
Goal Recognition as Reinforcement Learning

Leonardo Amado1, Reuth Mirsky, 2, Felipe Meneguzzi 3,1

1 Pontifı́cia Universidade Católica do Rio Grande do Sul, Brazil
2 Bar Ilan University, Israel and The University of Texas at Austin, USA

3 University of Aberdeen, Scotland
leorosaamado@gmail.com, mirskyr@cs.biu.ac.il, felipe.meneguzzi@abdn.ac.uk

Abstract

Most approaches for goal recognition rely on specifications of
the possible dynamics of the actor in the environment when
pursuing a goal. These specifications suffer from two key
issues. First, encoding these dynamics requires careful de-
sign by a domain expert, which is often not robust to noise
at recognition time. Second, existing approaches often need
costly real-time computations to reason about the likelihood
of each potential goal. In this paper, we develop a frame-
work that combines model-free reinforcement learning and
goal recognition to alleviate the need for careful, manual do-
main design, and the need for costly online executions. This
framework consists of two main stages: offline learning of
policies or utility functions for each potential goal, and on-
line inference. We provide a first instance of this framework
using tabular Q-learning for the learning stage, as well as
three mechanisms for the inference stage. The resulting in-
stantiation achieves state-of-the-art performance against goal
recognizers on standard evaluation domains and superior per-
formance in noisy environments.

Introduction
Goal recognition (GR) is a key task in artificial intelligence,
where a recognizer infers the goal of an actor based on a se-
quence of observations. Consider a service robot that wishes
to assist a person in the kitchen by fetching appropriate uten-
sils without interrupting the task execution or demanding at-
tention for specifying instructions (Kautz and Allen 1986;
Monteiro et al. 2017; Granada et al. 2020; Bishop et al.
2020). A common approach to enable the robot to perceive
and infer the person’s goal in this situation consists of a
pipeline of activity recognition from raw images and transla-
tion into actions for a symbolic GR algorithm (Figure 1). Af-
ter processing the raw images into observations, a goal rec-
ognizer further processes a sequence of these observations
into a goal or a distribution of goals. Most GR approaches
rely on arduously informing the recognizer about the feasi-
bility and likelihood of the different actions that the actor
can execute. This process might include crafting elaborate
domain theories, multiple planner executions in real-time,
intricate domain optimizations, or any combination of these
tasks, leading to limitations:

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Cost of Domain Description: Crafted domain theories re-
quire deliberate design and accurate specification of domain
dynamics, which is usually a process done manually by an
expert. In highly complex environments, manual elicitation
of such a model might even be impossible.
Noise Susceptibility: As specifying accurate domain dy-
namics is costly, many specifications are incomplete and
cannot inform the recognizer about unlikely observations
or partial observation sequences. This property makes many
goal recognizers susceptible to noise.
Online Costs: Some recognizers require costly online com-
putations, such as multiple planner or parser executions.
These computations can hinder the recognizer’s real-time in-
ference ability, especially when observations are processed
incrementally and the goal of the actor needs to be re-
evaluated many times throughout the plan execution.

We address these limitations by replacing manually
crafted representations and online executions with model-
free Reinforcement Learning (RL) techniques. The resulting
framework performs efficient and noise-resistant GR with-
out the need to craft a domain model and without any plan-
ner or parser executions during recognition.

The three key contributions of this paper are: (1) Revis-
iting the GR problem definition to accommodate RL-based
domains and developing a new framework that relies on poli-
cies or utility functions derived from any model-free RL
technique. This framework consists of two main stages: Of-
fline learning for each potential goal, and an online infer-
ence stage that compares an observed trajectory to those
learned policies. (2) A first instance of the new framework
for tabular RL using an off-the-shelf implementation of a
Q-learning algorithm and three recognition measures: Accu-
mulated utility, a modified KL-divergence, and Divergence
Point. (3) Evaluation of the new framework on domains with
partial and noisy observability. Experiments show that even
with a very short learning process, we can still accurately
and robustly perform GR on challenging problems. We show
this framework’s ability to perform comparably to a state-of-
the-art goal recognizer on standard evaluation domains, and
have superior performance in noisy environments.

Background
We begin by defining a GR problem in a way that is consis-
tent with existing literature (Meneguzzi and Pereira 2021;

O =

<Fry Egg>

(:action make-breakfast
:parameters (?egg ?coffee ?bread)
:precondition (and (fried ?egg)
(toasted ?bread) (ready ?coffee))
:effect (breakfast ?egg ?bread ?coffee))

Domain Theory (Hand-coded)

“This person
 is making
breakfast”

Activity
Recognition

Goal Recognition
(Planner / Parser)

O =

<Fry Egg>

Activity
Recognition

Goal Recognition
(Measure-based)

“This person
 is making
breakfast”

Domain Theory (Learned)

Figure 1: A comparison of existing model-based approaches for goal recognition (left) and our proposed framework (right).
The key changes in our approach are presented in red.

