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Abstract—Systems of autonomous and self-interested agents
interacting to achieve individual and collective goals may exhibit
undesirable or unexpected properties if left unconstrained. Using
deontic concepts of obligations, permissions and prohibitions to
describe, what must, may and should not be done, norms have
been widely proposed as a means of defining and enforcing
societal constraints. Recent efforts to provide norm-enabled agent
architectures that limit plan choices suffer from interfering with
an agent’s reasoning process, and thus limit autonomy more than
is required by the norms alone. In response, in this paper we
describe nu-BDI, an extension of the BDI architecture, which
enables normative reasoning, providing agents with a means to
choose and customise plans (and their constituent actions), so
as to ensure compliance with norms. We make three significant
contributions, in providing: fine-grained tailoring of plan restric-
tions; a plan annotation mechanism to identify violating plans,
and limit possible plan instantiations; and a technique allowing
the selective and incremental violation of norms in cases where
goal achievement would not otherwise be possible.

I. INTRODUCTION

Systems of autonomous and self-interested agents interact-
ing to achieve individual and collective goals may exhibit
undesirable or unexpected properties if left unconstrained.
One way to address this issue, in both human and artificial
societies, has been through the use of norms, which have been
proposed as a means of defining and enforcing constraints
to ensure that such undesired behaviour is avoided if agents
are norm-compliant (cf. [11] and [6]). Norms are generally
specified using deontic concepts of obligations, permissions
and prohibitions to identify, respectively, what must, may and
should not be done so as to ensure certain system properties.
Early work on normative systems focused on model-theoretic
or philosophical aspects of deontic logics [18], but more
recent work has addressed how norms may be more suitably
represented in computational systems (e.g., [13] and [14]),
their enforcement [8], and their impact on the society as a
whole, abstracting away the details of mechanisms through
which individual agents reason with and about norms and how
individual behaviours are affected by norms.

However, practical normative systems require analysis and
specification of the processes through which norms are recog-
nised, decisions about whether to comply with them are
taken, and behaviour is adjusted appropriately. Some recent
efforts in this direction have sought to provide norm-enabled
architectures (e.g., [12] and [15]) to specify how an agent’s
behaviour may be constrained to comply with norms in

terms of permitted or forbidden mental states. For example,
compliance with an obligation to move to a certain location
limits an agent’s choice of plans containing moving actions
to only those in which the target of the actions is the obliged
location. While such architectures capture this notion at a basic
level, for example in preventing parts of a plan library from
being adopted [15], or replacing the goals of an agent with the
fulfilment of specific norms [12], they suffer from interfering
with an agent’s reasoning process, and thus limit autonomy
more than is required by the norms alone.

In response, in this paper we introduce ν-BDI, an extension
of the BDI architecture [16] that enables normative reasoning,
and provides a means for agents to choose and customise plans
(and their constituent actions), so as to ensure compliance
with norms. The paper makes three significant contributions.
First, it avoids the rather coarse blanket retraction of specific
plans (as adopted in previous work) by introducing constraints,
enabling fine-grained tailoring of plan restrictions. Second, it
provides a plan annotation mechanism used as an efficient
means of identifying (and potentially avoiding) plans that vi-
olate norms by examining norm scope (in relation to actions),
and limiting possible plan instantiations. This effectively trans-
forms normative restrictions into extended context conditions
that incur a similar computational overhead as selecting a plan.
Finally, it provides a technique for the selective and incre-
mental violation of norms in cases where goal achievement
would not be possible otherwise. Importantly, unlike some
earlier efforts, such agents are able to comply with specific
normative stipulations with minimum disruption to traditional
non-norm influenced reasoning.

