

On representing planning domains under uncertainty

Felipe Meneguzzi – CMU Yuqing Tang – CUNY Simon Parsons – CUNY Katia Sycara - CMU

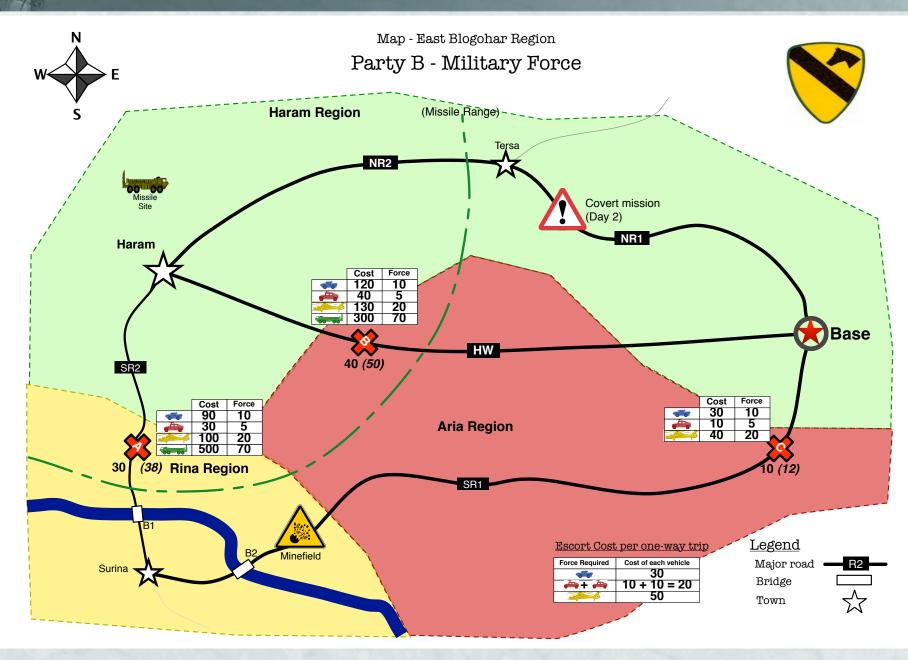
Outline

- Planning
 - Markov Decision Processes
 - Hierarchical Task Networks
- States and State-Space
- Using HTNs to represent MDPs
- Increasing Efficiency
- Future Work
- Conclusions

Planning

- Planning algorithms more or less divided into:
 - Deterministic
 - Probabilistic
- Formalisms differ significantly
 - Domain representation
 - Concept of solution
 - Plan
 - Policy

Blogohar Scenario (Burnett)



Blogohar Scenario

- Original scenario consists of two players planning for concurrent goals
 - NGO
 - Military
- Here, we consider a (simplified) planning task for the military planner
 - Select forces to attack militant strongholds
 - Move forces to strongholds and attacking

Hierarchical Task Networks

- Offshoot of classical planning
- Domain representation more intuitive to human planners
 - Actions (state modification operators)
 - Tasks (goals and subgoals)
 - Methods (recipes for refining tasks)
- Problem comprises
 - Initial State
 - Task

HTN Domain – Actions

- attack(Vehicle, Target) $a^{a(V,T)}$
- move(Vehicle, From, To, Road) $a^{mv(V,F,T,R)}$

- Defeat Insurgents at Stronghold A $t^{DI(T)}$ – Precondition: Target = A
 - Task to decompose: defeatInsurgents(A)
 - Tasks replacing defeatInsurgents(A):
 - attackWithHumvee(A)
 - attackWithAPC(A)

Attack T with Humvee

- $t^{AHu(T)}$
- Precondition: vehicle(humvee,V) ^ ¬committed(V)
- Task to decompose: attackWithHumvee(T)
- Tasks replacing attackWithHumvee(T):
 - move(V,T)
 - attack(V,T) this is an action

Attack T with APC

$$t^{AA(T)}$$

- Precondition: vehicle(apc,V) ^ ¬committed(V)
- Task to decompose: attackWithAPC(T)
- Tasks replacing attackWithAPC(T):
 - move(V,T)
 - attack(V,T) this is an action

- Move (Route 1)
 - Precondition: Target = A
 - Task to decompose: move(V,T)
 - Tasks replacing move(V,T):
 - move(V,base,tersa,nr1) –These are basic moves