Mirsky, Keren, and Geib 2021). Given a domain theory T,
a set of possible goals G, and a sequence of observations
O, a goal recognition problem consists of a goal g ∈ G
that explains O. The semantics of T and explains can vary
greatly between goal recognizers. For example, in Ramirez
and Geffner (2009), a domain theory is a planning domain
instantiated in a specific initial state s0 and goal g is ex-
plained by O if there is some optimal plan for g, generated
by a planner, that begins in s0 and is compatible with O.
They refine this interpretation to rank goals’ likelihood when
there is more than one goal with an optimal plan that is com-
patible with O (Ramı́rez and Geffner 2010). In this work we
propose multiple semantics for explains, but we first focus
on defining our RL-based domain theory. For that, we use
the definition of a Markov Decision Process (MDP), a pol-
icy, and a Q-function (Sutton and Barto 2018).
Definition 1 (MDP) A Markov Decision Process M , is a
4-tuple (S,A, p, r) such that S are the possible states in the
environment, A is the set of actions the actor can execute,
p(s′ | s, a) is a transition function that gives the probability
of transitioning from state s to state s′ after taking action a
and r(s, a, s′) defines a reward function.

A policy π(a | s) for an MDP is a function that defines
the probability of the agent taking action a ∈ A in state
s ∈ S. Some RL algorithms, such as Q-learning, compute
the policy of an agent using a Q-function Q(s, a), which
is an estimation of the expected return starting from s after
taking action a. In our new framework, a domain theory T
consists of the state and action spaces of an MDP and a set
of policies or Q-functions. Unlike planning-based GR where
the domain theory is decoupled from the problem instance
(the set of possible goals G), here T depends on the set of
goals. We define two types of domain theories:
Definition 2 (Utility-based Domain Theory) A utility-ba-
sed domain theory TQ(G) is a tuple (S,A,Q) such that Q
is a set of Q-functions {Qg}g∈G .
Definition 3 (Policy-based Domain Theory) A policy-ba-
sed domain theory Tπ(G) is a tuple (S,A,Π) such that Π is
a set of policies {πg}g∈G .

Essentially, we can view both domain theories as a set of
MDPs with the same transitions but different reward func-
tions for different goals. Our aim is to learn either a good

policy or a utility function that represents the expected be-
havior of actors under each of these MDPs. We use this for-
mulation to provide a new definition for a goal recognition
problem in which we replace the abstract notion of T and
combine the goal set G into these domain theories.

Definition 4 (Goal Recognition Problem) Given domain
theory TQ(G) or Tπ(G) and a sequence of observations O,
output a goal g ∈ G that explains O.

Note that every GR approach using a policy-based domain
theory Tπ(G), can also be given by a utility-based domain
theory TQ(G). We can make this change by generating for
each goal g a softmax policy πg based on Qg , as shown in
Equation 1. Consider a case where all values in a Q-function
are negative. This case would actually result in the policy πg

being more likely to take the worst action. Thus, if the utility
function has some negative values, we rescale the function
with the additive inverse of the largest negative value (some
number −C): Q′ = Q(s, a) +C. This modification ensures
that the resulting policy πg will prioritize high-value actions.
Thus, for brevity, from now on we refer to our framework as
one that relies on Q-functions, unless we explicitly wish to
discuss specific properties of a policy-based domain theory.

πg(a | s) = Qg(s, a)∑
a′∈A Qg(s, a′)

(1)

Using this new problem definition, we develop our frame-
work to solve these goal recognition problems, discuss how
to learn TQ(G) or Tπ(G), and how to decide which goal g
best explains observations O.

The Goal Recognition as Reinforcement
Learning Framework

Our new framework consists of two main stages: (1) learn-
ing a set of Q-functions; and (2) inferring the goal of an ac-
tor given a sequence of observations. Figure 2 illustrates this
process. First, the initial inputs are state and action spaces,
S and A, and a set of goals G. There is no restriction on the
properties of S and A; they can be either discrete or con-
tinuous, and no transition or reward function is required a-
priori. Our framework can employ any off-the-shelf RL al-
gorithm to learn a Q-function for each goal, {Qg}g∈G which

Stage 1 – Learn

Tabular Q-learning

Stage 2 – Infer

MaxUtil, KL, DP

O =

Figure 2: The GR as RL framework. The Goal Recognition
as Q-Learning (GRAQL) instance appears in italics.

together with the original S and A constructs the domain
theory TQ(G) for the recognition stage. Once the frame-
work receives an observation sequence, a measure between
an observation sequence and a Q-function computes a dis-
tance between the observations O and each Qg . Here we fo-
cus primarily on state-action observation sequences, where
O = ⟨s0, a0, s1, a1, . . .⟩, but the next Section contains ex-
amples of how to handle state-only (Os = ⟨s0, s1, . . .⟩) or
action-only (Oa = ⟨a0, a1, . . .⟩) observations. The inferred
goal g∗ is the one that minimizes the measured distance be-
tween its respective Q-function and the observations, as de-
fined in Equation 2.

g∗ = argmin
g∈G

DISTANCE(Qg,O) (2)

Stage 1 (Learning): The first part of the GR as RL frame-
work is learning a set of Q-functions (or policies) for each
goal following Algorithm 1. It defines a set of n RL prob-
lems where n is the number of goals in G: for each goal g,
we generate a reward function in which there is some posi-
tive gain when reaching the goal g (Line 3), and no reward
otherwise (Line 2). This basic setting allows us to leverage
additional reward shaping or other optimizations to improve
the learning of the Q-functions, just as in any other RL prob-
lem. However, in the most naive form of this problem, we
require no penalty for actions that fail to advance the agent
towards reaching the goal, nor any specific discount factor.
We explicitly chose this simple problem formulation to high-
light the efficacy of our approach, as its aim is to generate
informative-enough Q-functions, not to perfectly maximize
the reward of the RL agent. As we show in our empirical
evaluation, even though we do not train Q-functions until
convergence and provide poor solvers for reaching their re-
spective goals, they suffice to create an accurate and robust
domain theory for our goal recognizers.