To illustrate our approach, we adopt a scenario in which
software agents support humans responding to an emergency
situation. Humans communicate with each other and synchro-
nise their activities through personal assistants responsible for
intermediating communication among members of a team,
prompting their human counterparts for actions to be carried
out, as well as providing information to help humans decide
which course of action to take. We address the situation in
which heavy and continuous rain in an area prone to flooding
has led to emergency services being put on alert: a team
of humans supported by personal assistants is to carry out
alternative plans, depending on the current conditions (e.g.,
severity of the flooding, size of the affected area, which build-
ings are more at risk, the people affected, etc.). The personal
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assistants monitor the latest information on weather and rising
levels of water, and also have access to data on high-security
installations (e.g., power plants, fuel and chemical depots,
etc.), high-risk buildings (e.g., hospitals with intensive care
patients, primary schools, prisons, etc.), routes for evacuation,
and so on. They have the following plan available, which we
use to illustrate our approach:

If one detects that the level of flooding in an area
X is medium, and if the area is of high-risk (that is,
it contains high-risk buildings), then the plan is to:
i) isolate the area (to prevent people entering it); ii)
evacuate everyone from the affected area to another
area; and iii) reroute the traffic to another area.

In our scenario we also assume two norms:
1) It is forbidden to evacuate an area X to an area Y , if

area Y is unsafe. This prohibition should be revoked if
area Y becomes safe.

2) It is obligatory to reroute traffic through Z to avoid area
X , if area X is deemed not safe. This obligation is
revoked when area X becomes safe again.

We start the paper by reviewing the BDI agent model
and introducing a basic interpreter in Section II. In order to
define our proposed extension, we introduce in Section III
a notation for precisely specifying normative restrictions,
including restrictions over acceptable domains. Using this
notation, we develop in Section IV an agent architecture
capable of reasoning with these norms, thus affecting specific
plan instances that are adopted, deciding on norm compliance
as plan instances are selected. In doing so, we fulfil the need
of pragmatic normative agent architectures capable of filtering
norm compliant plans and decide upon them. Finally, we draw
conclusions and point to future work in Section V.

II. BDI REASONING

In this section we review the well-known BDI architecture,
based on Bratman’s philosophical model of reasoning centred
around the three mental components of beliefs, desires and
intentions (BDI) [2]. We use this as the foundation of our
norm-aware architecture.

A. Preliminaries

In order to explain the operation of ν-BDI, we need to
introduce some notation and definitions. We use first-order
constructs for various elements of the agents and norms.

Definition 1: A term, denoted generically as τ , is a variable
w, x, y, z (with or without subscripts), a constant a, b, c (with
or without subscripts) or fn(τ0, . . . , τn), that is, an n-ary
function fn applied to (possibly nested) terms τ0, . . . , τn.

Definition 2: A first-order atomic formula (or a predicate),
denoted as ϕ, is any construct of the form pn(τ0, . . . , τn),
where pn is an n-ary predicate symbol applied to terms
τ0, . . . , τn. A first-order formula, denoted as Φ, is defined as
Φ ::= Φ ∧ Φ|¬Φ|∀x.Φ|ϕ.

We assume the usual abbreviations: Φ ∨ Φ′ stands for
¬(¬Φ ∧ ¬Φ′), ∃x.Φ stands for ¬∀x.¬Φ, Φ → Φ′ stands for

¬Φ ∨ Φ′ and Φ ↔ Φ′ stands for (Φ → Φ′) ∧ (Φ′ → Φ).
Additionally, we also adopt the equivalence {Φ1, . . . ,Φn} ≡
(Φ1 ∧ · · · ∧Φn) and use these interchangeably. In our mecha-
nisms we use first-order unification [5] which is based on the
concept of substitutions.

Definition 3: A substitution σ is a finite and possibly empty
set of pairs x/τ , where x is a variable and τ is a term.
We define the application of a substitution as follows:

1) c · σ = c for a constant c.
2) x · σ = τ · σ if x/τ ∈ σ; otherwise x · σ = x.
3) pn(τ0, . . . , τn) · σ = pn(τ0 · σ, . . . , τn · σ).

