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André Grahl Pereira*

†Pontifical Catholic University of Rio Grande do Sul, Brazil
felipe.meneguzzi@pucrs.br

* Federal University of Rio Grande do Sul, Brazil
{lrasantos,agpereira}@inf.ufrgs.br

‡Sapienza University of Rome, Italy
rpereira@diag.uniroma1.it

Everywhere, February, 2021

Santos, Meneguzzi et al. An LP-Based Approach for Goal Recognition as Planning Everywhere, February, 2021 1 / 32

felipe.meneguzzi@pucrs.br
{lrasantos,agpereira}@inf.ufrgs.br
rpereira@diag.uniroma1.it


Table of Contents

1 What is Goal Recognition?

2 Automated Planning and Goal Recognition

3 Using LP-Constraints for Goal Recognition

4 Dealing with Noise and Uncertainty

5 Experiments and Conclusions

Santos, Meneguzzi et al. An LP-Based Approach for Goal Recognition as Planning Everywhere, February, 2021 2 / 32



What is it?

Goal Recognition is the task of recognizing agents’ goal that explains a sequence of
observations of its actions;

Related to plan recognition, i.e. recognizing a top-level action
A specific form of the problem of abduction

? ? ?
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Automated Planning

Definition (Planning)

A planning instance is represented by a triple Π = 〈V,O, s0, s
∗, cost〉, in which:

V is a finite set of variables, each v ∈ V with domain D(v)

O is a finite set of operators, where o ∈ O are tuples o = 〈pre(o), post(o)〉 each of which
has cost cost(o)

s0 is the initial state

s∗ is the goal state
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Automated Planning - Less boring

Planning problems have three key ingredients

Domain Description Initial State Goal State

Solution

? ? ?

? ? ?
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Goal Recognition Problem

Definition (Goal Recognition Problem)

A goal recognition problem is a tuple P = 〈ΠP, Γ,Ω〉, where:

ΠP is a planning task without a goal condition;

Γ is a set of goal candidates; and

Ω is a sequence 〈~o1, . . . ~on〉 of observations, with each ~oi ∈ O

Many solution concepts here (check the paper)

Caveat: we may have other representations for the observations
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Goal Recognition Problem - Less boring

Goal/Plan Recognition problems have three key ingredients

Domain Description Initial State Goal State

Santos, Meneguzzi et al. An LP-Based Approach for Goal Recognition as Planning Everywhere, February, 2021 8 / 32



Goal Recognition Problem - Less boring

Goal/Plan Recognition problems have four key ingredients

Domain Description Initial State Goal Hypotheses

Observations
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Goal Recognition Problem - Less boring

Goal/Plan Recognition problems have four key ingredients

Domain Description Initial State Goal Hypotheses

Observations Solution

Correct Goal
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Goal Recognition Problem - Less boring

Goal/Plan Recognition problems have four key ingredients

Domain Description Initial State Goal Hypotheses

Observations Solution

Probability Distribution

=.8 =.1

=.1
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Running Example

Goal Recognition task with:

Γ = {s∗1 , s∗2}
Reference goal s∗1

s∗2

s0

s∗1

o11

o1o2

o3

o4 o5

o6o7o8o9o10

Ω1 = 〈~o1〉 is an optimal observation sequence from optimal plan
π1 = 〈o1, o2, o3〉
Ω2 = 〈~o5, ~o7, ~o9〉 and Ω3 = 〈~o4, . . . , ~o10〉 are suboptimal observation sequences from
suboptimal plan π2 = 〈o4, . . . , o10〉,
Ω4 = 〈~o4, . . . , ~o10, ~o11〉 is a suboptimal and noisy observation sequence (with added ~o11)
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Reference Solutions

Reference Solution Set

Goal recognition task 〈ΠP, Γ,Ω〉
Π is a planning task with the reference goal s∗ ∈ Γ

π∗ is the optimal plan for Π, and π plan for Π that generates Ω

h∗Ω(s0, s
∗
i ) is the cost of an optimal plan for Π that complies with Ω, h∗(s0, s

∗
i ) is the cost

of an optimal plan for Π, both with s∗i ∈ Γ

The reference solution is

Γ* = {s∗i ∈ Γ |
h∗Ω(s0, s

∗
i )

h∗(s0, s∗i )
≤ cost(π)

cost(π∗)
∧ h∗Ω(s0, s

∗
i ) 6=∞}

The reference solution set includes goal candidates that have plans as sub-optimal as or less
than the plan that generated the observations for the reference goal.
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Reference Solution Example

