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Abstract

Goal recognition aims to recognize the set of candidate goals
that are compatible with the observed behavior of an agent.
In this paper, we develop a method based on the operator-
counting framework that efficiently computes solutions that
satisfy the observations and uses the information generated
to solve goal recognition tasks. Our method reasons explic-
itly about both partial and noisy observations: estimating un-
certainty for the former, and satisfying observations given the
unreliability of the sensor for the latter. We evaluate our ap-
proach empirically over a large data set, analyzing its com-
ponents on how each can impact the quality of the solutions.
In general, our approach is superior to previous methods in
terms of agreement ratio, accuracy, and spread. Finally, our
approach paves the way for new research on combinatorial
optimization to solve goal recognition tasks.

Introduction

Goal recognition as planning consists of inferring the set of
compatible goals from a set of goal candidates, given a plan-
ning task without a goal, and a sequence of observations. A
solution for a goal recognition task is a subset of goal candi-
dates that are compatible with the sequence of observations.
A plan for the planning task with the reference goal, part of
the set of goal candidates, generates the sequence of obser-
vations. This sequence may be partial, containing any num-
ber of observations from the plan. Existing methods on goal
recognition try to cope with three main classes of observa-
tion sequences: optimal (Ramirez and Geffner 2009), sub-
optimal (Ramirez and Geffner 2010), and noisy (Sohrabi,
Riabov, and Udrea 2016). Since approaches to goal recog-
nition as planning often employ standard planning technol-
ogy to solve goal recognition tasks, many of them can ben-
efit from improvements in the underlying planning technol-
ogy (Ramirez and Geffner 2009; E-Martin, R.-Moreno, and
Smith 2015; Pereira, Oren, and Meneguzzi 2017; Harman
and Simoens 2020).

Recent developments in planning include heuristics based
on the operator-counting framework, which combines the
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information of admissible heuristic functions through an in-
teger program (IP) (Pommerening et al. 2014). These heuris-
tics provide constraints that must be satisfied by every plan
of the planning task. In general, the objective value of the
linear program (LP), a linear relaxation of the integer pro-
gram, is used as heuristic function to guide the search. A ma-
jor advantage of this framework is that it enables to reason
and to manipulate the information of the heuristics directly.

We develop an LP-based approach to solve goal recogni-
tion tasks, including five main contributions. First, we mod-
ify the operator-counting framework to efficiently compute
solutions that satisfy the counts of observations of a goal
recognition task. We also use this framework to estimate the
cost of an optimal plan for each goal candidate in the task.
Then, we use the information generated to solve the goal
recognition task. Second, we show how to contrast the ob-
jective value of the modified linear program and the length
of the sequence of observations to estimate the uncertainty
of the decision of our approach which we use to improve
our solution. Third, we develop an approach to explicitly ad-
dress noisy observations. Given the unreliability of the sen-
sor of observations, we create an integer program that aims
to automatically ignore noisy observations when comput-
ing solutions. Fourth, we show that higher heuristic values
from lower bound heuristics for the reference goal predict
the quality of our solution. Finally, we modify the previous
benchmarks to compare goal recognition methods by agree-
ment ratio, showing that ours overcomes the state of the art.

Planning Task and Operator-Counting
Framework

An SAST planning task is a tuple 11 = (V, O, s, s*, cost),
where V is a set of variables, O is a set of operators, s is
an initial state, s* is a goal condition, and cost a cost func-
tion. Each variable v € V has a finite domain D(v). A state
is a complete assignment, a partial state is a partial assign-
ment of the variables over V, vars(s) is the set of variables
in a (partial) state s, and s[v] is the value of variable v in a
(partial) state s. The initial state sg is a state, and the goal
condition s* is a partial state. A state s is consistent with a
(partial) state s’ if s[v] = s'[v] for all v € vars(s’). Each
operator o € O is pair of partial states (pre(o), post(o))
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Figure 1: A goal recognition task example.