Unifications can be composed; that is, for any σ1 =
{x1/τ1, . . . , xn/τn} and σ2 = {y1/τ ′1, . . . , yk/τ ′k}, their
composition, denoted as σ1σ2, is defined as {x1/(τ1 ·
σ2), . . . , xn/(τn · σ2), z1/(z1 · σ2), . . . , zm/(zm · σ2)}, where
{z1, . . . , zm} are those variables in {y1, . . . , yk} that are not
in {x1, . . . , xn}. A substitution σ is a unifier of two terms
τ1, τ2, if τ1 · σ = τ2 · σ.

Definition 4: unify(τ1, τ2, σ) holds iff τ1 · σ = τ2 · σ,
for some σ. unify(pn(τ0, . . . , τn), pn(τ ′0, . . . , τ

′
n), σ) holds iff

unify(τi, τ
′
i , σ), 0 ≤ i ≤ n.

Two terms τ1, τ2 are related through the unify relation if
there exists a substitution σ that makes the terms syntactically
equivalent. We assume a suitable implementation of a unifica-
tion algorithm for unify to determine the existence of such a
substitution.

We denote as ϕ̄ a first-order predicate whose terms are
either constants or variables associated (via a substitution)
with constants. Here, we adopt Prolog’s convention [1] and
use strings starting with a capital letter to represent variables
and strings starting with a small letter to represent constants.
We assume the availability of a sound and complete first-order
inference mechanism1 which decides if Φ′ can be inferred
from Φ, denoted as Φ ` Φ′. In this paper we use a mechanism
to determine if a formula Φ can be inferred from a set of
ground predicates, and, if so, under which substitution; that
is, {ϕ̄0, . . . , ϕ̄n} ` Φ · σ.

B. Agents

In this work we consider an abstract BDI interpreter, in-
spired by the dMARS architecture [4]. We define an agent in
terms of its information model as follows.2

Definition 5: An agent is a tuple 〈Ag ,Rl ,Ev ,Bel ,Plib,
Int〉, where Ag is the agent identifier, Rl is a set of roles,
Ev is a queue of events, Bel is a belief base, Plib is a plan
library, and Int is an intention structure.

The Rl component is a finite and non-empty set of roles
{r1, . . . , rn}, used to identify stereotypical agents classes to
which one belongs (e.g. {fire marshall , evacuation team}).
Recently perceived events are stored in a queue and ordered

1Such mechanisms have a design space defined by the expressiveness of the language
and complexity/decidability aspects – the more expressive the language, the fewer
guarantees can be given [5]. In particular, if we assume our first-order language is
restricted to Horn clauses, then we can use Prolog’s resolution mechanism [1].

2We use Greek letters to denote elements of the underlying logic system as well as
norms, and use Latin letters to denote elements of the agent interpreter.



by arrival time. An event may be a belief addition or deletion,
or a goal addition or deletion. Belief additions are positive
ground predicates perceived as true, and belief deletions are
negative ground predicates perceived as false. Goal additions
indicate new goals posted, and goal deletions represent goals
dropped for some reason.

Definition 6: An event queue Ev is composed of ground
first-order predicates representing events [e1, . . . , en] ordered
by occurrence time. Events ei can be one of four possible
cases: i) a belief addition +ϕ̄; ii) a belief deletion −ϕ̄; iii) a
goal addition +!ϕ̄; or iv) a goal deletion −!ϕ̄.

The belief base comprises a set of logic predicates, which
can be queried through an entailment relation, as follows.

Definition 7: A belief base Bel is a finite and possibly
empty set of ground first-order logic predicates {ϕ̄1, . . . , ϕ̄n},
with an associated logical entailment relation ` for first-order
formulae.

The plan library, defined below, stores the plans of action
available. Each step in a plan body may be either an action
(causing effects in the environment) or a subgoal (causing the
addition of a new plan to the intention structure).