Goal Recognition task with:

Γ = {s∗1 , s∗2}
Reference goal s∗1
Ω1 = 〈~o1〉 from π1 = 〈o1, o2, o3〉
Ω2 = 〈~o5, ~o7, ~o9〉 and Ω3 = 〈~o4, . . . , ~o10〉 from
π2 = 〈o4, . . . , o10〉
Ω4 = 〈~o4, . . . , ~o10, ~o11〉 from π2 = 〈o4, . . . , o10〉
(with added ~o11)

s∗2

s0

s∗1

o11

o1o2

o3

o4 o5

o6o7o8o9o10

Γ∗i = {s∗1}, for Ω1,Ω2,Ω3,Ω4 since

h∗Ω4
(s0, s

∗
1 ) = 7, h∗Ω4

(s0, s
∗
2 ) = 9

cost(π2)/ cost(π∗) = 7/3
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A Canned History of Current Approaches

Ramirez and Geffner (2009 and 2010)

First approaches to goal recognition: Plan Recognition as Planning (PRAP)

Probabilistic model aims to compute P(G | O)

Following Bayes Rule P(G | O) = αP(O | G )P(G )

Given P(G ) as a prior, key bottleneck is computing P(O | G )

Sohrabi et al. (2016)

Conceptually similar to Ramirez and Geffner

Compilation into multiple planning problems (one for each G )

Pereira, Oren and Meneguzzi (2017):

Obviate the need to execute a planner multiple times for recognizing goals; and

Novel goal recognition heuristics that use planning landmarks.

More accurate and orders of magnitude faster than all previous approaches.
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Operator Counting Heuristics

Based on the idea of Cost Partitioning for Landmarks

Represents cost of a planning problem in terms of linear constraints:1

Variables: Counto for each operator o

Objective: Minimize
∑
o

Counto · cost(o), subject to∑
o∈L

Counto ≥ 1 for all landmarks L

Counto ≥ 0 for all operators o

Numbers of operator occurrences in any plan satisfy constraints
Minimizing total cost → admissible heuristic

1Adapted from Helmert and Röger’s planning course
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Operator Counting

Operator-counting Constraints2

linear constraints whose variables denote number of occurrences of a given operator

must be satisfied by every plan

Examples:

Counto1 + Counto2 ≥ 1 “must use o1 or o2 at least once”

Counto1 − Counto3 ≤ 0 “cannot use o1 more often than o3”

Motivation:

declarative way to represent knowledge about the solution

allows reasoning about solutions to derive heuristic estimates

elegant framework to combine information from multiple heuristics

2Adapted from Helmert and Röger’s planning course
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Operator Counting Constraints for Goal Recognition

Motivation:

Operator counting constraints represent knowledge about solutions

allows reasoning about solutions to derive heuristic estimates

actual observations
missing observations
noisy observations
goal hypotheses
other constraints

Santos, Meneguzzi et al. An LP-Based Approach for Goal Recognition as Planning Everywhere, February, 2021 16 / 32



Operator Counting Constraints for Goal Recognition

Motivation:

Operator counting constraints represent knowledge about solutions

allows reasoning about solutions that comply with additional constraints:

actual observations
missing observations
noisy observations
goal hypotheses
other constraints

Santos, Meneguzzi et al. An LP-Based Approach for Goal Recognition as Planning Everywhere, February, 2021 16 / 32



Operator Counting Constraints for Goal Recognition

Motivation:

Operator counting constraints represent knowledge about solutions

allows reasoning about solutions that comply with additional constraints:
actual observations
missing observations
noisy observations
goal hypotheses
other constraints

Santos, Meneguzzi et al. An LP-Based Approach for Goal Recognition as Planning Everywhere, February, 2021 16 / 32



Operator Counting Heuristic for Goal Recognition

Satisfying IP/LP heuristic

The satisfying integer program IPC
Ω for a set of operator-counting constraints C , a set of

observation-counting constraints, and sequence of observations Ω for state s is
minimize

∑
o∈O

cost(o)Yo subject to C ,

Y~o ≤ occurΩ(o) for all o ∈ O (1)

Y~o ≤ Yo for all o ∈ O (2)∑
Y~o∈YΩ

Y~o ≥ |Ω | (3)

Yo ,Y~o ∈ Z+
0 .