This formulation enables us to use well-established RL
research to learn a set of Q-functions given the properties
of our environment: discrete or continuous, deterministic or
stochastic transitions, etc. Acquiring the domain theory then
becomes an RL problem with its respective challenges: se-
lecting the most appropriate algorithm for learning, tuning
its hyperparameters, etc.
Stage 2 (Inference): Once we have a set of Q-functions QG
and an observation sequence O, the next stage in the frame-
work is online GR: inferring the Q-function (i.e., goal) of
the actor that explains O. Traditional GR algorithms require
complex computations, such as planner or parser executions
to reason about the similarity of O to each goal. In this
work, we take on a measure-based approach instead (and

Algorithm 1: Learn a Q-function for each goal
Require: S,A : State and action spaces
Require: G: a set of candidate goals

1: for all g ∈ G do
2: ∀a∀s ̸= g, r(s, a)← 0 ▷ Create a reward function
3: ∀a, r(g, a)← C ▷ Reaching g yields some positive value
4: Qg ← LEARN(S,A, r)
5: return {Qg}g∈G

Algorithm 2: Infer most likely goal for the observations

Require: TQ(G): S,A, {Qg}g∈G : State and action spaces, and
Q-functions per goal

Require: O: an observation sequence ⟨s0, a0, s1, a1, . . .⟩
1: mg∗ ←∞ ▷ Init shortest distance
2: for all g ∈ G do ▷ Compute distances from O
3: mg ← DISTANCE(Qg,O) ▷ Use distance measure
4: if mg ≤ mg∗ then
5: g∗ ← g and mg∗ ← mg

6: return g∗

present potential measures). Algorithm 2 implements the
inference process using DISTANCE as a measure function,
which implements Equation 2: given O, find for each goal
g the distance between O and Qg (Line 3). The algorithm
then chooses the goal with the minimum distance value as
the most likely goal of the actor (Line 6). This formulation
of the GR task aligns well with Ramirez and Geffner (2010),
who introduce the notion of similarity between an observa-
tion sequence and optimal, goal- and observation-dependent
plans. As the algorithm computes the similarity between the
observation sequence and a Q-function that is defined over
all state-action pairs rather than a single trajectory, it inher-
ently reasons about noisy and missing observations, as our
empirical evaluation shows.

Goal Recognition as Q-Learning
In this section, we detail the components of the first in-
stance of our framework specifically for tabular Q-learning
approaches — Goal Recognition as Q-Learning (GRAQL).
We focus the first instance of this framework on tabular
domains to enable an evaluation against existing GR base-
lines. Planning-based GR algorithms use PDDL as their do-
main descriptions, which can be easily translated into tabu-
lar representations (Ramı́rez and Geffner 2009; Amado et al.
2018). Figure 2 illustrates the specific components that re-
quire implementation in italics. We start by explaining the
hyperparameters and discussing these choices in the learn-
ing stage. Then, we introduce three different measures for
an observation sequence and a Q-function.

Learning {Qg}g∈G Using Q-Learning
For the learning stage, we use an off-the-shelf Q-learning
algorithm. As learning the Q-functions for each goal are a
means to an end rather than our ultimate aim, we do not fo-
cus on techniques to optimize this stage, but rather employ a
single solution, showing that we can acquire an informative
domain theory with minimal effort. We set the reward for

reaching the goal to 100, and 0 otherwise, and the discount
factor to 0.9. As exploration is more important in this case
than maximizing the reward, the sampling strategy we use is
ϵ-greedy with linearly decaying values (ϵ = 1 . . . 0.01).

Instead of using random exploration to reach the goal,
shaping the initial policy can speed up the learning process:
for each goal g, an optimal planner generates a single trajec-
tory to the goal pg = {⟨s0, a0⟩, ⟨s1, a1⟩, . . .}. We can use
this trajectory to initialize Qg with positive values for state-
action pairs that are part of its goal’s optimal path pg .

Qg(s, a) =

{
1, if ⟨s, a⟩ ∈ pg
0, otherwise

(3)

This shaping initializes the Q-function to give high utility
to a single trajectory, which is similar to the original formu-
lation of planning-based GR, where a single optimal plan
constitutes the baseline for the actor’s presumed path to the
goal (Ramı́rez and Geffner 2009). In that sense, GRAQL
bridges a gap between planning-based GR and RL: in that
formulation, a planner outputs a single optimal plan for goal
g, which might not be the plan the actor chooses to follow.
Later work overcomes this problem by searching for a set
of diverse plans for each goal (Sohrabi, Riabov, and Udrea
2016). Instead of using search, GRAQL refines a single op-
timal plan into a policy that captures the cost of alternative
plans, even if these plans are not necessarily close to opti-
mal. We implemented our approach with and without this
shaping process. To ensure that it does not overfit or cre-
ate an unfair bias in the Q-functions towards the planning-
based observation sequence used in our evaluation, we ex-
plicitly chose problems with multiple optimal plans per goal
and ran different planners for shaping (LAMA (Richter and
Westphal 2010)) and for testing (Fast Downward (Helmert
2006)), so that pg is not the only possible optimal path. The
resulting Q-functions with and without shaping were not sig-
nificantly different, so our empirical results only show the
performance of the Q-functions without the shaping process.