 $t^{Mv(V,T)}$

- move(V,tersa,haram,nr2)
- move(V,haram,a,sr2)

- Move (Route 2)
 - Precondition: Target = A
 - Task to decompose: move(V,T)
 - Tasks replacing move(V,T):
 - move(V,base,haram,sr1) –These are basic moves

 $t^{Mv(V,T)}$

move(V,haram,a,sr2)

Methods Summary

- **Defeat Insurgents** $m^{DI(T)} = \left(T = a, t^{DI(T)}, \left\{t^{AHu(T)}, t^{AA(T)}\right\}, \left\{t^{AHu(T)} \prec t^{AA(T)}\right\}\right)$
- Attack with Humvee
- Attack with APC

$$m^{AHu(T)} = \begin{cases} vehicle(humvee, V) \land \neg committed(V), \\ t^{AHu(T)}, \{t^{Mv(V,T)}, t^{a(V,T)}\}, \{t^{Mv(V,T)} \prec t^{a(V,T)}\} \end{cases}$$

$$(vehicle(apc, V) \land \neg committed(V),)$$

$$m^{AA(T)} = \begin{cases} venucle(apc, v) \land \neg commutea(v), \\ t^{AA(T)}, \{t^{Mv(V,T)}, t^{a(V,T)}\}, \{t^{Mv(V,T)} \prec t^{a(V,T)}\} \end{cases}$$

• Move

$$m_{1}^{Mv(V,T)} = \begin{cases} I = a, t^{mv(V,pr)}, \\ \{t^{mv(V,base,tersa,nr1)}, t^{mv(V,tersa,haram,nr2)}, t^{mv(V,haram,a,sr2)}\}, \\ \{t^{mv(V,base,tersa,nr1)} \prec t^{mv(V,tersa,haram,nr2)} \prec t^{mv(V,haram,a,sr2)}\} \end{cases}$$

 $M_{V}(V|T)$

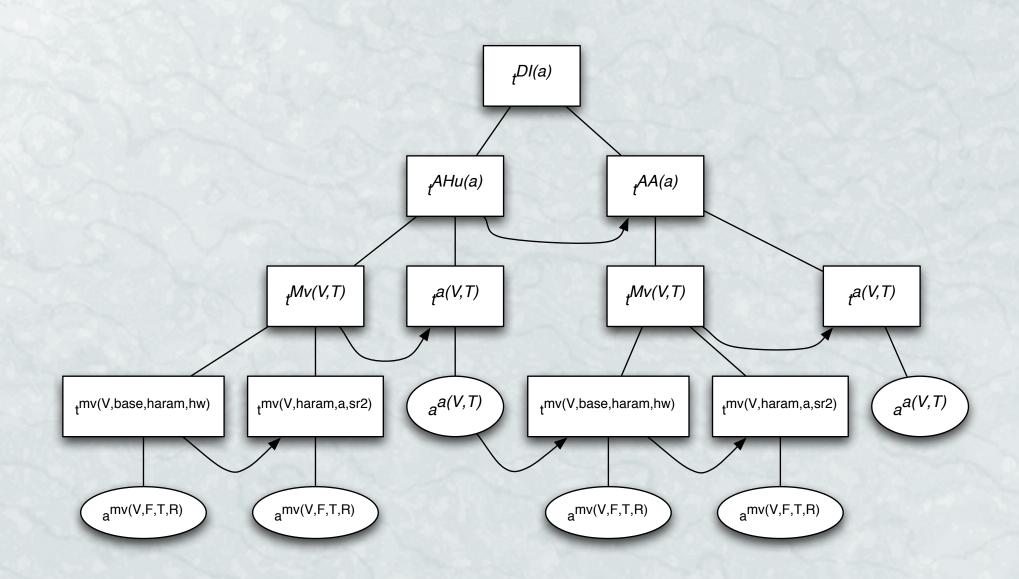
• Move (Route 2) $m_{2}^{Mv(V,T)} = \begin{cases} T = a, t^{Mv(V,T)}, \\ \{t^{mv(V,base,haram,hw)}, t^{mv(V,tersa,a,sr2)}\}, \\ \{t^{mv(V,base,haram,hw)} \prec t^{mv(V,tersa,a,sr2)}\} \end{cases}$