Definition 8: A plan library Plib is a finite and possibly
empty set of uninstantiated plans {P1, . . . ,Pn}. Each plan Pi
is a tuple 〈t, c, bd〉 where t is an invocation condition (cf.
Definition 6), indicating the event that causes the plan is to
be adopted, c is a context condition in the form of a first-
order formula over the agent’s belief base, and bd is a body
consisting of a finite and possibly empty sequence of steps
[s0, . . . , sn].

Actions are first-order atomic formulae; our focus is not on
what an action entails, just that action execution might be the
target of a normative stipulation as we will see later. Finally,
the intention structure comprises the agent’s intentions, each
of which contains partially instantiated plans to be executed
by the agent.

Definition 9: An intention structure Int is a finite and
possibly empty set of intentions {int1, . . . , intn}. Each int i is
a tuple 〈σ, s̄t〉, where σ is a substitution and s̄t is an intention
stack (containing the steps remaining to be executed to achieve
the intention).

EXAMPLE. The plan of our scenario is represented as
follows:〈

+level(X,medium), (high risk(X )),

 isolate(X),
evacuate(X,Y ),
reroute(X,Z)

 〉

This represents that if a belief level(X; medium) has been
added to the belief base, stating that the level of emergency of
area X is medium, and the context condition “X is a high risk
area” holds, then the plan should be adopted.

C. A BDI Agent Interpreter
The specification above provides a minimal information

model required for BDI agent execution. In this section we
describe the mechanisms needed (using this information) for
BDI-style computational behaviour. Before considering norms,
we specify a basic abstract BDI agent interpreter and subse-
quently extend it with mechanisms for normative reasoning
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Fig. 1. Control flow for the reasoning process

and compliance. A high-level description of the basic BDI
interpreter is illustrated as the white boxes in Figure 1; grey
boxes are our proposed extensions.below. Initially, new events
are perceived from the environment and added to an event
queue Ev , then, the new events are used to update a belief
base Bel and to select new plans from a plan library Plib to
be adopted as intentions in the intention structure Int. Finally,
an intention is selected and one of its steps executed.

Updating events consists of gathering all new events and
pushing them onto the event queue, while updating beliefs
consists of querying new events in the event queue and adding
beliefs when the events are positive predicates, and removing
them when they are negative predicates. We are not concerned
here with more complex belief revision mechanisms, but such
an interpreter could use them [7].

New events trigger the adoption plans from the plan library.
If the event is a belief update, a new intention may be created
for it, otherwise the event is a subgoal for some existing
intention and the plan is added to it. The steps of a plan
are adopted as intentions for execution, each of which can
be either an action in the environment or the adoption of a
subgoal that will trigger the adoption of further plans.

These procedures have a very low computational cost,
as demonstrated by various practical implementations such
as dMARS [4], PRS [9], and others. We now proceed to
considering the normative aspects and how we incorporate
them to the basic BDI interpreter.

III. REPRESENTATION OF NORMS

Using deontic concepts of obligations, permissions and
prohibitions to describe, what must, may and should not
be done, norms have been widely proposed as a means of
defining and enforcing societal constraints. In this paper, since
we are concerned with the impact of norms on reasoning
and behaviour, we pay particular attention to the scope of
influence of norms. In this respect, we consider two distinct
means of addressing this: first, we draw on aspects similar
to those presented in [6] and [12] in that our norms are
conditional, both for activation (when they come into force)
and expiration (when they cease effect), limiting application to
periods of time; and second, we add constraints [10], limiting
application to particular plans and actions, and ensuring that
norms are not over-restrictive. In this section, we adapt and
extend the notation for specifying norms of [17], beginning
with constraints.



Definition 10: Constraints, represented as γ, are any con-
struct of the form τ C τ ′, where τ, τ ′ are first-order terms
(that is, a variable, a constant or a function applied to terms)
and C is one of the infix binary operators =, 6=, >,≥, <, or ≤.
A conjunction of constraints is denoted as Γ = (γ1∧· · ·∧γn).