Measures for Tabular Q-functions
For the inference stage, we use three different distance mea-
sures for a distance between a Q-function Qg and an action-
state observation sequence O, inspired by three common RL
measures: MaxUtil, KL-divergence, and Divergence Point.
We then extend MaxUtil’s definition to handle state-only ob-
servation sequences and action-only observation sequences.
MaxUtil is an accumulation of the utilities collected from
the observed trajectory.

MaxUtil(Qg,O) =
∑
i∈|O|

Qg(si, ai) (4)

KL-Divergence is a measure for the distance between two
distributions, so we construct two policies, πg and πO for Qg

and O respectively. The goal-dependent policy πg is defined
as a softmax stochastic policy (Equation 1). The observa-
tions policy πO is a pseudo-policy where πO(ai | si) = 1
for each ⟨si, ai⟩ ∈ O and provides a uniform distribution

for all actions taken in unobserved states.
KL(O, Qg) = DKL(πO || πg) =∑

i∈|O|

πO(ai | si) log
πO(ai | si)
πg(ai | si)

(5)

Divergence Point (DP) is a measure adapted from Macke
et al. (2021), where given a trajectory O and a policy π, it
is defined as the minimal point in time in which the action
taken by O has zero probability to be chosen by π. We im-
plement a softer version of the original measure, where the
probability threshold is a parameter δ instead of exactly 0.
The reason for this softened version of DP is that, for sim-
ilar enough goals, the probability of an action to be chosen
for both goals is unlikely to be exactly 0. Finally, as DP gets
higher values when O and π share more resemblance, we
take its additive inverse to get a distance compatible with
the minimization formulation of Algorithm 2. Here too, the
goal-dependent policy πg is defined as the softmax stochas-
tic policy from Equation 1:

DP (Qg,O) = −min{t | πg(at−1 | st−1) ≤ δ} (6)

MaxUtil for State-only O applies to states-only: Os =
⟨s0, s1, . . .⟩. In this case, similar to offline policy learning,
we optimistically take the action with the highest Q-value:

MaxUtil(Qg,O
s) =

∑
i∈|O|

max
a

Qg(si, a) (7)

MaxUtil for Action-only O applies to actions-only: Oa =
⟨a0, a1, . . .⟩. We optimistically take the state with the high-
est Q-value in this case as well. To do that, we first need
to find the set of all states for which the observation ai
is an optimal action according to Qg . This set can be for-
mally defined as Opt(ai | Qg) = {s ∈ S | Qg(s, ai) ≥
Qg(s, a)∀a ∈ A}. From this set, we choose the state with
the maximal utility (presumed to be the state in the optimal
path) and associate this utility with the observation.

MaxUtil(Qg,O
a) =

∑
i∈|O|

max
s∈Opt(ai|Qg)

Qg(s, ai) (8)

Experimental Evaluation
To be able to compare GRAQL and planning-based GR,
we use PDDLGym (Silver and Chitnis 2020) as our eval-
uation environment. PDDLGym is a python framework that
automatically constructs OpenAI Gym environments from
PDDL domains and problems. Thus, for each PDDL domain
used by state-of-the-art GR algorithms, we generate the par-
allel representation in Gym for GRAQL. We use three do-
mains from the PDDLGym library for their similarity with
commonly used GR evaluation domains: Blocks, Hanoi, and
SkGrid (The latter highly resembles common GR navigation
domains such as those used by Masters and Sardina (2019)).
For each domain, we generate 10 GR problems with 4 can-
didate goals in G. We manually choose ambiguous goals,
i.e., goals that are close to one another rather than in differ-
ent corners of a grid. Each problem has 7 variants, including
partial and noise observations. We have 5 variants with vary-
ing degrees of observability (10%, 30%, 50%, 70%, and full

observability), and 2 variants that include noise observations
with varying degrees of observability (50% and full observ-
ability). Thus, our test set includes 210 GR problems. These
GR problems can pose a real challenge to existing recogniz-
ers, especially when they are partially observable or noisy.
Note that, while PDDLGym uses a PDDL description to
drive the simulations, our approach only has access to the
same data available through a regular Gym simulator, i.e.,
discrete observations, action names, and reward function.

Next, we discuss the hyperparameters used in this eval-
uation and explain our three sets of performance tests, us-
ing different types of O as input: state-action pairs where
O is fully observable; state-action pairs with missing ob-
servations, noisy observations, or both; and state-only or
action-only trajectories with missing observations. We use
standard machine learning metrics in our evaluation: accu-
racy, precision, recall, and F-score. We note that the accu-
racy metric reported here is different from the accuracy met-
ric in Ramı́rez and Geffner (2010), which refers to the ratio
of problems where the recognizer ranks the true goal (i.e.,
True Positives) with the highest likelihood, and the number
of problems tested. This measure differs from standard ML
accuracy, which also takes into consideration whether the
algorithm successfully ranks incorrect goals lower than the
correct one (i.e., True Positives + True Negatives). In our
experiments, we report accuracy using the latter definition.

