## Generalised BDI Planning

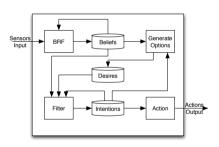
## Felipe Meneguzzi‡ Ramon Fraga Pereira† Nir Oren‡

†The University of Manchester, England, UK ramon.fragapereira@manchester.ac.uk ‡University of Aberdeen, Scotland, UK {felipe.meneguzzi,n.oren}@abdn.ac.uk

Detroit, May 2025






- Motivation
- 2 Planning and Generalised Planning
- 3 BDI Agents as Generalised Planners
- 4 Results
  - Theoretical Properties
  - Experimental Results
- 5 Discussion and Conclusions

2/20

# **BDI** Agents and Planning

#### What?

- Agent architecture based on three "mental" structures:
  - Beliefs, Desires, and Intentions
- Based on a philosophical model for practical reasoning
- Provides a blueprint for agent reasoning, suitable for:
  - Agent implementations
  - Reasoning about other agents
- Key process is means ends reasoning:
  - Typically using a plan library
  - More recent work focuses on automated planning



# Planning in BDI

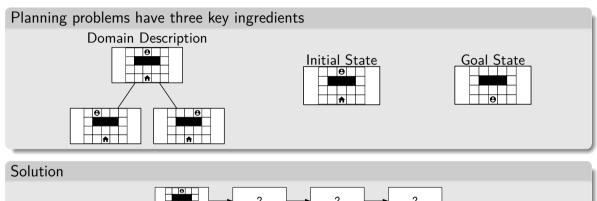
Why?

- Focus of much research in AAMAS for the past three decades, primarily, on:
  - Agent Oriented Software Engineering
  - Agent reasoning cycle
  - Multiagent systems (populated by BDI agents)
- Relatively fewer efforts on the interface of the agent model and compute-intensive means-ends reasoning

4 / 20

- 1 Motivation
- 2 Planning and Generalised Planning
- 3 BDI Agents as Generalised Planners
- 4 Results
  - Theoretical Properties
  - Experimental Results
- 5 Discussion and Conclusions

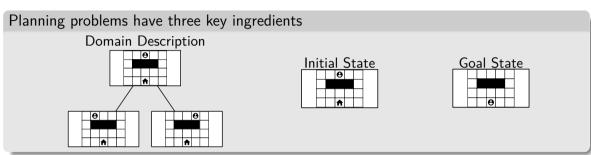
5/20

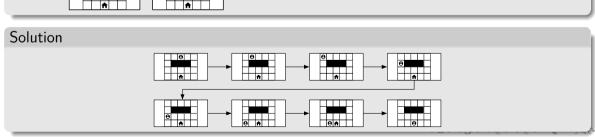

**Automated Planning** 


## Definition (Planning Task)

A planning task  $\Pi = \langle \Xi, s_0, G \rangle$  is a tuple composed of a domain definition  $\Xi$ , an initial state  $s_0$ , and a goal state specification G. A solution to a planning task is a plan or policy  $\pi$  that reaches a goal state G starting from the initial state  $s_0$  by following the transitions defined in the domain definition  $\Xi$ .

6 / 20


**Automated Planning** 






Pereira and Meneguzzi

**Automated Planning** 





Generalised Planning

### Definition (Generalised Planning Problem)

A generalised planning problem  $\mathcal{GP} = \langle \mathcal{P}_0, \mathcal{P}_1, ..., \mathcal{P}_N \rangle$  is a set of planning problems ( $N \geq 2$ ), where each problem  $\mathcal{P}_i = \langle s_0, s_g \rangle$  that share some common structure (typically a planning domain  $\Xi$ ). A solution to a generalised planning problem is a generalised plan  $\Pi$ , which when followed will solve any problem in  $\mathcal{GP}$ .

7 / 20

Generalised Planning

# Generalised Planning problems have three key ingredients Domain Description Initial States Goal States

### Solution

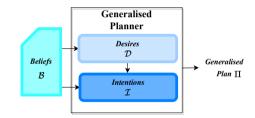


Generalised Planning

# Generalised Planning problems have three key ingredients Domain Description Initial States Goal States






- 1 Motivation
- 2 Planning and Generalised Planning
- 3 BDI Agents as Generalised Planners
- 4 Results
  - Theoretical Properties
  - Experimental Results
- 5 Discussion and Conclusions

8/20

## Generalised Planning in BDI

Overview

- We develop a BDI reasoning cycle
  - Only declarative goals (no plan library)
  - Generalised planner as the means-ends reasoning process
- Key processes:
  - Intention selection
  - Desire filtering



