

What is Goal Recognition?

In a nutshell

- Goal Recognition is the task of recognizing agents' goal that explains a sequence of observations of its actions;
- Related to plan recognition, i.e. recognizing a *top-level* action
- A specific form of the problem of abduction

Automated Planning and Goal Recognition

Definition 1 (Planning). A planning instance is represented by a triple $\Pi = \langle \mathcal{V}, \mathcal{O}, s_0, s^*, \text{cost} \rangle$, in which:

- \mathcal{V} is a finite set of variables, each $v \in \mathcal{V}$ with domain D(v)
- \mathcal{O} is a finite set of operators, where $o \in \mathcal{O}$ are tuples $o = \langle \operatorname{pre}(o), \operatorname{post}(o) \rangle$ each of which has cost cost(o)
- s₀ is the **initial state**
- s^{*} is the goal state

Definition 2 (Goal Recognition Problem). A goal recognition problem is a tuple $P = \langle \Pi_{\mathbf{P}}, \Gamma, \Omega \rangle$, where:

- $\Pi_{\mathbf{P}}$ is a planning task without a goal condition;
- Γ is a set of goal candidates; and
- Ω is a sequence $\langle \vec{o}_1, \ldots \vec{o}_n \rangle$ of observations, with each $\vec{o}_i \in \mathcal{O}$
- Many solution concepts here (check the paper)
- Caveat: we may have other representations for the observations

A Running Example

Goal Recognition task with:

 $\bullet \Gamma = \{s_1^*, s_2^*\}$

- Reference goal s_1^*
- A number of observations
- $\Omega_1 = \langle \vec{o_1} \rangle$ is an optimal observation sequence from optimal plan $\pi_1 = \langle o_1, o_2, o_3 \rangle$
- $\Omega_2 = \langle \vec{o}_5, \vec{o}_7, \vec{o}_9 \rangle$ and $\Omega_3 = \langle \vec{o}_4, \dots, \vec{o}_{10} \rangle$ are suboptimal observation sequences from suboptimal
- plan $\pi_2 = \langle o_4, \ldots, o_{10} \rangle$,
- $\Omega_4 = \langle \vec{o}_4, \ldots, \vec{o}_{10}, \vec{o}_{11} \rangle$ is a suboptimal and noisy observation sequence (with added \vec{o}_{11})

Reference Solutions

- Goal recognition task $\langle \Pi_{\mathbf{P}}, \Gamma, \Omega \rangle$
- Π is a planning task with the reference goal $s^* \in \Gamma$
- π^* is the optimal plan for Π , and π plan for Π that generates Ω
- $h_{\Omega}^*(s_0, s_i^*)$ is the cost of an optimal plan for Π that complies with Ω , $h^*(s_0, s_i^*)$ is the cost of an optimal plan for Π , both with $s_i^* \in \Gamma$

The reference solution is

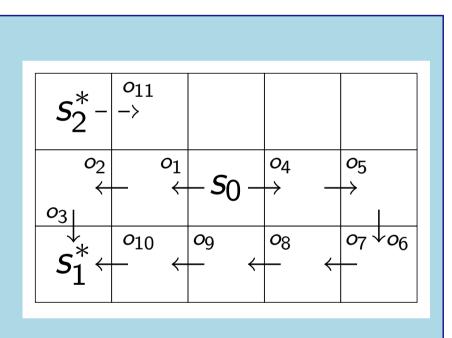
$$\Gamma^* = \{ s_i^* \in \Gamma \mid \frac{h_{\Omega}^*(s_0, s_i^*)}{h^*(s_0, s_i^*)} \le \frac{\cot(\pi)}{\cot(\pi^*)} \land h_{\Omega}^*(s_0, s_i^*) \neq \infty \}$$

The *reference solution set* includes goal candidates that have plans as sub-optimal as or less than the plan that generated the observations for the reference goal.

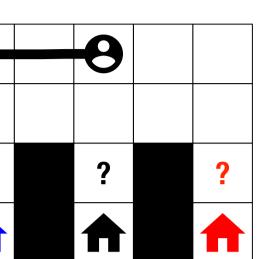
Example Reference Solution

$$\Gamma_i^* = \{s_1^*\}, \text{ for } \Omega_1, \Omega_2, \Omega_3, \Omega_4 \text{ since}$$

• $h_{\Omega_4}^*(s_0, s_1^*) = 7, h_{\Omega_4}^*(s_0, s_2^*) = 9$
• $\operatorname{cost}(\pi_2) / \operatorname{cost}(\pi^*) = 7/3$