and an operator o is applicable to a state s if s is consis-
tent with pre(o). Applying o to s generates a new state s’
such that s'[v] = post(o)[v] for vars(post(o)) and for the
remaining variables s'[v] = s[v]. Function cost : O — Z7
assigns a non-negative cost to each operator o € O — in this
paper all operators have unit cost. An s-plan 7 is a sequence
of operators (o1, ..., 0,) such that there exists a sequence
of states (s; = 8,...,Sn+1) Where o; is applicable to s;
and produces state s; 1, and s, is consistent with s*. The
cost of a s-plan 7 is defined as cost () = > . cost(0). An
Sp-plan or a plan is a solution to a planning task and is op-
timal if its cost is minimal. Figure 1 illustrates our running
example where the agent performs cardinal movements and
starts at so. An optimal plan that reaches sj for this task is
m™ = <017 02, 03>.

Definition 1 (Operator-Counting Constraint). Let I be a
planning task with operators O, and let s be one of its states.
Let )Y be a set of real-valued and integer variables, including
an operator-counting non-negative integer variable Y, for
each operator o € O. A set of linear inequalities over )
is an operator-counting constraint for s if for every valid s-
plan T, there exists a solution with Y, = occur (o) for all
0 € O — where occur,(0) is the number of occurrences of
operator o in the s-plan T.

In the example Y,, +Y,, > 1 is an operator-counting
constraint (and a landmark constraint) for goal s] because
the agent must use one of these operators to reach sj.

Definition 2 (Operator-Counting IP/LP Heuristic). The

operator-counting integer program P¢ for a set of operator-
counting constraints C for state s is

minimize Z cost(0)Y,
0€0
subject to C,

Y, €Zg.

The 1P heuristic k¥ is the objective value of TP, and the LP
heuristic h is the objective value of its linear relaxation. If
the 1P or LP is infeasible, the heuristic estimate is co.

Goal Recognition as Planning

We formally define the task of goal recognition as planing
as a tuple (ITp, ', ), where Ilp is a planning task without a
goal condition, I' is a set of goal candidates, and €2 is a se-
quence of observations. Observation ¢ corresponds to opera-
tor o. For readability, we abuse notation and equate operators
to observations throughout the paper when convenient.

Definition 3 (Observation Compliance). Let ©# =
(01,...,0n) be a plan for a planning task 11 and Q =
(01, ...,0m) a sequence of observations. Plan m complies
with Q if a monotonic function f : [1,m] — [1,n] exists
that maps all operator indexes in ) to indexes in m, such
that 0; = 0¢(i)-

We define three classes of sequences of observations: op-
timal and sub-optimal (Definition 4) observations, and noisy
optimal/sub-optimal observations (Definition 5).

Definition 4 (Sequence of Observations). Ler m =
(01,...,0n) be a plan for the planning task 1. Then, a
sequence of observations §2 is a sequence of operators ex-
tracted from the plan T maintaining their relative order. The
sequence may be partial, containing any number of opera-
tors from the plan w. An optimal sequence of observations is
extracted from an optimal plan and a sub-optimal sequence
of observations is extracted from a sub-optimal plan. An
optimal/sub-optimal observation is part of an optimal/sub-
optimal sequence of observations.

Definition 5 (Noisy Observations). Let §2 be a sequence of
observations extracted from . Then, §) is a noisy sequence
of observations of w if it contains at least one observation of
an operator from O — .

We extend the standard definition from Ramirez and
Geftner (2009) of an exact solution set for a goal recogni-
tion task to also consider sub-optimal observation sequences
(Definition 6) and call it reference solution set. We define the
reference solution set as a subset of the goal candidates such
that there exists a plan as sub-optimal as or less than the plan
that generated the observations for the reference goal.