Hyperparameters and Algorithmic Choices
For the learning stage of our experiments, we use an off-
the-shelf model-free Q-learning algorithm (Sutton 1988).
For each goal, we run the learner for a fixed number of
episodes, whether it reaches convergence or not. We evalu-
ate greedy policy executions after training the Q-functions
for 500, 10k and 30k episodes. The difference in the re-
sulting plan lengths was around 5%, and went both ways—
sometimes the policy learned after 500 episodes was not in-
formed enough and drifted away from the goal during ex-
ecution, and sometimes policies learned after 30k episodes
overfitted a specific solution. The key differentiator is often
whether the learner reaches the goal once during training,
as after that the learned Q-function can generate an optimal
plan for that goal. Since the performance of these training
regimes does not vary much, we report our empirical results
with a consistent value of 500 training episodes.

For the inference stage, we compare our framework with
each of our three proposed measures, denoted MaxUtil, KL,
and DP, as well as the probabilistic planning-based recog-
nizer by Ramirez and Geffner (2010), denoted R&G. For
the DP measure, we use a threshold probability for diver-
gence of δ = 0.1. As we wish to be able to compare GRAQL
against a planning-based algorithm, we focus our evaluation
on discrete state and action spaces, but we conjecture that the
framework can directly handle continuous spaces by using
the same measures, only with a different learning algorithm.

Testing under Full Observability
First, we show the performance of MaxUtil, KL, DP, and
R&G on fully observable, optimal state-action trajecto-
ries. The average length of these trajectories is 8 (min =

Figure 3: Comparison of R&G, MaxUtil, KL, DP by their
accuracy, precision, recall, and F-score for full observability.

5,max = 15) steps for Blocks, 10.4 (min = 5,max = 15)
for Hanoi, and 12.4 (min = 6,max = 24) for SkGrid. Fig-
ure 3 summarizes the performance of each approach over ten
instances per setup. With full observability, almost all results
are above 80%, and KL-divergence achieves perfect perfor-
mance, consistently predicting the actor’s goal correctly. No-
tably, DP performs worse than the other GRAQL measures,
especially in the SkGrid environment. As DP requires an ac-
tion to be highly unlikely for some goal to rank it as incor-
rect, the high variability of SkGrid presents a real challenge
to it. In this domain, the same goal might have a number
of equally optimal trajectories requiring diagonal movement
due to the nature of square-grid navigation environments.
All GRAQL approaches perform similarly or better than
R&G, except for DP on SkGrid, where the largest difference
was in precision (DP: 0.53, R&G: 0.69). On the other hand,
the performance of R&G in the Hanoi environment is infe-
rior to all GRAQL methods in terms of accuracy, (DP: 0.95,
R&G: 0.78), precision (DP:0.83, R&G: 0.48), and F-score
(DP:0.91, R&G:0.65). Hanoi has many actions that appear
in plans for different goals, causing high ambiguity in recog-
nition time, which makes it especially challenging to R&G
to distinguish between those goals. These results show that
GRAQL is able to achieve comparable results to the state-
of-the-art with fully observable trajectories.

Testing under Partial Observability and Noise
We evaluate our approaches under partial observability with
varying degrees of observability (10%, 30%, 50%, 70%, and
full observability). We use the same trajectories in all exper-
iments, removing steps randomly to achieve a specific ob-
servability ratio. Table 1 shows the average performance of
each approach over ten instances per setup. It is clear that
as observability decreases, so does the performance of all
approaches. However, partial observability seems to highly
affect the performance of R&G, with values that decrease to
about a half in the 10% observability level (e.g., accuracy of
0.96 drops to 0.44 in Blocks). In general, KL and MaxUtil

Accuracy Precision Recall F-Score
O Domain MxU KL DP RG MxU KL DP RG MxU KL DP RG MxU KL DP RG

10
%

Blocks 0.93 0.90 0.93 0.44 0.82 0.80 0.77 0.25 0.90 0.80 1.00 0.90 0.86 0.80 0.87 0.39
Hanoi 0.93 0.95 0.90 0.50 0.77 0.90 0.71 0.29 1.00 0.90 1.00 1.00 0.87 0.90 0.83 0.44
SkGrid 0.80 0.90 0.55 0.72 0.60 0.80 0.36 0.42 0.60 0.80 1.00 1.00 0.60 0.80 0.53 0.59

30
%

Blocks 1.00 0.95 0.97 0.74 1.00 0.90 0.91 0.42 1.00 0.90 1.00 0.80 1.00 0.90 0.95 0.55
Hanoi 0.95 0.95 0.93 0.68 0.83 0.90 0.77 0.38 1.00 0.90 1.00 1.00 0.91 0.90 0.87 0.55
SkGrid 0.90 0.95 0.70 0.88 0.80 0.90 0.45 0.63 0.80 0.90 1.00 1.00 0.80 0.90 0.62 0.77

50
%

Blocks 1.00 1.00 0.97 0.80 1.00 1.00 0.91 0.50 1.00 1.00 1.00 0.90 1.00 1.00 0.95 0.64
Hanoi 0.95 0.95 0.93 0.72 0.83 0.90 0.77 0.42 1.00 0.90 1.00 1.00 0.91 0.90 0.87 0.59
SkGrid 0.80 0.90 0.72 0.88 0.60 0.80 0.48 0.63 0.60 0.80 1.00 1.00 0.60 0.80 0.65 0.77