13

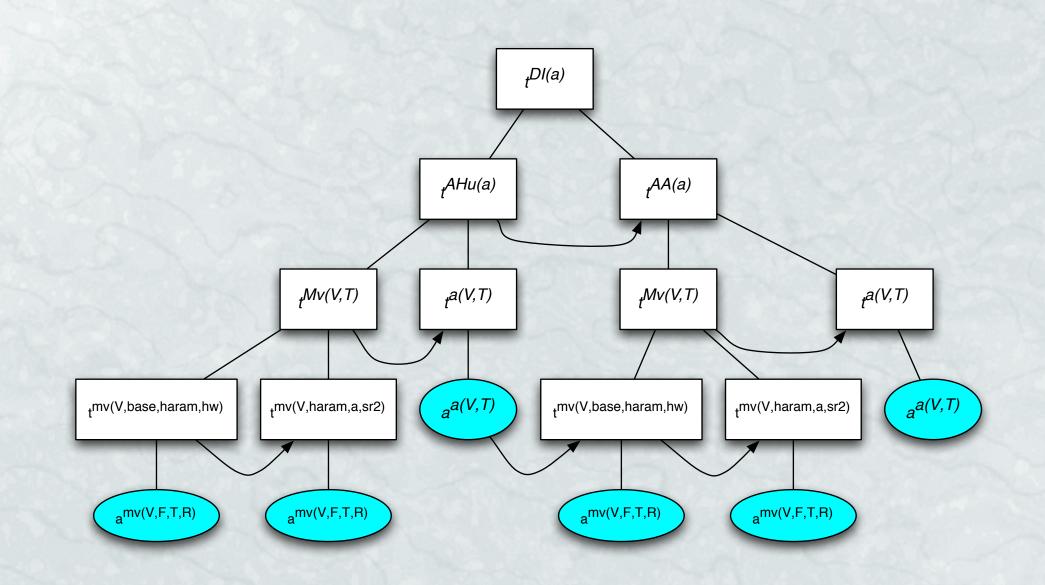
HTN Problem

- How to execute task defeatInsurgents(a) $t^{DI(T)}$
 - Decompose task through the methods in the domain until actions reached
 - Ordered actions is the solution

Decomposed Problem



HTN Solution



Markov Decision Processes

- Mathematical model for decision-making in a partially controllable environment
- Domain is represented as a tuple

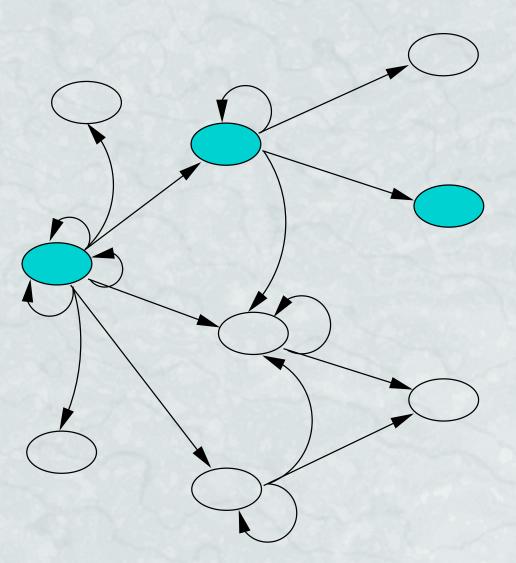
$$\Sigma = (S, A, P)$$

where:

- S is the entire state space
- A is the set of available actions
- P is a state transition function

MDP Domain

- Represented as a hypergraph
- Connections are not
 necessarily structured
- All reachable states are represented
- State transition function specifies how actions relate states



Computing an MDP policy

• An MDP policy is computed using the notion of expected value of a state:

$$V^{*}(s) = \max_{a \in A(s)} \left| u(a,s) + \sum_{a \in A} \Pr_{a}(s'|s) V^{*}(s') \right|$$

- Expected value comes from a reward function
- An optimal policy is a policy that maximizes the expected value of every state $\pi^*(s) = \operatorname{argmax}_{a \in A(s)} \left[u(a,s) + \sum_{s' \in S} \Pr(s'|s) V^*(s') \right]$