The satisfying IP heuristic hIP
Ω is the objective value of IPC

Ω, and the satisfying LP heuristic hΩ

is the objective value of its linear relaxation. If the IP or LP is infeasible, the heuristic estimate
is ∞.
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Constraints for Goal Recognition

We define a new heuristic hΩ based on the existing operator counting framework using:

Observations Ω for a state s,
where occurΩ(o) is the # of occurrences of o ∈ Ω

Variables Y~o for each ~o ∈ O
with additional constraints:

Y~o ≤ occurΩ(o), for all o ∈ O
Y~o ≤ Yo for all o ∈ O∑

Y~o∈YΩ Y~o ≥ |Ω |
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Constraints for Goal Recognition

We define a new heuristic hΩ based on the existing operator counting framework using:

Observations Ω for a state s,
where occurΩ(o) is the # of occurrences of o ∈ Ω

Variables Y~o for each ~o ∈ O
with additional constraints:

Y~o ≤ occurΩ(o), for all o ∈ O → limits occurrences of observations

Y~o ≤ Yo for all o ∈ O → binds Ω to operators in the OC heuristic∑
Y~o∈YΩ Y~o ≥ |Ω | → ensures observations are satisfied
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The hΩ heuristic

Yo acts as an upper bound for Y~o
The only difference of hΩ to the OC heuristic are the observation-counting constraints

h → lower bound on optimal plans
hΩ → lower bound on optimal plans that satisfy observations
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Computing solutions using hΩ

We compute the cost difference between observation-complying Operator Counts hΩ and
the OCs lower bound on optimal plan cost h

δmin = min
s∗i ∈Γ : hΩ(s0,s∗i )<∞

{hΩ(s0, s
∗
i )− h(s0, s

∗
i )}

And select goals for which the observation-complying plans have the least additional cost
over the optimal plan

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}
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Computing solutions using hΩ

Goal Recognition task with:

Γ = {s∗1 , s∗2}
Reference goal s∗1
Ω = 〈~o5, ~o7, ~o9〉

s∗2

s0

s∗1

o11

o1o2

o3

o4 o5

o6o7o8o9o10

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}

hΩ(s0, s
∗
1 ) = 7 and h(s0, s

∗
1 ) = 3

hΩ(s0, s
∗
2 ) = 9 and h(s0, s

∗
2 ) = 3

δmin = 4, so ΓLP = {s∗1}
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Noisy Observations

Goal Recognition task with:

Γ = {s∗1 , s∗2}
Reference goal s∗1
Ω = 〈~o4, . . . , ~o10, ~o11〉

s∗2

s0

s∗1

o11

o1o2

o3

o4 o5

o6o7o8o9o10

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}

hΩ(s0, s
∗
1 ) = 13 and h(s0, s

∗
1 ) = 3

hΩ(s0, s
∗
2 ) = 11 and h(s0, s

∗
2 ) = 3

δmin = 8, so ΓLP = {s∗2}
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s∗2

s0

s∗1

o11

o1o2

o3

o4 o5
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∗
1 ) = 3

hΩ(s0, s
∗
2 ) = 11 and h(s0, s

∗
2 ) = 3

δmin = 8, so ΓLP = {s∗2} ← this is a problem, as ~o11 very unlikely
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Dealing with Noisy Observations

Noisy Observations → Suboptimal or Spurious

Unlikely to be part of an optimal plan
Expensive to detect

We estimate which observations are noisy in polynomial time in the linear relaxation in a
new heuristic hεΩ

Recall constraint forcing observation counts to satisfy all observations

Relax it to ignore a fraction ε of the observations

ε corresponds to an error rate
Satisfy at least |Ω | − b|Ω | ∗ εc observations
This results in a new solution set Γε

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}
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Computing solutions using hεΩ

Goal Recognition task with:

Γ = {s∗1 , s∗2}
Reference goal s∗1
Ω = 〈~o4, . . . , ~o10, ~o11〉

s∗2

s0

s∗1

o11

o1o2

o3

o4 o5

o6o7o8o9o10

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}

hΩ(s0, s
∗
1 ) = 13 and h(s0, s

∗
1 ) = 3

hΩ(s0, s
∗
2 ) = 11 and h(s0, s

∗
2 ) = 3

δmin = 8, so ΓLP = {s∗2} ← this is a problem, as ~o11 very unlikely
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Γε = {s∗i ∈ Γ | hεΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}

Assuming ε = 0.2

hΩ(s0, s
∗
1 ) = 7 and h(s0, s

∗
1 ) = 3

hΩ(s0, s
∗
2 ) = 9 and h(s0, s

∗
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Estimating Uncertainty

Recognizing goals is hard with low observability, most existing approaches have either
Low accuracy while maintaining low spread
High accuracy while having high spread

Our approach modulates the accuracy/spread tradeoff in response to lower observability

Recall that hΩ is a lower bound on the cost of an observation-complying optimal plan, so:
|Ω | ≥ hΩ

If |Ω | < hΩ, then at least hΩ − |Ω | observations missing

We estimate the degree of observability as follows:

µ = 1 +

max
s∗i ∈ΓLP

{hΩ(s0, s
∗
i )} − |Ω |

max
s∗i ∈ΓLP

{hΩ(s0, s
∗
i )}

And use the uncertainty when selecting goals

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}
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Estimating Uncertainty

Recognizing goals is hard with low observability, most existing approaches have either
Low accuracy while maintaining low spread
High accuracy while having high spread

Our approach modulates the accuracy/spread tradeoff in response to lower observability,
but how do we know this?

Recall that hΩ is a lower bound on the cost of an observation-complying optimal plan, so:
|Ω | ≥ hΩ

If |Ω | < hΩ, then at least hΩ − |Ω | observations missing
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{hΩ(s0, s
∗
i )} − |Ω |
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Γµ = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) ≤ δmin∗µ}
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Measuring Uncertainty and Computing Solutions

Goal Recognition task with:

Γ = {s∗1 , s∗2}
Reference goal s∗1
Ω = 〈~o6〉

s∗2

s0

s∗1

o11

o1o2

o3

o4 o5

o6o7o8o9o10

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}

hΩ(s0, s
∗
1 ) = 7 and h(s0, s

∗
1 ) = 3

hΩ(s0, s
∗
2 ) = 9 and h(s0, s

∗
2 ) = 3

δmin = 4, so ΓLP = {s∗1}
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Measuring Uncertainty and Computing Solutions

Goal Recognition task with:

Γ = {s∗1 , s∗2}
Reference goal s∗1
Ω = 〈~o6〉

s∗2

s0

s∗1

o11

o1o2

o3

o4 o5

o6o7o8o9o10

ΓLP = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) = δmin}

hΩ(s0, s
∗
1 ) = 7 and h(s0, s

∗
1 ) = 3

hΩ(s0, s
∗
2 ) = 9 and h(s0, s

∗
2 ) = 3

δmin = 4, so ΓLP = {s∗1} ← this is also problematic: |Ω | = 1!
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Measuring Uncertainty and Computing Solutions

Goal Recognition task with:

Γ = {s∗1 , s∗2}
Reference goal s∗1
Ω = 〈~o6〉

s∗2

s0

s∗1

o11

o1o2

o3

o4 o5

o6o7o8o9o10

Γµ = {s∗i ∈ Γ | hΩ(s0, s
∗
i )− h(s0, s

∗
i ) ≤ δmin ∗ µ}

hΩ(s0, s
∗
1 ) = 7 and h(s0, s

∗
1 ) = 3

hΩ(s0, s
∗
2 ) = 9 and h(s0, s

∗
2 ) = 3

µ = 1 + 8/9

δmin = 4, so Γµ = {s∗1 , s∗2}
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Experiments

New Benchmark:

Based on our previous work

Metric we use: agreement ratio

Optimal and suboptimal plans

Noisy and Missing Observations
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Agreement/Accuracy/Spread - Noise Free
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Agreement/Accuracy/Spread - Noisy Observations
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Conclusions

We developed a new class of goal recognition methods:

Based on linear programming models

Provably polynomial-time solutions

Leverage operator counting framework

Opens up many new possibilities for goal recognition
Leverages the best of previous state of the art in Runtime and Accuracy

Code available at:
https://bit.ly/lp-goal-recognition
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