70
%

Blocks 1.00 1.00 0.97 0.94 1.00 1.00 0.91 0.77 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.87
Hanoi 0.95 0.90 0.93 0.72 0.83 0.80 0.77 0.42 1.00 0.80 1.00 1.00 0.91 0.80 0.87 0.59
SkGrid 0.85 0.95 0.72 0.92 0.70 0.90 0.47 0.71 0.70 0.90 0.90 1.00 0.70 0.90 0.62 0.83

10
0%

Blocks 1.00 1.00 0.97 0.96 1.00 1.00 0.91 0.85 1.00 1.00 1.00 1.00 1.00 1.00 0.95 0.92
Hanoi 0.97 1.00 0.95 0.78 0.91 1.00 0.83 0.48 1.00 1.00 1.00 1.00 0.95 1.00 0.91 0.65
SkGrid 0.90 1.00 0.78 0.90 0.80 1.00 0.53 0.69 0.80 1.00 0.90 0.90 0.80 1.00 0.67 0.78

A
vg

Blocks 0.98 0.97 0.96 0.78 0.96 0.94 0.88 0.56 0.98 0.94 1.00 0.92 0.97 0.94 0.93 0.67
Hanoi 0.95 0.95 0.93 0.68 0.83 0.90 0.77 0.40 1.00 0.90 1.00 1.00 0.91 0.90 0.87 0.56
SkGrid 0.85 0.94 0.69 0.86 0.70 0.88 0.45 0.62 0.70 0.88 0.96 0.98 0.70 0.88 0.61 0.75

Table 1: Impact of partial observability: comparing MxU, KL, DP, RG with varying observability levels of O.

perform better than DP and R&G, except for the recall met-
ric, where these latter ones are the superior approaches. The
reason for this loss of recall is that DP and R&G are more
likely to have ties between potential goals, so when these
approaches cannot distinguish between them using O, they
return multiple goals, trading off recall with precision.

Finally, we evaluate our approaches with the addition of
noise in the observations. We add noise to the observations
by first generating an optimal plan using the Fast Downward
planner. We then randomly choose a step-index and inject
two consecutive non-optimal actions, which induces states
along this sub-optimal path as a state-action pair, from that
step, thus forcibly deviating the observed plan from the opti-
mal. Finally, to get back to the goal with no additional noise,
we rerun the planner to get an optimal plan to the goal from
the state reached after executing these two noisy actions. Us-
ing this process to add noise, we have four additional noisy
actions per trajectory for all of our environments: two that
make the agent drift away from its goal, and two additional
actions to backtrack. We chose this form of noise as these ac-
tions are still valid, even if not optimal. An alternative noise
could have been an injection of invalid actions, or any ran-
dom state-action pair that is not part of the generated tra-
jectory. However, R&G and most other planning-based ap-
proaches cannot trivially reason about this type of noise, as
they will simply label that noisy plan as an impossible plan
for the goal. We tested the noisy trajectories with full ob-
servability and with partial observability set to 0.5. Table 2
shows these results. Unlike the noise-free case, in these re-
sults MaxUtil outperforms KL in most setups in terms of ac-
curacy, precision, and F-score. When comparing the overall
performance of each approach with and without noise, KL
and R&G are more noise-sensitive than MaxUtil and DP.

State-Only and Action-Only Observations
R&G, for example, uses only actions in its inference pro-
cess, but no states (or vice versa), even if they are avail-
able. Our next set of experiments shows the performance

of GRAQL when given such observations, and compares it
with R&G. We use the same observation sequences as in
our partial observability experiments, but we provide our
MaxUtil-based approaches with either the full sequences,
the states Os = ⟨s0, s1, . . .⟩ (MaxUtil for state-only, in
Equation 7) or the actions Oa = ⟨a0, a1, . . .⟩ (MaxUtil for
action-only, in Equation 8). Figure 4 summarizes these re-
sults, where each bar represents the average performance
for all observation levels (from 10% to full). All versions of
MaxUtil perform well in Blocks and Hanoi and outperform
R&G in all metrics but recall. The main issue is the Action-
only version in the SkGrid domain (e.g. accuracy of 0.54
and precision of 0.23), which underperforms significantly
against other versions. Equation 8 estimates states using the
most optimistic of all of the states for which the observed
action is an optimal action. Given SkGrid’s structure, every
action is an optimal action for about half of the states, thus
taking this optimistic approach is unlikely to be accurate.

Related Work
A large body of work involves learning for planning do-
mains (Zimmerman and Kambhampati 2003; Arora et al.
2018). While some approaches learn action models from
data, they do not link these action models to policies for
reaching specific goals (Amir and Chang 2008; Amado et al.
2019; Asai and Muise 2020; Juba, Le, and Stern 2021).

For example, Zeng et al. (2018) use inverse reinforcement
learning (IRL) to learn the rewards of the actor and then use
an MDP-based GR. However, for GR, the motivation (re-
wards) that lead the actor to choose one action over another
is redundant. By directly using RL, we skip this stage and
learn utility functions or policies based on past actor experi-
ences towards achieving specific goals. Amado et al. (2018)
learn domain theories for GR using autoencoders. However,
they require observation of all possible transitions of a do-
main in order to infer its encoding, whereas we need only a
small sample of transitions to learn a utility function infor-
mative enough to carry out GR effectively.