Definition 6 (Reference Solution Set). Let (Ip,T", Q) be
a goal recognition task and 11 a planning task with the goal
condition s* € T’ (the reference goal). Let ©* be an opti-
mal plan for 11, and let 7 be a plan for 11 from which 2
is extracted. Let h§,(so, s}) be the cost of an optimal plan
for 11 restricted to the set of plans that comply with (,
and h*(sg, s}) be the cost for an optimal plan for 11, both
with sf € T. h§,(so, s}) and h*(so, s}) are equal to o if
no plan exists. Then, the reference solution set for the goal
recognition task is

h(so,s7) _ cost(m)

= COSt(’]T*) /\h;}(sm Sj) 7& OO}

In Figure 1 we show a goal recognition task with goal
candidates I' = {s7, s5}. Suppose that s is the reference
goal. Then, ; = (07) is an optimal sequence of obser-
vations because it is extracted from the optimal plan m; =
<01,02703>, QQ = <65,57, 69> and Qg = <(747 cee ,510) are
sub-optimal sequences of observations because they are ex-
tracted from the sub-optimal plan o = (o4, ..., 019), and
Q4 = (04, ..., 010, 011) is a sub-optimal and noisy sequence
of observations because it was extracted from 75 and the ob-
servation of 077 was added. The reference solution set for
goal recognition tasks with noisy observations is computed
ignoring noisy observations in the sequence of observations.
The reference solution set for any of these observation se-
quences with respective plans is I'} = {s7}. For example,



ho, (s0,81) = 7, hy, (50, 53) = 9, cost(ma)/ cost(n*) =
7/3 and thus T = {s7}.

LP-Based Goal Recognition

We now develop an LP-based goal recognition method that
expands the operator-counting framework with observation-
counting constraints. Key to our approach is the addition of
constraints that ensure that the integer program only com-
putes solutions that satisfy the observations counts. Later
we modify the observation-counting constraints to explic-
itly address noisy observations. Finally, we use the solution
of the linear relaxed solution to estimate the uncertainty of
the decision of our method, and thus automatically expand
the solution set in very low observability scenarios.

Observation-Counting Constraints We now introduce
an IP/LP heuristic which expands the operator-counting
framework with a set of observation-counting constraints.
Definition 7 formally introduces the set of observation-
counting constraints and the integer program that ensures
that the solution computed satisfies all observation counts.

Definition 7 (Satisfying IP/LP heuristic). Let ) be a set
of non-negative integer variables with a variable Y 5 for each
operator o € O. Let occurq(o) be the number of occur-
rences of operator o in ). Then, the satisfying integer pro-
gram IPS, for a set of operator-counting constraints C, a set
of observation-counting constraints, and sequence of obser-
vations € for state s is

minimize Z cost(0)Y,
0€O
subject to C,

Y5 < occurg(o) forallo € O €))

Y;<Y, forallo € O 2)
> Yix>|Q| 3)

Yaeyn

Yo, Ys € 7.

The satistying IP heuristic hlY is the objective value of IPS,
and the satisfying LP heuristic hq, is the objective value of its
linear relaxation. If the 1P or LP is infeasible, the heuristic
estimate is oo.

In the integer program, the set of constrains (1) limits the
value of each Yz by the number of occurrences of the op-
erator o in €). Next, the set of constraints (2) binds the two
sets Yz and Y, of variables. This set of constraints guaran-
tees that Y, acts as an upper bound for Y. Thus, to increase
the count of Y the integer program must first increase the
count of Y, which is minimized in the objective function
and restricted by the set of operator-counting constraints C'.
Finally, constraint (3) ensures all observations are satisfied,
since each Yy is limited by the number of times o appears
in 2. While simpler models can compute the same objec-
tive value, explicitly including information about the obser-
vations enables us to reason about noisy observations, as we
show next.

Note that hqo(s,s*) < h§(s,s*) for all states s of the
planning task. First note that h is admissible (Pommerening
et al. 2014) and that a complying plan 7 can always sat-
isfy TPS. Note that the only difference between IPS and

IPC are the observation-counting constraints. These con-
straints only restrict the set of plans that can satisfy the
integer program IPg to set of plans that satisfy all obser-
vations. If 7 is an optimal s-plan that complies with 2
(h%, (s, s*) = cost(m)), then there is a solution for IP§, /LPS
where Yz =Y, = occur,(0).