MDP Solution

- Solution for an MDP is a policy
- Policy associates an *optimal* action to every state
- Instead of a sequential plan, policy provides contingencies for every state
 state0 → actionB
 state1 → actionD
 state2 → actionA

States

Hierarchical Task Network

- Not enumerated exhaustively
- State consists of properties of the environment
 vehicle(humvee,h1) ∧ vehicle(apc,a2)
- Each action modifies properties of the environment
- Set of properties induces a *very large* state space

Markov Decision Process

- MDP domain explicitly enumerates all *relevant states*
- Formally speaking, MDP states are monolithic entities
- Implicitly represent the same properties expressed in HTN state
- Large state-spaces make the algorithm flounder

State Space Size

Hierarchical Task Network

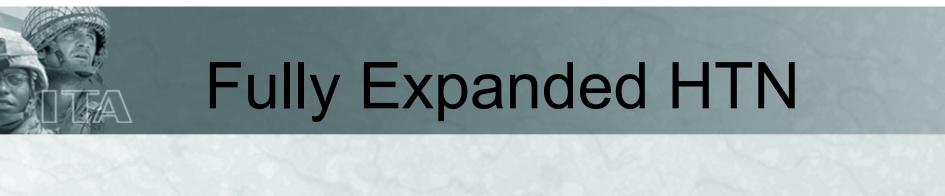
- Set of actions induces a smaller state space (still quite large)
- Set of methods induces a smaller still state space
- HTN planning consults this latter state space

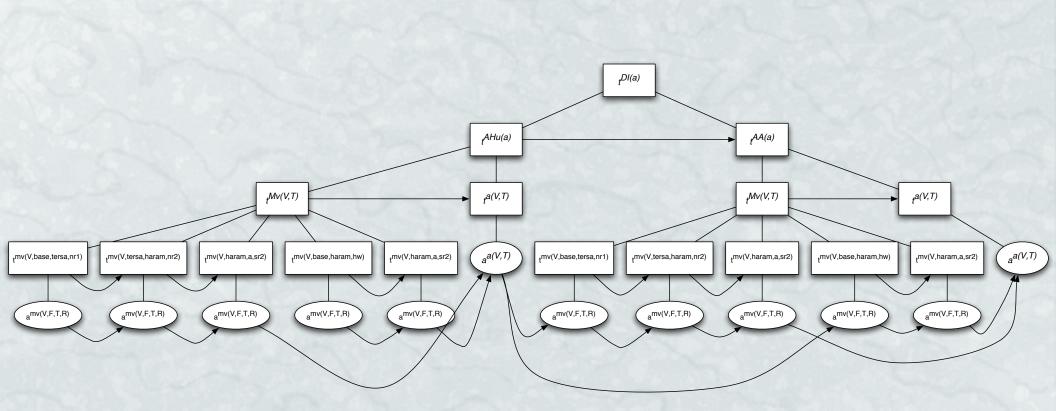
Markov Decision Process

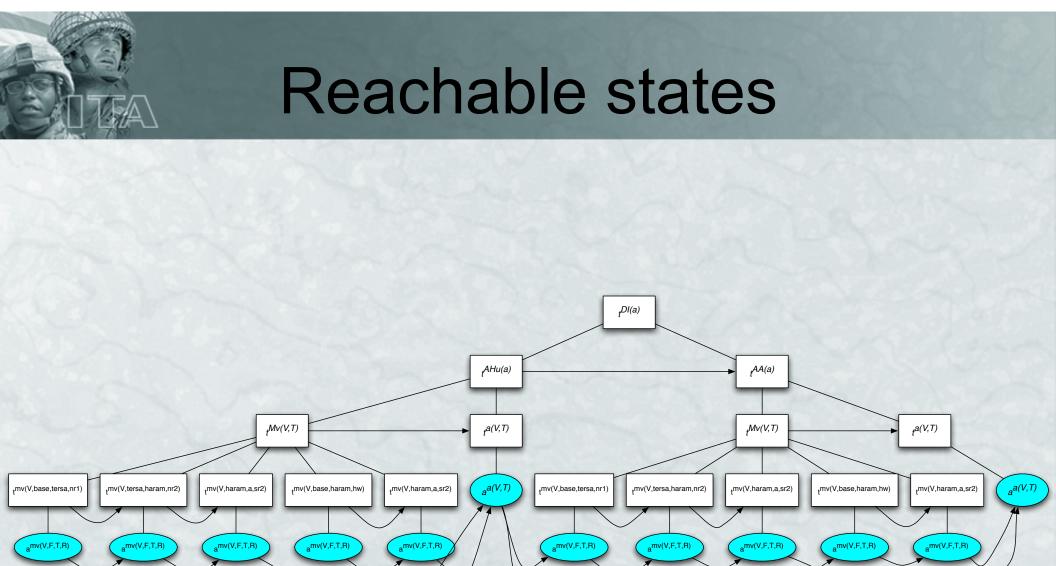
- MDP solver must consult the *entire* state space
- State-space reduction techniques include:
 - Factorization
 - ε-homogeneous aggregation