Accuracy Precision Recall F-Score
O Domain MU KL DP RG MU KL DP RG MU KL DP RG MU KL DP RG

0.
5

Blocks 0.95 0.62 0.93 0.84 0.95 0.33 0.77 0.56 0.90 0.50 1.00 1.00 0.90 0.40 0.87 0.71
Hanoi 0.97 0.90 0.93 0.68 0.91 0.80 0.77 0.38 1.00 0.80 1.00 1.00 0.95 0.80 0.87 0.56
SkGrid 0.75 0.75 0.57 0.88 0.50 0.50 0.35 0.64 0.50 0.50 0.80 0.90 0.50 0.50 0.48 0.75

1.
0

Blocks 1.00 1.00 0.95 0.96 1.00 1.00 0.83 0.83 1.00 1.00 1.00 1.00 1.00 1.00 0.91 0.91
Hanoi 1.00 0.95 0.90 0.78 1.00 0.90 0.71 0.48 1.00 0.90 1.00 1.00 1.00 0.90 0.83 0.65
SkGrid 0.85 0.95 0.65 0.90 0.70 0.90 0.40 0.69 0.70 0.90 0.80 0.90 0.70 0.90 0.53 0.78

A
vg

Blocks 0.97 0.81 0.94 0.90 0.97 0.60 0.80 0.70 0.95 0.75 1.00 1.00 0.95 0.67 0.89 0.81
Hanoi 0.99 0.93 0.91 0.73 0.95 0.85 0.74 0.43 1.00 0.85 1.00 1.00 0.98 0.85 0.85 0.61
SkGrid 0.80 0.85 0.61 0.89 0.60 0.70 0.37 0.67 0.60 0.70 0.80 0.90 0.60 0.70 0.51 0.77

Table 2: Impact of noise: comparing MU, KL, DP, RG with varying observability and with 4 noisy observations in O.

Unlike approaches that learn models for planning, we do
not reason about the plan of the acting agent, but rather about
the plan of another agent. In this case, we cannot control the
actor’s choices, and we might not know or care how the ac-
tor represents the environment and the task. Nevertheless,
we need to be able to find a good-enough explanation for its
actions to be able to assist it (as in the kitchen example from
Figure 1). This setup is not the one used in existing work
on learning other agent’s behavior, e.g., the LOPE system
(Garcı́a-Martı́nez and Borrajo 2000), (Safaei and Ghassem-
Sani 2007), and IRALe (Rodrigues et al. 2011), as these sys-
tems choose the execution sequences it learns from. We can,
however, use observed actions of other agents to improve our
learning process. Gil (1994) does so by investigating cases
where executing new experiments can refine operators.

Other metric-based GR use distance metrics between an
optimal plan and the observation sequence, which can some-
what alleviate the need in online planner executions (Mas-
ters and Sardina 2017; Mirsky et al. 2019). This work differs
from this problem statement, as it relies on the distance be-
tween a Q-function and an observation sequence rather than
an optimal plan and an observation sequence.

Figure 4: Performance comparison of R&G and MaxUtil
with Os (state-only), Oa (action-only), and O (state-action).

Discussion and Conclusion

In this paper, we introduce a new framework for Goal
Recognition (GR) as model-free reinforcement learning,
which obviates the need for an explicit model of the environ-
ment and candidate goals in the GR process. Our framework
uses learned Q-values implicitly representing the agents un-
der observation in lieu of explicit goals from traditional GR.
This approach allows us to solve GR problems by mini-
mizing the distance between an observation sequence and
Q-values representing goal hypotheses or policies extracted
from them. The GRAQL instantiation includes several pos-
sible distance measures we can derive from the Q-tables,
based on KL-divergence, MaxUtil, and Convergence point.
Our distance measures are competitive with the reference
approach from the literature (Ramı́rez and Geffner 2009) in
all experimental environments, and some distance measures
outperform the reference approach in most domains, espe-
cially when the observation sequence is noisy or partial.

Besides recognition performance, GR needs to be com-
putationally efficient so that an observer can quickly make
decisions in response to the recognized goal in real-time. In
this respect, our approaches differ substantially from recent
planning-based GR, as it shifts almost all computation load
to a pre-processing stage, instead of costly online planner
runs. While computing the policies for each candidate goal
is even more costly than running a planner for each goal,
this computation can be done once prior to the recognition
stage, and then the computation of processing observations
is trivial and proportional to the number of observations. Fi-
nally, learning the policies saves the time of a domain ex-
pert who needs to carefully design the planning dynamics—
a cost which is even harder to quantify.

In closing, our work paves the way for a new class of GR
approaches based on model-free reinforcement learning. Fu-
ture work will focus on new, more robust distance measures
and mechanisms to handle noise explicitly, as well as exper-
imenting with models learned using function approximation
(e.g., neural networks). While our work is theoretically com-
patible with non-tabular representations of the value func-
tions, we chose to focus our experiments on domains that
are translatable to PDDL so our approach can be compared
to planning-based GR. GRAQL does not depend on PDDL,
as we can apply the learning stage on any domain where we
can compute a policy, and then infer the correct goal using
the set of observations and learned policies.