We use the hq heuristic to estimate a lower bound on the
cost of an optimal plan that satisfies all observations in 2 for
each goal candidate in I". However, this information is insuf-
ficient to estimate the solution set because the goal candidate
with the least hg-value is not necessarily the most likely one.
Consider a goal recognition task with two goal candidates.
The first goal candidate has an optimal cost plan that can be
extended with one operator to satisfy the single observation
in 2. The second goal candidate has an optimal cost plan
that complies with the observation in (2. In this example the
plan for the first goal costs less than the plan for the sec-
ond goal. In this example only the first goal candidate would
be included in the solution set. However, we argue that the
second goal is more likely to be part of the reference solu-
tion set since it is the only goal candidate with a comply-
ing optimal plan. Therefore, we normalize the values of hg
with estimates of the costs of the original optimal solution —
without satisfying the observations. Like previous methods,
the idea is to select the goals that have plans that satisfy all
observations with the least additional cost. For this, we use
the value of the original operator-counting heuristic &. Hav-
ing hq and h for each goal candidate we can compute the
following solution set:

{ha(so,s;) — h(so,s;)} (4

Omin = min
s¥€l : hqo(so,s7)<oco
I = {s} € T'| ha(so, 57) = h(s0,57) = Omin}  (5)
Equation 4 computes the minimum difference d,, be-
tween the lower bound cost of an optimal plan that sat-
isfies observations and the lower bound cost of an opti-
mal plan (ignoring observations). The minimum difference
only considers goal candidates with bounded estimates for
plans that satisfy observations (hqg(sp,s*) < o0). Equa-
tion 5 computes the solution set I''F by selecting all goals
with a difference between the estimates equal to Jpi,. Note
that T*F is an approximated solution and not equal to the
reference solution set I'". In our running example, consider
a goal recognition task with Q@ = (05, 07, 09). Then cost of
ha(so, s7) and h(sg, s7) are 7 and 3, and costs of hq (s, $5)
and h(sg, s3) are 9 and 3. Thus, dpin equals to 4, and we re-

turn TLP = {57},

Addressing Noisy Observations In most realistic set-
tings, unreliable sensors may add noisy observations to the
sequence of observations. Consider a goal recognition task
in our running example with @ = (04, ..., 010, 011). Then,
ha(so, s7) = 13 and hq(so, s53) = 11. In this situation we
would have 0, = 8, and I''* = {s3}. However, the ob-
servation 071 is unlikely to be part of any plan that gener-



ates the sequence of observations for either of the two goals.
Evaluating precisely which observations are unlikely to be
part of plans for a goal is a hard problem that has an evalu-
ation function that requires solving a planning task multiple
times, or, as Sohrabi, Riabov, and Udrea (2016) do, generat-
ing multiple plans. In spite of that, we can the estimate the
solution for this problem in polynomial time using the lin-
ear relaxation of an integer program. Specifically, we mod-
ify the integer program to try to automatically identify noisy
observations given the unreliability of the sensors. The main
modification is to replace constraint (3) in the integer pro-
gram IPg with constraint (6). We call the solution set using
this heuristic I"°.

Y Yo Q- [[Q]xe (©)
Y;EyQ

where € is the unreliability rating of the sensor that repre-
sents the expected percentage of mistaken observations. This
new constraint requires that at least || — [| Q] * €] ob-
servations be satisfied by the solution found. If € = 0, all
observations must be satisfied. If 0 < € < 1, some observa-
tions can be automatically ignored in order to minimize the
objective value of hg for each goal candidate. Consider our
running example with Q = (o4, ..., 010,011) and ¢ = 0.2.
Then, the integer program IPg has to satisfy 7 observations.
Then, ho(se, s7) = 7 and hq(sg, s3) = 9. In this situation
we would have §,,;, = 4, and ' = {s7}.

Measuring Uncertainty The main idea of this approach is
that if ) has a lower percentage of observations we should
be more careful in our decision. However, if 2 has a higher
percentage of observations we can be more confident. A goal
recognition task does not provide the percentage of observa-
tions in ). However, we can estimate this information using
our heuristic hq. Since hq provides a lower bound on the
cost of a plan that satisfies the observations the difference
(if any) between hg and || must be due to missing ob-
servations. Note that under 100% observability hq = |2,
and with lower degrees of observability hg may select oper-
ators that are not in 2 to satisfy the operator-counting con-
straints C. Thus, in lower degrees of observability the dif-
ference between hg and || is likely to increase. This in-
formation allows us to estimate the degree of observability
as follows:

max,: e (o (50, 57)} — | Q|
max+erwe {ho(so, 57)}
where p is the uncertainty ratio. This value is computed
by first selecting the goal candidates using Equation 5, and
then selecting the goal candidate in ' with maximum hgq,.