We use numbers and arithmetic functions to build terms
τ ; arithmetic functions may appear infix, following their
usual conventions. For example, 10 > Temp and Price <
(Cost + Z). To improve readability, constraints of the form
3 ≤ X ∧ X ≤ 10 are written as 3 ≤ X ≤ 10. Since
constraints limit the acceptable range of parameters within
instantiated plan steps (as we will see later), when determining
if a plan complies with current norms, their satisfiability must
be checked. We use existing constraint satisfaction techniques
[10] to implement a satisfy predicate that holds if a given
conjunction of constraints admits a solution (if each variable
of the constraints admits at least one value that simultaneously
fulfils all constraints).

Definition 11: satisfy(γ0 ∧ · · · ∧ γn, σ) holds iff (γ0 · σ ∧
· · · ∧ γn · σ) is true for some σ.

Constraints are associated with first-order predicates, impos-
ing restrictions on their variables. We represent this association
as ϕ ◦ Γ, as in, for instance, move(b1, X, Y ) ◦ (100 ≤ X ≤
500 ∧ 5 ≤ Y ≤ 45). Now, to define for the core aspect of
norms, we use constraint-annotated atomic deontic formulae.

Definition 12: An annotated deontic formula ν is any con-
struct of the form Oα:ρϕ ◦ Γ (an obligation) or Fα:ρϕ ◦ Γ (a
prohibition), where α, ρ are terms, and ϕ is a first-order atomic
formula with associated constraints Γ.
Term α identifies the agent(s) to which the norm is applicable
and ρ is the role of such agent(s). Oα:ρϕ ◦ (γ1 ∧ . . . ∧ γn)
thus represents an obligation on agent α taking up role ρ
to bring about ϕ, subject to all constraints γi, 0 ≤ i ≤ n.
The γi terms express constraints on variables of ϕ. The
relation between constraints and the deontic formula is akin
to the quantifier restrictions introduced in [3]. If we assume a
universal quantification in our annotated deontic formulae, that
is, ∀α.∀ρ.∀~x(Xα:ρϕ ◦ Γ) (where ~x are all variables occurring
in ϕ and Γ, and X is either O or F) then our formula stands
for ∀α.∀ρ.∀~x(Γ → Xα:ρϕ). Alternatively, if we assume an
existential quantification, that is, ∃α.∃ρ.∃~x(Xα:ρϕ ◦ Γ), then
the formula stands for ∃α.∃ρ.∃~x(Γ ∧ Xα:ρϕ).

Our representation here is precise (as constraints provide a
fine-grained way to specify values of variables) and compact
(as constrained predicates amount to possibly infinite sets
of ground formulae). Let us assume the deontic formulae
{Fp(X) ◦ {X = a},Oq(Y ) ◦ {Y = b}} are currently in
effect. We also assume that at a particular point there is the
following choice of plans to achieve a particular goal (for
brevity, we assume the agent and role are known, dropping the
subscripts from the formulae, and simplifying the formulae as
{Fp(a),Oq(b)}, respectively):

1) [s(a, b), p(a) , q(a), r(a)]

2) [q(a), p(b), s(a, b), r(a)]

3) [ q(b) , p(b), s(a, b), r(a)]

A rational agent should give priority to Plan 3, which fulfils the
obligation (shown boxed) and does not violate the prohibition.
Plan 2 neither fulfils the obligation nor violates the prohibition.
Plan 1 is the worst choice as it violates the prohibition (boxed).
More interesting situations arise when plans both fulfil obli-
gations and violate prohibitions. We develop in Section IV-C
a means to manipulate plans, annotating them with constraints
on the values of variables of its actions, thus ensuring that all
norms in effect are factored in. In Section IV-D we propose
a means for agents to rank plans according to their norm-
compliance. Thus, norms are defined as follows.