An LP-Based Approach for Goal Recognition as Planning Luísa Santos*, Felipe Meneguzzi†, Ramon Fraga Pereira‡, André Grahl Pereira*



Using LP-Constraints for Goal Recognition

Satisfying IP/LP heuristic

The satisfying integer program IP^C₀ for a set of operator-counting constraints C, a set of observation*counting constraints*, and sequence of observations Ω for state s is

minimize	$\sum \operatorname{cost}(o) Y_o$	subje

 $o \in O$ $\mathsf{Y}_{\vec{o}} \leq occur_{\Omega}(o)$ $Y_{\vec{o}} \leq Y_{o}$ $\sum |\mathbf{Y}_{\vec{o}} \ge |\Omega|$ $\mathsf{Y}_{ec{o}}\in\mathcal{Y}^{\Omega}$ $\mathsf{Y}_o, \mathsf{Y}_{\vec{o}} \in \mathbb{Z}_0^+.$

for al

for al

The satisfying IP heuristic h_{Ω}^{IP} is the objective value of IP_{Ω}^{C} , and the satisfying LP heuristic h_{Ω} is the objective value of its linear relaxation. If the IP or LP is infeasible, the heuristic estimate is ∞ .

Constraints for Goal Recognition

We define a new heuristic h_{Ω} based on the existing operator counting framework using:

- Observations Ω for a state s, where $occur_{\Omega}(o)$ is the # of occurrences of $o \in \Omega$
- Variables $Y_{\vec{o}}$ for each $\vec{o} \in \mathcal{O}$

with additional constraints:

- $Y_{\vec{o}} \leq occur_{\Omega}(o)$, for all $o \in \mathcal{O} \rightarrow$ limits occurrences of observations
- $Y_{\vec{o}} \leq Y_o$ for all $o \in \mathcal{O} \rightarrow$ binds Ω to operators in the OC heuristic
- $\sum_{\mathbf{Y}_{\vec{o}} \in \mathcal{Y}^{\Omega}} \mathbf{Y}_{\vec{o}} \ge |\Omega| \rightarrow$ ensures observations are satisfied
- The h_{Ω} heuristic:
- Y_o acts as an upper bound for $Y_{\vec{o}}$
- The only difference of h_{Ω} to the OC heuristic are the *observation-counting constraints*
- $-h \rightarrow$ lower bound on optimal plans
- $-h_{\Omega} \rightarrow$ lower bound on optimal plans that satisfy observations

Computing solutions using h_{Ω}

• We compute the cost difference between observation-complying Operator Counts h_{Ω} and the OCs lower bound on optimal plan cost h

> $= \min_{s_i^* \in \Gamma \ : \ h_\Omega(s_0, s_i^*) < \infty} \{h_\Omega(s_0, s_i^*) - h(s_0, s_i^*)\}$ $\delta_{\min} =$

• And select goals for which the observation-complying plans have the least additional cost over the optimal plan

 $\Gamma^{\mathrm{LP}} = \{s_i^* \in \Gamma \mid h_{\Omega}(s_0, s_i^*) - h(s_0, s_i^*) = \delta_{\min}\}$

Example solution using h_{Ω} For $\Omega = \langle \vec{o}_5, \vec{o}_7, \vec{o}_9 \rangle$: • $h_{\Omega}(s_0, s_1^*) = 7$ and $h(s_0, s_1^*) = 3$ • $h_{\Omega}(s_0, s_2^*) = 9$ and $h(s_0, s_2^*) = 3$ • $\delta_{\min} = 4$, so $\Gamma^{\text{LP}} = \{s_1^*\}$

ject to C,

all $o \in \mathcal{O}$	(1)
all $o \in \mathcal{O}$	(2)
	(3)

Dealing with Noise and Uncertainty

Dealing with Noisy Observations

- Noisy Observations → Suboptimal or Spurious – Unlikely to be part of an optimal plan – Expensive to detect
- heuristic h_{Ω}^{ϵ}
- Relax h_{Ω} to ignore a fraction ϵ of the observations $-\epsilon$ corresponds to an **error rate**
- Satisfy at least $|\Omega| \lfloor |\Omega| * \epsilon \rfloor$ observations
- This results in a new solution set Γ^{ϵ}