Having ;o we can compute the new solution set I'* that con-
siders uncertainty:
' = {s7 €' | ha(so,s;) — h(s0,5;) < Omin * 1} (8)
Consider our running example with Q@ = (0s). Then,
ha(so,s7) = 7 and hq(sg, s5) = 9. In this situation we
would have 8, = 4, and TP = {s7}. However, we would
argue that having only one observation is insufficient to

make a precise decision. Using uncertainty we would have
pw=1+8/9andT* = {s7, s5}.
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Table 1: Key properties of each experimental domain.

10% 30% 10% 30% 10% 30%
- L I P R P N R O N
r Ry .
L L ; L L L L
@)
= 50% 70% 8 ~ 50% 70% 8 c 50% 70%
e » G a
< T - T N T - T o T - T 17
r 1F ST —Af ST —AF R
v ot i - & -
7’# | 7; | 7JW }' | 7}’ 7/ |
L ‘ L ‘ L ‘
PhO PhO LMC
hg hq hg

Figure 2: Heuristic values for hg,.

Experimental Results

We conducted extensive empirical experiments to show the
effectiveness of our methods in three ways. First, to evaluate
how each source of operator-counting constraints impacts
the quality of our solutions. Second, to assess the perfor-
mance of our methods to explicitly address low observability
and noise. Finally, to compare our approach with previous
methods. We ran all experiments under Ubuntu running over
an Intel Core 17 930 CPU (2.80 GHz) with a memory limit
of 1 GB all methods solved each goal recognition task un-
der a time limit of 5 seconds. We implemented our approach
in Fast Downward version 19.06 (Helmert 2006), a Python
prepossessing layer, and the CPLEX 12.10 LP solver.!

Benchmark Domains and Data sets We create a new
benchmark by adapting the one introduced by Pereira,
Oren, and Meneguzzi (2017) to use the evaluation met-
ric agreement ratio, which was proposed by Ramirez and
Geftner (2009). For each domain we generate three planning
tasks each (except for IPC-GRID, in which we use four)
with four reference goals that we use to compute plans from
which we extract the sequence of observations. We compute
optimal and sub-optimal plans for each pair of planning task
and reference goal, with this we double the number of goal

'Source-code and  benchmark are available at:

https://bit.ly/lp-goal-recognition
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recognition tasks creating two data sets. To compute sub-
optimal plans we use weighted A* with w = 2 (Pohl 1970).

Following previous work, we experiment with five differ-
ent levels of observability: 10%, 30%, 50%, 70% and 100%.
We only generate one sequence of observations for 100%
of observability, and three different random observation se-
quences from the same plan for other percentages, generat-
ing 208 goal recognition tasks in total for IPC-GRID and
156 for each of the other domains in each data set (optimal
and sub-optimal). For each data set we also create a corre-
sponding noisy data set by adding [| £2|+0.2] randomly gen-
erated observations in each sequence of observations— i.e.
the fault rate of the sensor is 20%. Three different noisy se-
quences are generated for each original sequence. For each
goal recognition task we add at least five randomly gener-
ated candidate goal conditions. In total we have 8, 288 goal
recognition tasks divided in four data sets. In order to cre-
ate the new benchmarks, we compute the reference solution
set I'" for each goal recognition task for optimal and sub-
optimal data sets. Thus, for each goal candidate of each base
task we solve a planning task twice.