Definition 13: An abstract norm ωA is a tuple 〈ν,Act ,Exp,
id〉 where:
• ν is an annotated deontic formula (cf. Def. 12),
• Act , the activation condition, is a conjunction of pos-

sibly negated first-order atomic formulae ϕ1 ∧ · · · ∧ ϕn
specifying the condition that must hold in the agent’s
belief base for the norm to take effect;

• Exp, the expiration condition, is a conjunction of pos-
sibly negated first-order atomic formulae ϕ1 ∧ · · · ∧ ϕn
specifying the condition that must hold in the agent’s
belief base for the norm to stop being in effect;

• id is a unique norm identifier
We denote a set of abstract norms as ΩA. If the activation
condition of an abstract norm holds, then a specific norm
is obtained, whereby variables may be instantiated to spe-
cific values. Abstract norms generically define circumstances
when norms should be adopted and dropped; when norms
are adopted, the abstract formulation is instantiated to specific
circumstances.

Definition 14: A specific norm ωS is a tuple 〈ν,Act ,Exp,
σ, id〉 where ν,Act ,Exp, id are as above and are bound by a
substitution σ. We denote a set of specific norms as ΩS .

As agents interact with their environment and with other
agents, their perception of reality, as recorded in their sets
of beliefs, change. Agents use their beliefs to update their
normative positions, adding norms whose activation conditions
hold, and removing norms whose expiration conditions holds.
Given a set of beliefs Bel and a specific norm ωS of the form
〈ν,Act ,Exp, σ, id〉, then ωS holds (or is in effect) if, and only
if, the following two conditions hold:

1) Bel ` Act · σ; that is, we can deduce Act · σ from the
set of beliefs, and

2) Bel 6` Exp · σ; that is, we cannot deduce Exp · σ from
the set of beliefs.

Since beliefs change, norms also change as their activation
and expiration conditions may no longer hold; this is how
dynamic aspects are captured in our representation of norms.

EXAMPLE. The norms of our scenario are represented as
the following abstract norms:
1. 〈FA:Revacuate(X,Y ) ◦ {Y = W},¬safe(W ), safe(W ), 1〉
2. 〈OA:Rreroute(X,Z) ◦ {X + 1 ≤ Z ≤ X + 3},¬safe(X), safe(X), 2〉
The first norm states that all agents (in all roles) are forbidden
to evacuate an area X to an area Y ; the prohibition becomes
active if area Y (constrained to be W ) is unsafe and expires



when area Y (constrained to be W ) becomes safe; unifications
are dealt with like constraints, hence the need to use a third
variable W . The second norm states that all agents (in all
roles) are obliged to reroute traffic through Z to avoid area
X , but the rerouting must be within nearby zones. The norm
becomes active when area X is deemed not safe, and the
norm is deactivated when area X becomes safe again. Now,
suppose these norms give rise to the following specific norms:
3. 〈FA:Revacuate(X,Y ) ◦ {Y = W},¬safe(W ), safe(W ), {W/3}, 1〉
4. 〈FA:Revacuate(X,Y ) ◦ {Y = W},¬safe(W ), safe(W ), {W/6}, 1〉
5. 〈OA:Rreroute(X,Z) ◦ Γ,¬safe(X), safe(X), {X/2}, 2〉
That is, abstract Norm 1 gives rise to two specific norms, one
instantiating W to 3 and another W to 6. Abstract Norm 2
(shown with constraints abbreviated as Γ to save space) gives
rise to one specific norm, instantiating X to 2.

For simplicity, in our discussion we assume an implicit uni-
versal quantification over variables in ν,Act and Exp. How-
ever, our approach can naturally be extended to cope with any
quantification.

IV. ν -BDI

Given the representation of norms as detailed above, we
can now address the issues surrounding their integration into
an effective BDI architecture.