9/20

<sup>&</sup>lt;sup>0</sup>Felipe Meneguzzi and Lavindra de Silva. "Planning in BDI agents: a survey of the integration of planning algorithms and agent reasoning". In: *KER* 30.1 (2015), pp. 1–44.

```
Require: Filters DesireFilter, IntentionFilter; Selectors IntentionSelection;
                Interfaces Sense, Act, Belief Update, Next
 1: procedure ReasoningCycle(\mathcal{B}, \mathcal{D}, \mathcal{I}, \Xi)
 2:
            loop
                  \mathcal{B} \leftarrow \text{BeliefUpdate}(\mathcal{B}, \text{sense}())
 3:
 4.
                  if \mathcal{I} is not empty then
                                                                                                                > Agent has unachieved intentions
                       \langle \langle \varphi, D \rangle, \Pi_i \rangle \leftarrow \text{IntentionSelection}(\mathcal{B}, \mathcal{I})
 5:
                       result \leftarrow ACT(NEXT(\mathcal{B}, \Pi_i))
 6.
                       if \Pi_i is empty and \mathcal{B} \models D and result \neq \bot then
                                                                                                                                       > Intention achieved
 8:
                             \mathcal{I} \leftarrow \mathcal{I} - \langle \langle \varphi, D \rangle, \Pi_i \rangle
                       else if result = \bot and \neg Retrail (\mathcal{B}, \langle \langle \varphi, D \rangle, \Pi_i \rangle) then
                                                                                                                                           ▷ Intention Failed
 9:
                            \mathcal{I} \leftarrow \mathcal{I} - \langle \langle \varphi, D \rangle, \Pi_i \rangle
10:
                  else
                                                                                                                             ▷ Generate new intentions
11:
12:
                       \mathcal{D}_e \leftarrow \text{DesireFilter}(\mathcal{B}, \mathcal{D}, \mathcal{I}, \Xi)
                                                                                                                                   \mathcal{I} \leftarrow \text{IntentionFilter}(\mathcal{B}, \mathcal{D}, \mathcal{I})
13:
```

4 A > 4 B > 4 B >

- 1: function DesireFilter( $\mathcal{B}, \mathcal{D}, \mathcal{I}, \Xi$ )
- $\mathcal{D}_r \leftarrow \{\langle \varphi, D \rangle \mid \langle \varphi, D \rangle \in \mathcal{D}, \mathcal{B} \models \varphi \land \neg D\}$
- $\mathcal{D}_e \leftarrow \{ \langle \varphi, D \rangle \mid \langle \varphi, D \rangle \in \mathcal{D}_r, \exists \pi_D \text{ s.t. } \gamma(\Xi, \mathcal{B}, \pi_D) \models D \}$
- return  $\mathcal{D}_{\mathbf{e}}$

Relevant Desires ▷ Eligible desires

### Enforces desires an agent can adopt:

- Desires are relevant if they are not yet true, and their pre-condition  $\varphi$  holds in  $\mathcal B$
- Desires become eligible if there is a plan that will lead to them holding

11 / 20

```
1: function IntentionFilter(\mathcal{B}, \mathcal{D}_{e}, \mathcal{I})
2: Find \{\langle \varphi_{1}, D_{1} \rangle \dots \langle \varphi_{n}, D_{n} \rangle\} \in \mathbb{P}^{+}(\mathcal{D}_{e})
s.t. \exists \Pi, \Pi = \mathcal{G}PLANNER(\{\langle \Xi, \mathcal{B}, D_{1} \rangle \dots \langle \Xi, \mathcal{B}, D_{n} \rangle\})
3: \mathcal{I} \leftarrow \{\langle \langle \varphi_{1}, D_{1} \rangle, \Pi \rangle, \dots \langle \langle \varphi_{n}, D_{n} \rangle, \Pi \rangle\}
return \mathcal{I}
```

### Enforces sets of intentions an agent can adopt:

- In theory: any subset of eligible desire for which there exists a generalised plan
- In practice, further filtering of mutually consistent desires, then generalised planning

12/20

#### **Executing Intentions**

```
1: function IntentionSelection(\mathcal{B}, \mathcal{D}, \mathcal{I})
```

- 2: | Filter out intentions whose desires are true
- 3:  $\mathcal{I} \leftarrow \{I \mid I = \langle \langle \varphi, D \rangle, \Pi_i \rangle \in \mathcal{I}, \mathcal{B} \models \varphi \land \neg D\}$
- 4:  $\triangleright$  Check if a linearisation of  $\Pi_i$  plan is executable
- 5:  $\mathcal{I}' \leftarrow \{I \mid I = \langle \langle \varphi, D \rangle, \Pi_i \rangle \in \mathcal{I}, \mathcal{B} \models pre(\text{Next}(\mathcal{B}, \Pi_i))\}$
- 6: **return** Pick any intention from  $\mathcal{I}'$

