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What is Goal Recognition?

? ? ?

In a nutshell
• Goal Recognition is the task of recognizing agents’ goal that ex-

plains a sequence of observations of its actions;
– Related to plan recognition, i.e. recognizing a top-level action
– A specific form of the problem of abduction

Automated Planning and Goal Recognition
Definition 1 (Planning). A planning instance is represented by a triple Π = 〈V ,O, s0, s

∗, cost〉, in
which:
• V is a finite set of variables, each v ∈ V with domain D(v)

•O is a finite set of operators, where o ∈ O are tuples o = 〈pre(o), post(o)〉 each of which has cost
cost(o)

• s0 is the initial state
• s∗ is the goal state

Definition 2 (Goal Recognition Problem). A goal recognition problem is a tuple P = 〈ΠP,Γ,Ω〉,
where:
• ΠP is a planning task without a goal condition;

• Γ is a set of goal candidates; and

• Ω is a sequence 〈~o1, . . . ~on〉 of observations, with each ~oi ∈ O
• Many solution concepts here (check the paper)
• Caveat: we may have other representations for the observations

A Running Example

Running Example

Goal Recognition task with:

� = {s⇤1 , s⇤2}
Reference goal s⇤1
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⌦1 = h~o1i is an optimal observation sequence from optimal plan
⇡1 = ho1, o2, o3i
⌦2 = h~o5, ~o7, ~o9i and ⌦3 = h~o4, . . . , ~o10i are suboptimal observation sequences from
suboptimal plan ⇡2 = ho4, . . . , o10i,
⌦4 = h~o4, . . . , ~o10, ~o11i is a suboptimal and noisy observation sequence (with added ~o11)
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Goal Recognition task with:

• Γ = {s∗1, s∗2}
• Reference goal s∗1

A number of observations

• Ω1 = 〈~o1〉 is an optimal observation sequence from optimal plan π1 = 〈o1, o2, o3〉
• Ω2 = 〈~o5, ~o7, ~o9〉 and Ω3 = 〈~o4, . . . , ~o10〉 are suboptimal observation sequences from suboptimal

plan π2 = 〈o4, . . . , o10〉,
• Ω4 = 〈~o4, . . . , ~o10, ~o11〉 is a suboptimal and noisy observation sequence (with added ~o11)

Reference Solutions
• Goal recognition task 〈ΠP,Γ,Ω〉
• Π is a planning task with the reference goal s∗ ∈ Γ

• π∗ is the optimal plan for Π, and π plan for Π that generates Ω

• h∗Ω(s0, s
∗
i ) is the cost of an optimal plan for Π that complies with Ω, h∗(s0, s

∗
i ) is the cost of an

optimal plan for Π, both with s∗i ∈ Γ

The reference solution is

Γ* = {s∗i ∈ Γ | h
∗
Ω(s0, s

∗
i )

h∗(s0, s∗i )
≤ cost(π)

cost(π∗)
∧ h∗Ω(s0, s

∗
i ) 6=∞}

The reference solution set includes goal candidates that have plans as sub-optimal as or less than
the plan that generated the observations for the reference goal.

Example Reference Solution
Γ∗i = {s∗1}, for Ω1,Ω2,Ω3,Ω4 since

• h∗Ω4
(s0, s

∗
1) = 7, h∗Ω4

(s0, s
∗
2) = 9

• cost(π2)/ cost(π∗) = 7/3

Using LP-Constraints for Goal Recognition
Satisfying IP/LP heuristic

The satisfying integer program IPCΩ for a set of operator-counting constraintsC, a set of observation-
counting constraints, and sequence of observations Ω for state s is

minimize
∑
o∈O

cost(o)Yo subject to C,

Y~o ≤ occurΩ(o) for all o ∈ O (1)
Y~o ≤ Yo for all o ∈ O (2)∑
Y~o∈YΩ

Y~o ≥ |Ω | (3)

Yo,Y~o ∈ Z+
0 .

The satisfying IP heuristic hIP
Ω is the objective value of IPCΩ , and the satisfying LP heuristic hΩ is the

objective value of its linear relaxation. If the IP or LP is infeasible, the heuristic estimate is∞.

Constraints for Goal Recognition

We define a new heuristic hΩ based on the existing operator counting framework using:

• Observations Ω for a state s, where occurΩ(o) is the # of occurrences of o ∈ Ω

• Variables Y~o for each ~o ∈ O
with additional constraints:

• Y~o ≤ occurΩ(o), for all o ∈ O → limits occurrences of observations

• Y~o ≤ Yo for all o ∈ O → binds Ω to operators in the OC heuristic

•
∑

Y~o∈YΩ Y~o ≥ |Ω | → ensures observations are satisfied

The hΩ heuristic:

• Yo acts as an upper bound for Y~o

• The only difference of hΩ to the OC heuristic are the observation-counting constraints

– h→ lower bound on optimal plans

– hΩ→ lower bound on optimal plans that satisfy observations

Computing solutions using hΩ

• We compute the cost difference between observation-complying Operator Counts hΩ and the
OCs lower bound on optimal plan cost h

δmin = min
s∗i∈Γ : hΩ(s0,s∗i )<∞

{hΩ(s0, s
∗
i )− h(s0, s

∗
i )}

• And select goals for which the observation-complying plans have the least additional cost over
the optimal plan

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}

Example solution using hΩ
For Ω = 〈~o5, ~o7, ~o9〉:
• hΩ(s0, s

∗
1) = 7 and h(s0, s

∗
1) = 3

• hΩ(s0, s
∗
2) = 9 and h(s0, s

∗
2) = 3

• δmin = 4, so ΓLP = {s∗1}

Dealing with Noise and Uncertainty
Dealing with Noisy Observations
• Noisy Observations→ Suboptimal or Spurious

– Unlikely to be part of an optimal plan
– Expensive to detect

• We estimate which observations are noisy in polynomial time in the linear relaxation in a new
heuristic hεΩ

• Relax hΩ to ignore a fraction ε of the observations

– ε corresponds to an error rate
– Satisfy at least |Ω | − b|Ω | ∗ εc observations
– This results in a new solution set Γε

Γε = {s∗i ∈ Γ | hεΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}

Estimating Uncertainty
• Recognizing goals is hard with low observability, most existing approaches have either

– Low accuracy while maintaining low spread
– High accuracy while having high spread

• Our approach modulates the accuracy/spread tradeoff in response to lower observability:

– If |Ω | < hΩ, then at least hΩ − |Ω | observations missing
• We estimate the degree of observability as follows:

µ = 1 +

max
s∗i∈ΓLP

{hΩ(s0, s
∗
i )} − |Ω |

max
s∗i∈ΓLP

{hΩ(s0, s
∗
i )}

• And use the uncertainty when selecting goals

Γµ = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) ≤ δminµ}

Experiments and Conclusions

Agreement/Accuracy/Spread - Noise Free
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Agreement/Accuracy/Spread - Noisy Observations
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Conclusions
We developed a new class of goal recognition methods:

• Based on linear programming models with provably polynomial-time solutions

• Leverages operator counting framework

Code available at:
https://bit.ly/lp-goal-recognition
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