A. Updating Norms

First, we describe the key processes required in the agent
interpreter to manage the activation and expiration of norms.
Although beliefs are generally [4] assumed to contain exclu-
sively ground first-order predicates, in this paper we store both
abstract and specific norms in the belief base. In doing so we
avoid adding extra components to the architecture. We extend
and adapt the mechanisms to update beliefs and to reason with
beliefs, enabling them to deal with norms.

The process of updating norms consists of going through
each abstract norm ωA ∈ ΩA, of the form ωA = 〈ν,Act ,Exp,
id〉, checking if their activation condition is supported by the
agent’s belief base, that is, Bel ` Act · σ. Then, for each
norm and each possible substitution σ in which the activation
condition holds in Bel , a new specific norm ωS = ωA · σ is
created and added to the set of specific norms. Afterwards,
for each specific norm ωS ∈ ΩS , if the expiration condition is
supported by the agent’s belief base, that is, Bel ` Exp · σσ′,
the specific norm is removed from ΩS .

EXAMPLE. Let us suppose we have an abstract norm ωA:

〈OA:Ruse(hlc, X) ◦ Γ, high risk(X),weather(X, poor), 3〉

This represents an obligation on all agents/roles to fly a heli-
copter (represented as hlc) over X; the norm becomes active
if X is a high-risk area, and the norm expires if the weather
conditions in X are poor. The Γ stipulates which areas can
be flown over, and its details are not relevant to our example.
If we have a belief base Bel = {high risk(10), ωA}, where
ωA is the abstract norm above, then we would add to Bel the
specific norm

〈OA:Ruse(hlc, X) ◦ Γ, high risk(X),weather(X, poor), {X/10}, 3〉

If, however, the belief base also had a predicate weather(10,
poor), then no specific norms would be added, as the ex-
piration condition of the newly added norm would hold –
the mechanism would add and subsequently remove a specific
norm, leaving the set of specific norms unchanged.

B. Actions and Norms

As indicated previously, our key concern in this paper is
with the impact of norms on plans. Critical to this is de-
termining when an action (represented as an atomic formula
ϕ) is within the scope of influence of a specific norm ωS .
Definition 15 introduces predicate inScope which, given an
agent specified by its unique identifier Ag and one of the
roles R ∈ Rl of the agent, holds if a first-order predicate
ϕ is within the influence of a specific norm ωS (in the format
of Definition 14).

Definition 15: An action literal ϕ of an agent Ag with
role R is in the scope of a specific norm ωS = 〈Xαϕ′ ◦
Γ,Act ,Exp, σ, id〉, represented as inScope(Ag,R, ϕ, ωS), if,
and only if, ωS ∈ ΩS , unify(〈Ag , R, ϕ〉, 〈α, ρ, ϕ′〉 · σ, σ′),
and satisfy(Γ · σ, σ′)

C. Annotating Constraints in Plans

As indicated in Section III, one of our primary concerns is
with the impact of norms on agent plans in terms of constraints
on the values of variables of an action. Since actions and
achievable world-states are components of plans, instances of
restricted actions and world states must be found and marked
with these constraints. To achieve this, we propose a mecha-
nism that scans a plan, annotating each step within the scope
of a norm with constraints stemming from that norm.

Each plan step is checked against the predicates specified
in the specific norms (ΩS), taking into account the role the
agent adopts. If a step is within the scope of a norm, then the
mechanism gradually assembles the constraints of the norms
Γi, and annotates the plan step with them. If the norm is an
obligation, the constraints are added as they appear in the
norm, instantiated (or customised) to the substitutions σ, σ′.
If the norm is a prohibition, the constraints are then negated;
formally, neg((γ1, . . . , γn)) = (neg(γ1), . . . ,neg(γn)), and
each constraint can be negated as neg(τ > τ ′) = (τ ≤ τ ′),
neg(τ < τ ′) = (τ ≥ τ ′), neg(τ ≥ τ ′) = (τ < τ ′), and so on.
If the step is not in the scope of any norm, no constraints are
added.