We evaluate the methods using three metrics: agreement
ratio, accuracy and spread. The agreement ratio is defined
as the intersection over union | T"NT'|/|T" UT | of the ref-
erence solution set I'" against the solution I provided by
the method. The accuracy is 1 if the solution set chosen by
the evaluated method contains the reference goal and 0 oth-
erwise. Note that we use a slight modified of accuracy in
other to compare to (Pereira, Oren, and Meneguzzi 2017).
The spread is the size of the solution set chosen by the eval-
uated method. Table 1 summarizes the information about the
data sets. For each domain row, | I' | is the average number of
candidate goals. Rows | Q | and | T | show the average sizes
of the sequence of observations and the reference solution
set, respectively. Note that with 100% of observability we
have the average size of the plan computed for the reference
goal. As expected, the average sizes | 2| and | T | are larger
for the sub-optimal data set than for the optimal data set.

Evaluating the Constraints We aim to evaluate how each
of three sources of operator-counting constraints impacts
the quality of the solutions of our method: state equation
hSEQ (Bonet 2013), landmarks A™MC (Bonet and van den
Briel 2014), and the post-hoc optimization AP© (Pom-
merening, Roger, and Helmert 2013). We also evaluate if
more informed heuristics hg improve the solution of goal
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Table 2: Agreement ratio for constraint sets state equa-
tion gy < (S), landmarks hEMC (L), and post-hoc hPHO (P).

recognition tasks.

Figure 2 shows the value of hg for each source of con-
straints. Each point is the hg-value for a goal recognition
task with its reference goal in the optimal data set. There are
four figures in each group, one for each degree of observabil-

ity, which show that, in general, h?zEQ and h]QMC are more
informed than hPP°, and that hgyQ and REMC are compara-
ble. Also, as expected, the difference in the values decreases
as observability increases. On average h$ 2 and hEMC are
more informed than h&© on 61.49% and 72.58% of the
goal recognition tasks respectively. h%EQ is more informed
than h5MC on 31.19% of the tasks, and h5MC is more in-
formed than h$)'2 on 42.96% of the tasks.

Table 2 shows the results of the agreement ratio for each
source of operator-counting constraints solving goal recog-
nition tasks in the optimal and sub-optimal data sets. The
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Table 3: Agreement ratio (AGR), accuracy (ACC) and spread (SPR) for each method on optimal and sub-optimal data sets.

solution set I''? is computed using hq, and when two or
more sources of operator-counting constraints are used, they
are all combined into a single integer program ng. The first
group of columns shows the results for each source of con-
straints used individually, then in pairs, and last with all three
combined. When the constraints are used individually h?lEQ
and hEMC achieve the best results for different domains. For

example, h?zEQ is the best for BLOCKS while h]QMC is the best
for IPC-GRID. When pairs of constraints are combined the
results improve and again the pair formed by 25V and h?zE Q

provides best results. Results using all constraints are similar

to using the pair KM€ and h?ZE Q_ There are two key conclu-
sions of these results. First, the agreement metric increases
with the degree of observability, but even with 100% of ob-
servations it is still hard to obtain perfect agreement. Second,

the agreement degrades in the sub-optimal data set, though

our method still maintains an average of 0.82.

Figure 3 shows the relation between hq-value and agree-
ment for goal recognition tasks. Again, there are four Fig-
ures in each group, one for each degree of observability.
Each point on the z-axis shows the difference between the
agreement ratio for the solution generated using hg, for each
goal recognition task in the optimal data set. The y-axis
shows the difference of hq-values for the same task with
its goal reference. For example, in group hEVC vs. hPTO the
points are clustered on right upper quadrant which shows
that in general when AGR! is higher than AGR?, h{, is also
higher than h%. We see the same trend in group h?zEQ Vs.
hENO. We highlight a different situation in the group h?lE Q
V8. hbMC since the points are clustered on the upper right
and bottom left quadrants. This shows that higher hq-values

tend to produce higher agreement ratio. Thus, these results
provide evidence that more informed heuristics improve the
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SPR | 1.91 1.78 1.38 1.3 [1.93 1.72 1.34 1.31

Table 4: Agreement ratio (AGR), and average accuracy
(ACC) and average spread (SPR) results on data sets with
noisy observations.

solution of goal recognition tasks.