References
Amado, L.; Pereira, R. F.; Aires, J.; Magnaguagno, M.;
Granada, R.; and Meneguzzi, F. 2018. Goal recognition in
latent space. In 2018 International Joint Conference on Neu-
ral Networks (IJCNN), 1–8. IEEE.
Amado, L. R.; Aires, J. P.; Fraga Pereira, R.; Magnaguagno,
M. C.; Granada, R.; Licks, G. P.; and Meneguzzi, F. R.
2019. Latrec: Recognizing goals in latent space. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS).
Amir, E.; and Chang, A. 2008. Learning partially observ-
able deterministic action models. Journal of Artificial Intel-
ligence Research, 33: 349–402.
Arora, A.; Fiorino, H.; Pellier, D.; Etivier, M.; and Pesty, S.
2018. A review of learning planning action models. Knowl-
edge Engineering Review, 33.
Asai, M.; and Muise, C. 2020. Learning Neural-Symbolic
Descriptive Planning Models via Cube-Space Priors: The
Voyage Home (to STRIPS). In Bessiere, C., ed., Interna-
tional Joint Conference on Artificial Intelligence (IJCAI),
2676–2682.
Bishop, J.; Burgess, J.; Ramos, C.; Driggs, J. B.; Williams,
T.; Tossell, C. C.; Phillips, E.; Shaw, T. H.; and de Visser,
E. J. 2020. CHAOPT: a testbed for evaluating human-
autonomy team collaboration using the video game over-
cooked! 2. In 2020 Systems and Information Engineering
Design Symposium (SIEDS), 1–6. IEEE.
Garcı́a-Martı́nez, R.; and Borrajo, D. 2000. An integrated
approach of learning, planning, and execution. Journal of
Intelligent and Robotic Systems, 29(1): 47–78.
Gil, Y. 1994. Learning by experimentation: Incremental
refinement of incomplete planning domains. In Machine
Learning Proceedings 1994, 87–95. Elsevier.
Granada, R.; Monteiro, J.; Gavenski, N.; and Meneguzzi, F.
2020. Object-Based Goal Recognition Using Real-World
Data. In Mexican International Conference on Artificial In-
telligence, 325–337. Springer.
Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research, 26: 191–246.
Juba, B.; Le, H. S.; and Stern, R. 2021. Safe Learning of
Lifted Action Models. In International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR).
Kautz, H. A.; and Allen, J. F. 1986. Generalized plan recog-
nition. In Conference on Artificial Intelligence (AAAI), vol-
ume 86, 5.
Macke, W.; Mirsky, R.; and Stone, P. 2021. Expected Value
of Communication for Planning in Ad Hoc Teamwork. In
Conference on Artificial Intelligence (AAAI).
Masters, P.; and Sardina, S. 2017. Cost-based goal recog-
nition for path-planning. In Conference on Autonomous
Agents and MultiAgent Systems.
Masters, P.; and Sardina, S. 2019. Cost-based goal recog-
nition in navigational domains. Journal of Artificial Intelli-
gence Research, 64: 197–242.

Meneguzzi, F.; and Pereira, R. F. 2021. A Survey on Goal
Recognition as Planning. In International Joint Conference
on Artificial Intelligence (IJCAI), 4524–4532.
Mirsky, R.; Keren, S.; and Geib, C. 2021. Introduction to
Symbolic Plan and Goal Recognition. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 16(1): 1–190.
Mirsky, R.; Majadly, A.; Gal, K.; Puzis, R.; Felner, A.; et al.
2019. New goal recognition algorithms using attack graphs.
In International Symposium on Cyber Security Cryptogra-
phy and Machine Learning, 260–278. Springer.
Monteiro, J.; Granada, R.; Barros, R.; and Meneguzzi, F.
2017. Deep Neural Networks for Kitchen Activity Recog-
nition. In 2017 International Joint Conference on Neural
Networks (IJCNN). IEEE.
Ramı́rez, M.; and Geffner, H. 2009. Plan recognition as
planning. In Twenty-First International Joint Conference on
Artificial Intelligence (IJCAI).
Ramı́rez, M.; and Geffner, H. 2010. Probabilistic plan recog-
nition using off-the-shelf classical planners. In AAAI Con-
ference on Artificial Intelligence.
Richter, S.; and Westphal, M. 2010. The LAMA planner:
Guiding cost-based anytime planning with landmarks. Jour-
nal of Artificial Intelligence Research, 39: 127–177.
Rodrigues, C.; Gérard, P.; Rouveirol, C.; and Soldano, H.
2011. Active learning of relational action models. In Inter-
national Conference on Inductive Logic Programming, 302–
316. Springer.
Safaei, J.; and Ghassem-Sani, G. 2007. Incremental learn-
ing of planning operators in stochastic domains. In Interna-
tional Conference on Current Trends in Theory and Practice
of Computer Science, 644–655. Springer.
Silver, T.; and Chitnis, R. 2020. PDDLGym: Gym Environ-
ments from PDDL Problems. CoRR, abs/2002.06432.
Sohrabi, S.; Riabov, A. V.; and Udrea, O. 2016. Plan Recog-
nition as Planning Revisited. In International Joint Confer-
ence on Artificial Intelligence (IJCAI), 3258–3264.
Sutton, R. S. 1988. Learning to Predict by the Methods of
Temporal Differences. Machine Learning, 3: 9–44.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Zeng, Y.; Xu, K.; Yin, Q.; Qin, L.; Zha, Y.; and Yeoh, W.
2018. Inverse Reinforcement Learning Based Human Be-
havior Modeling for Goal Recognition in Dynamic Local
Network Interdiction. In AAAI Workshops, 646–653.
Zimmerman, T.; and Kambhampati, S. 2003. Learning-
assisted automated planning: Looking back, taking stock,
going forward. AI Magazine, 24(2): 73–73.