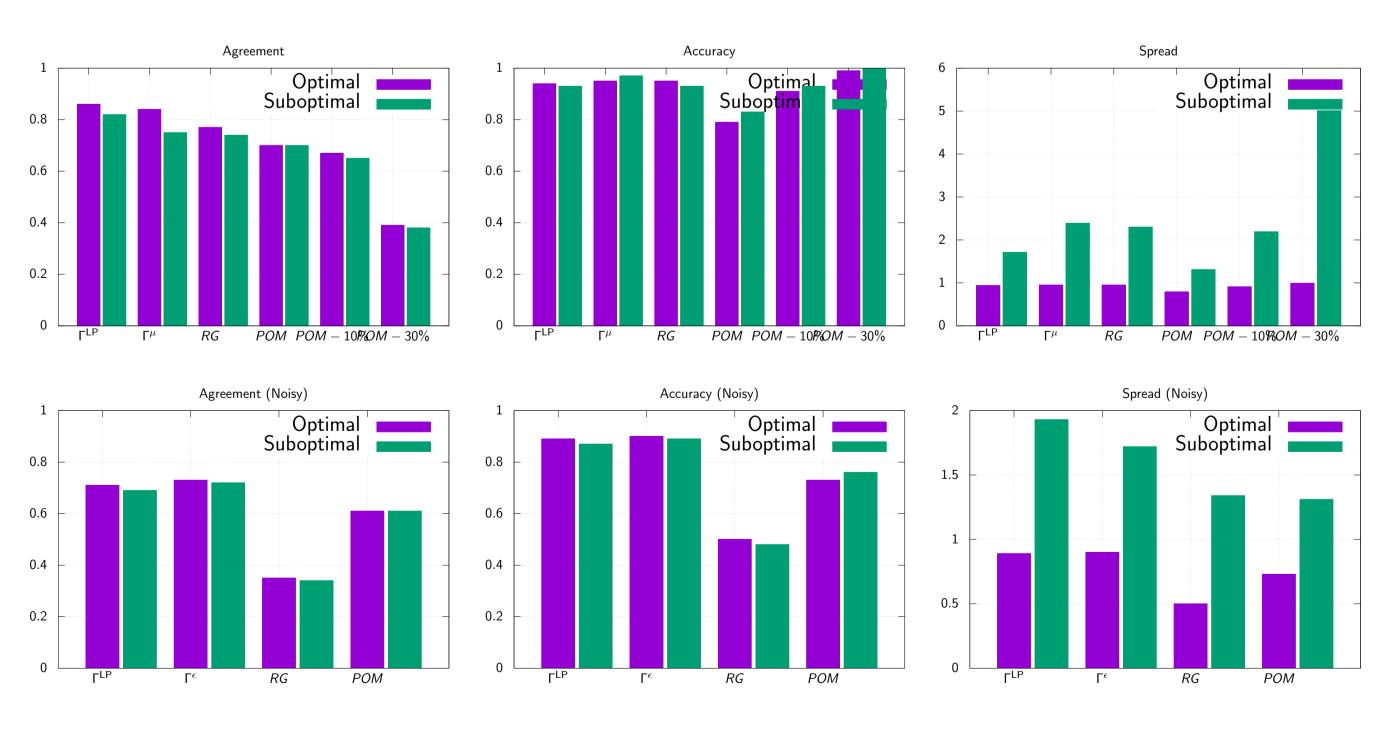
Estimating Uncertainty

- Low accuracy while maintaining low spread
- High accuracy while having high spread
- If $|\Omega| < h_{\Omega}$, then at least $h_{\Omega} |\Omega|$ observations missing
- We estimate the degree of observability as follows:

• And use the uncertainty when selecting goals

 $\Gamma^{\mu} = \{ s_i^* \in \Gamma \mid h_{\Omega}(s_0, s_i^*) - h(s_0, s_i^*) \le \delta_{\min} \mu \}$

Experiments and Conclusions



Conclusions

We developed a new class of goal recognition methods:

• Based on linear programming models with provably polynomial-time solutions • Leverages operator counting framework

• We estimate which observations are noisy in polynomial time in the linear relaxation in a new

 $\Gamma^{\epsilon} = \{s_i^* \in \Gamma \mid h_{\Omega}^{\epsilon}(s_0, s_i^*) - h(s_0, s_i^*) = \delta_{\min}\}$

• Recognizing goals is hard with low observability, most existing approaches have either

• Our approach modulates the accuracy/spread tradeoff in response to lower observability:

$$= 1 + \frac{\max_{s_i^* \in \Gamma^{LP}} \{h_{\Omega}(s_0, s_i^*)\} - |\Omega|}{\max_{s^* \in \Gamma^{LP}} \{h_{\Omega}(s_0, s_i^*)\}}$$

Code available at: https://bit.ly/lp-goal-recognition