Evaluating Previous Methods and Uncertainty Table 3
compares our I'™" and I'* methods to two other polyno-
mial time approaches from the literature, reporting agree-
ment ratio, accuracy and spread for optimal and sub-optimal
data sets with standard degrees of observability with 10%,
30%, 50%, 70% and 100% of the observations. Our methods
use the three sources of constraints ASEQ, RIMC and KFPRO,
RG (Ramirez and Geffner 2009) computes a relaxed plan ef-
ficiently and returns as the goal set the goal candidates with
relaxed plans that satisfy the largest number of observations.
POM (Pereira, Oren, and Meneguzzi 2017) focus on finding
necessary plan steps by computing landmarks and returns as
the goal set the goal candidates that have the highest number
of landmarks satisfied by the observation (we use their goal
completion heuristic for its better results). We report the re-
sults of POM-10% and POM-30%, which return larger goal
sets, including those within a 10% and 30% threshold of the
goals with the highest number of landmarks satisfied.

On both data sets our approach I''" has the highest agree-
ment ratio on average and is the best in almost all domains
and degrees of observability. An exception is the domain
IPC-GRID where RG has in general better results. Note also
that in hard domains like SOKOBAN our methods have much
higher agreements ratios than other approaches. For exam-
ple, on the optimal data set for this domain, I'*" has average
agreement ratio of 0.81 while the next best approach RG has
average agreement ratio of 0.76.

Table 3 also shows accuracy and spread for all methods. It
shows that many methods can achieve high accuracy while

yielding a high spread, thus degrading the agreement ratio.
For example, while POM-30% has a perfect accuracy on al-
most all domains on the sub-optimal data set, its spread is
the highest. The BLOCKS domain has on average 20.33 goal
candidates, and for POM-30% to achieve a competitive ac-
curacy on 10% of observability it returns almost all goals
with a spread of 17.33. By contrast, our I'* method increases
the accuracy without increasing the spread excessively by
measuring uncertainty. This happens especially in the low
observability scenarios it was designed to address. Take for
example the results of SOKOBAN on sub-optimal data set,
in which I'* shows a substantially higher accuracy without
a corresponding increase on the spread, unlike other meth-
ods. Our idea to measure the uncertainty is general since it
does not require linear programming heuristics and could be
applied to RG and POM to improve their results.

Noisy Observations Table 4 compares agreement ratio of
our I'*? and I'¢ methods with RG and POM on noisy data
sets. On the two last rows it shows the average accuracy
and spread over all domains. Again, our methods use the
three sources of constraints h5EQ, hEMC and AP0 Here most
methods degrade with noisy observations, reducing their
agreement ratio. I'¢, which addresses noisy observations ex-
plicitly, has on average the highest agreement ratio and ac-
curacy on both data sets. For example, on the SOKOBAN do-
main some noisy observations might be impossible to satisfy
because they lead to unsolvable states on all plans. In this
situation I'“ substantially improves the agreement ratio.

Discussion

While there are other methods for goal recognition in the
literature, many are not polynomial, requiring computation
of complete plans to choose goals for the solution. We ran
experiments with several of these methods, including those
of Sohrabi, Riabov, and Udrea (2016), and E-Martin, R.-
Moreno, and Smith (2015) to obtain qualitative measure-
ments. These methods did not complete the experiments for
most domains even when we ignored the memory limits and
relaxed the time limits to several hours. In the few domains
that did finish running, our methods had superior metrics.

In this paper we developed a novel class of goal recog-
nition methods based on linear programming models. These
methods include an uncertainty measurement that increases
the accuracy on low observability scenarios, as well as an ef-
ficient and automatic method to address noisy observations.
We adapt and provide a benchmark that enables the com-
parison of methods using the agreement ratio, which allows
us to evaluate our method in a number of different ways.
First, we evaluate how different sources of constraints im-
pact the quality of our solutions. Second, we assess how
our additional constraints and uncertainty measurement af-
fect performance under noise and low observability, respec-
tively. Third, we compare our methods to previous ones on
many metrics, showing that they are, in general superior.
Finally, our approach shows how combinatorial optimiza-
tion can improve the solution to tasks traditionally solved by
planning, and paves the way for research on new methods to
solve goal recognition tasks.
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