some states were removed from the plan trace), in-
cluding 10%, 30%, 50%, 70% of observability. No candidate

1In this work, we used the landmark-based heuristics
of (Pereira, Oren, and Meneguzzi 2017).

goals are needed to recognize goals in this approach.

Conclusion
We developed an approach for goal recognition using image
data as evidence, obviating the need for human engineer-
ing to create a task for goal recognition. We tested it with
three state-of-the-art approaches of goal recognition to eval-
uate the domain we derived from image evidence and a data-
driven model to recognize goals. We aim to improve prun-
ing of redundant actions in the domain inference process,
encode domains with incomplete information to account for
the noise and inconsistencies generated by the autoencoder,
and develop more complex data-driven models.

Finally, the current approach is limited in that it is in-
capable of recognizing goals not included in the training
dataset, as it deals with the goal recognition task as a clas-
sification task. Moving forward, we aim to develop a data-
driven model that computes a probability of each predicate
being true, instead of fully reconstructing the recognized
goal. This should allow us to compute the probability of each
candidate goal by measuring the overall distance of each
goal hypothesis using the probabilities of individual predi-
cates.
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