Selects a single intention to advance (while dropping irrelevant intentions):

- If the next step is not executable, we defer that intention for a bit
- Otherwise, advance one step

13 / 20

## All together now

A Generalised Planning Reasoning Cycle

```
Require: Filters DesireFilter, IntentionFilter;
                  Selectors IntentionSelection:
                  Interfaces Sense, Act, Belief Update, Next
 1: procedure ReasoningCycle(\mathcal{B}, \mathcal{D}, \mathcal{I}, \Xi)
 2:
             loop
                    \mathcal{B} \leftarrow \text{BeliefUpdate}(\mathcal{B}, \text{sense}(\ ))
                   if \mathcal{I} is not empty then \triangleright Agent has unachieved intentions
                          \langle \langle \varphi, D \rangle, \Pi_i \rangle \leftarrow \text{IntentionSelection}(\mathcal{B}, \mathcal{I})
                          result \leftarrow \text{ACT}(\text{NEXT}(\mathcal{B}, \Pi_i))
                          if \Pi_i is empty and \mathcal{B} \models D and result \neq \bot then
                                \mathcal{I} \leftarrow \mathcal{I} - \langle \langle \varphi, D \rangle, \Pi_i \rangle
                          else if result = \bot and \neg Retry(\mathcal{B}, \langle \langle \varphi, D \rangle, \Pi_i \rangle) then
                                \mathcal{I} \leftarrow \mathcal{I} - \langle \langle \varphi, D \rangle, \Pi_i \rangle
10.
                                                                               ▷ Generate new intentions
11.
                    else
                          \mathcal{D}_{\varepsilon} \leftarrow \text{DesireFilter}(\mathcal{B}, \mathcal{D}, \mathcal{I}, \Xi)
12.
13:
                          \mathcal{I} \leftarrow \text{IntentionFilter}(\mathcal{B}, \mathcal{D}, \mathcal{I})
```

 Agent advances one intention per cycle

Tracks success of

- intention/desire

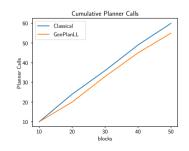
  Failure can lead to retries
- Failure can lead to retries
   Both cases can lead to
- Desire selection when no intention commitments

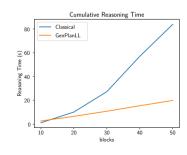
Detroit, May 2025

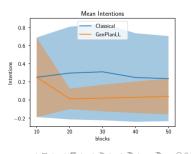
abandonment

- 1 Motivation
- 2 Planning and Generalised Planning
- 3 BDI Agents as Generalised Planners
- 4 Results
  - Theoretical Properties
  - Experimental Results
- 5 Discussion and Conclusions

15 / 20


## Theoretical Properties of Intentions


- ① Intentions normally pose problems for the agent; the agent needs to determine a way to achieve them.
- Intentions provide a "screen of admissibility" for adopting other intentions.
- 3 Agents "track" the success of their attempts to achieve their intentions.
- 4 The agent believes  $p_i$  is possible.
- **5** The agent does not believe it will not bring about  $p_i$ .
- **©** Under certain conditions, the agent believes it will bring about  $p_i$ .
- Agents need not intend all the expected side-effects of their intentions.


## Implementation and Experiments

We implemented the architecture in Python backed by the  $\mathrm{BFGP}++$  planner

- Two scenarios: Production Cell and Packaging
- Both showcase advantages of a generalised planning approach to means-ends reasoning:
  - Fewer intention failures
  - Fewer calls to the planner (though each call is expensive)







- 1 Motivation
- 2 Planning and Generalised Planning
- 3 BDI Agents as Generalised Planners
- 4 Results
  - Theoretical Properties
  - Experimental Results
- 5 Discussion and Conclusions



## Discussion, Challenges and Opportunities

Blue Sky, grounded

### This paper instantiates our Blue Sky paper from AAMAS 2024:

- First concrete BDI architecture driven by generalised planning
- Automatically enforces BDI-theoretical properties

### Moving forward:

- The first of an entirely new family of BDI architectures
  - Multiple potential refinements for the reasoning cycle
    - New strategies for failure recovery
    - Automatic caching of plan sketches from generalised plans
  - No explicit social abilities (Goal Recognition?)
- A research agenda for many years to come

19 / 20

## In Memoriam

Ramon Fraga Pereira 15.04.1986 - 04.04.2025