HTNs to represent MDPs

- We propose using HTNs to represent MDPs
- Advantages are twofold:
 - HTNs are more intuitive to SMEs
 - Resulting MDP state-space can be reduced using HTN methods as heuristic



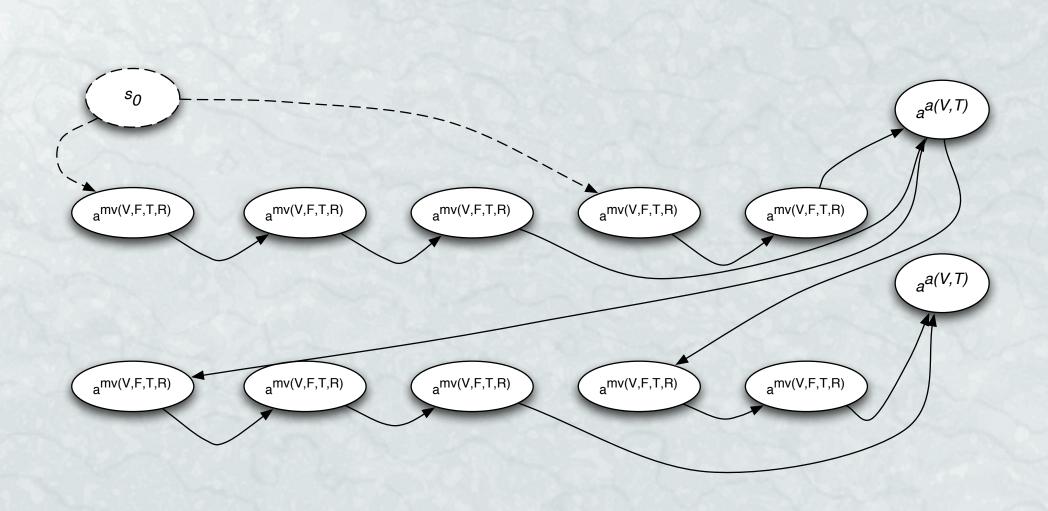




Conversion in a nutshell

- State-space comes from the reachable primitive actions induced my HTN methods
- Probabilities are uniformly distributed over a planner's choice
- Reward function can be computed using the target states at the end of a plan (Simari's approach)

Reachable States



Conversion example

	t0	t1	t2	t3	t4	t5	t6	t7	t8	t9	t10	t11	t12	t13	t14
t0	0	0.5	0	0	0	0.5	0	0	0	0	0	0	0	0	0
t1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
t2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
t3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t4	0	0	0	0	0	0	0	0	0.5	0	0	0	0.5	0	0
t5	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
t6	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
t7	0	0	0	0	0	0	0	0	0.5	0	0	0	0.5	0	0
t8	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
t9	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
t10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t12	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
t13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
t14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Increasing Efficiency

- State aggregation using Binary Decision Diagrams (BDDs):
 - BDDs are a compact way of representing multiple logic properties
 - One BDD can represent multiple (factored) states

Limitations and Future Work

Limitations

- Current conversion models only uncertainty from the human planner
- Probabilities uniformly distributed among choices
- Future Work
 - Evaluate *quality* of compression through εhomogeneity
 - Compute probabilities from the world

Conclusions

- Planning in coalitions is important
- Automated tools for planning need to have a representation amenable to SME
- Our technique offers advantages over either one of the the single approaches:
 - Representation using HTNs for SMEs
 - Underlying stochastic model for military planning using MDPs

QUESTIONS?