Once plan steps have been annotated, it is possible for an
agent to check before executing each step if its execution
violates a norm. However, it is inefficient to adopt a plan and
execute it partially before discovering that the plan was not,
in fact, desirable from the perspective of norm compliance.
Fortunately, since the specific values of the variables within
a plan are bound when a plan is instantiated, it is possible
to determine at plan instantiation if any normative restriction
applied to individual plan steps would be violated if the plan
is adopted. In order to do this, we must make all annotations
available for checking when the plan is instantiated so, at the
end of each iteration over the steps of a plan, we collect the



annotations into a global plan annotation Γ′, which is later
used when selecting norm compliant plans.

EXAMPLE. The plan annotation mechanism, when applied
to the plan introduced above, and using the specific norms
shown previously, yields the following annotated plan:

〈 +level(X,medium), (high risk(X )), isolate(X) ◦ >,
evacuate(X,Y ) ◦ {Y 6= 3, Y 6= 6},

reroute(X,Z) ◦ {3 ≤ Z ≤ 5}

 ,
{Y 6= 3, Y 6= 6, 3 ≤ Z ≤ 5}

〉

We notice on the evacuate step of the plan, the negated con-
straints of the specific norms arising from norm 1, shown
with the substitutions applied. We also notice the reroute step
annotated with the constraints of the specific version of the
obligation (also with the substitutions applied, and the math-
ematical expressions of the constraints simplified to improve
visualisation). The annotated plan factors in the constraints of
the active norms, making ν-BDI agents norm-aware.

D. Selection of Norm Annotated Plans

We now describe the process of selecting plans that comply
with the constraints imposed by currently active norms. As we
have seen, plans are annotated with constraints on the values
that action variables may have when a plan is instantiated;
in order to filter out non-compliant plan instances we simply
verify their satisfiability with variable bindings for candidate
plan instances. For example, if there is a plan containing an
action move(X,Y ), and norm OA:Rmove(X,Y )◦{X ≤ 10∧
Y ≤ 5} is active, then instances of the plan with X bound to
values greater than 10 should not be adopted.

In practice, violating situations are identified if the plan con-
straints become unsatisfiable after substitutions stemming from
the plan instantiation are applied to the plan’s annotations. In
our example, if X is bound to 11, the annotation becomes
{11 ≤ 10 ∧ Y ≤ 5}, which is not satisfiable. Now, in order
to select compliant plans, the plan annotations created earlier,
customised (via substitution σ) to the instantiation of the plan
caused by event e, need to be satisfiable.

V. CONCLUSIONS AND RELATED WORK

In this paper we have described a new norm representation
formalism, using constraints as means to precisely specify the
target of normative stipulations. These constraints are used to
determine specific plan instantiations that comply with active
norms, thus narrowing the acceptable domains for operation.
Based on this, we have described mechanisms that enable these
plan instantiations to restrict behaviour in support of compli-
ance, avoiding violating plans. Importantly, our work enables
selective and incremental norm violation in a controlled man-
ner in cases where goal achievement would not otherwise be
possible, or where norms are deliberately ignored.

We have implemented these mechanisms within ν-BDI, ex-
tending a traditional BDI interpreter, such as dMARS [4].
However, our mechanisms are sufficiently generic to enable in-
clusion in any BDI interpreter and sufficiently detailed that im-
plementation is straightforward. In addressing normative rea-
soning to this level of analysis, we have tackled various techni-

cal challenges posed by norm processing, such as the detection
of activation and expiration conditions and the management of
the norm life cycle between these two conditions, through the
management of abstract and specific norms. Finally, we have
shown the applicability of the mechanisms developed in an
emergency evacuation scenario. In future work, we intend to
refine the evacuation scenario as a testbed for our interpreter,
and handle norm deadlines as well as normative conflicts.
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