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Abstract—In the presence of vast amount of data and
their semantic representation, it is a formidable task for
a human decision-maker to effectively locate the most
relevant facts, identify critical conflicts, and master a
big picture of the information for high quality decision
making. This paper proposes a presentation framework
which applies argumentation-based reasoning to present
relevant facts and answers. Knowledge retrieved from a
distributed semantic KB are fed into an argumentation-
based reasoning engine which re-organizes the knowledge
into coherent arguments, estimates the beliefs of the
arguments, and analyzes the pattern of conflicts among
the arguments to preliminarily determine the acceptability
of these arguments for the decision-maker to review. In
order to lower the decision-maker’s cognitive load, the
argumentation is pruned to present only the arguments and
the conflicts that most likely concern the decision-maker.
This argumentation pruning algorithm can be adapted to
enable a decision-maker to interact with the system and
navigate through the information incrementally unfolding
the argumentation constructed for the answers.

I. INTRODUCTION

Gathering relevant information from multiple sources
is a critical requirement for effective decision making
during coalition operations. Such information is intended
to improve the knowledge and situation awareness of
military commanders to accomplish the tactical tasks at
hand. The networked information systems available to
modern militaries, as well as the vast array of sensors
now employed in intelligence gathering allow an un-
precedented amount of information to be collected and
disseminated to the all decision makers. This vast amount
of information creates many opportunities, but also puts
the decision maker in danger of being provided too much
information, so raw data is seldom directly presented
to decision makers, but rather, processed, summarized
and aggregated to allow a decision maker to create a

mental big-picture. It is widely understood that any kind
of information source (be it human or signals-based)
suffers from a degree of inconsistency and uncertainty,
as no sensor is perfect and human sources may suffer
from various biases. Thus, in order to improve the quality
of the decisions made based on such information, it is
critical to understand, process, abstract and characterize
the uncertainty and inconsistency while presenting the
resulting information.

In this paper, we propose a presentation framework
that applies argumentation-based reasoning to present
relevant facts and answers linked by reasons. The knowl-
edge are stored in distributed semantic web knowledge
bases. These knowledge bases are then required via an
ontological knowledge reasoner and answers are fed
into an argumentation-based reasoning engine which
re-organizes the knowledge into coherent arguments,
estimates the beliefs of the arguments, and analyzes
the pattern of conflicts among the arguments to prelim-
inarily determine the acceptability of these arguments
for a decision-maker to review (see Section V). In
order to lower the decision-maker’s cognitive load, the
argumentation is pruned to present only the arguments
and the conflicts that most likely concern the decision-
maker (see Section VI). The contribution of this paper
is bridging the gap between the knowledge and answers
with a formal model of human argumentation so as
to enable a decision-maker to review the inconsistency
and uncertainty handling in a manner similar to his/her
mental view.

II. A MOTIVATED SCENARIO

This work is motivated by the following scenario.
A military unit M needs to determine whether or not
to pass through a bridge named Rainbow. Relevant



information regarding the bridge is being gathered from
both sensors and human reports. Cameras and water
sensors are installed on and under the bridge. A UAV
flies over the bridge. The cameras on the bridge and
UAV can observe the bridge from different angles. The
water sensors are programmed to detect enemy vessels
passing under the bridge. All these sensors are federated
into a networked information system. There are also
two units, K and P , which are currently deployed to
the area near the bridge. Unit K is a surveillance unit
which is deployed to patrol the area. It has no capability
to effectively prevent any enemy from approaching the
bridge. Unit P is a well-armed force which is deployed
in a critical point on a path towards the bridge. Unit P
is capable to hold back the enemy to some extent. These
two units write reports into the networked information
system. The information provided by the sensors and
human reports typically contains uncertainty and incon-
sistency. The decision support system needs to locate
the relevant information, provide reasoning related to
the decisions, estimating the beliefs out of uncertainty,
preliminarily resolve the inconsistency for the decision-
maker to review.

III. KNOWLEDGE REPRESENTATION

We assume that we have a system of agents AGS =
{Agi}. Each agent Agi models a source of data (e.g.
sensors) or reports (e.g. human). An agent Agi has a
knowledge base which is composed of a fact base Σi
and a rule base ∆i:

Ki = 〈Σi,∆i〉.

Both the fact base and the rule base are represented in
a predicate language L based on a set P of symbols
with standard connectives ∧, ∨, →, ¬ and standard
semantics is assumed in this work. We further constrain
the domain of any term of a predicate in P to be finite
and no functional symbols are allowed for any term of
a predicate in P to make the set of grounded predicates
finite. An inference rule δ in a rule base ∆i is of the
form:

δ =
p1, ..., pm

c

where p1, .., pm, c ∈ L. The {pi} are the set of premises
of the rule δ, and a specific pi is denoted by pi(δ). c is the
conclusion of the rule, and is denoted by c(δ). Variables
are allowed in place of terms in predicates and rules with
standard substitution operations.

These facts and rules are stored as reified strings in
ontological knowledge bases along with their semantic
information in a manner similar to the YAGO model
[12]. The semantic information is concerned about the

predicates used in these facts and rules, such as their
identifiers and parameters. For rules, the semantic infor-
mation includes the information about the rule structure
such as antecedentPredicate for the predicates used in
the rule premises and consequentPredicate for the pred-
icates used in the rule conclusions. Due to the page
limit, we omit the details of the RDF representation.
The purpose of this RDF representation is to enable
the centralized argumentation-based reasoning engine to
retrieve knowledge from distributive knowledge bases
through a preliminary stage of ontological reasoning
using a distributive OWL-DL reasoner from our previous
work [4].

IV. ESTIMATING KNOWLEDGE WITH UNCERTAINTY

We adopt subjective logic [5], [6], [8] to probabilisti-
cally characterize the uncertainty of facts, rules and the
reasoning outcomes in terms of Dempster-Shafer theory
[11]. An agent Agi measures the elements of Σi ∪ ∆i

by a belief measurement

Mi : Σi ∪∆i 7→ B

which maps knowledge into a belief space:

B = {(b, d, u) | b > 0, d > 0, u > 0, b+ d+ u = 1}.

Let ϕ be a fact or a rule in Σi∪∆i. A belief measurement
Mi(ϕ) = (b, d, u) means that b is the probability that ϕ
is actually true; d is the probability that ϕ is actually
false; and u is the probability that ϕ is uncertain (that
for example, it is not known if ϕ is true or not).

We enable two sources of belief measurements: proba-
bility confidence intervals and discrete evidences. Prob-
ability confidences are obtained from algorithmic pro-
cessed outcomes of sensor data and human subjective
estimation. Discrete evidences are obtained from past
experiences of positive and negative outcomes.

A probability confidence interval is of the form:

CF (lp, up)

where lp and up are, respectively, the lower bound
and upper bound of the probability. For example, a
classification algorithm which processes camera video
may output a confidence level CF (0.40, 0.92) where
0.40 is the lower bound of the probability that the
camera sees an armed force and 0.92 is the upper
bound of such a probability. Following [16], a probability
confidence level CF (lp, up) can be translated into a
belief measurement as follows: 1) b = lp, 2) u = up−b,
and 3) d = 1−up. For example, CF (0.40, 0.92) can be
translated into a belief measurement (0.40, 0.08, 0.52).
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A discrete evidence is of the form

E(r, s)

where r is the number of positive outcomes and s is
negative outcomes for believing a fact, applying a rule, or
trusting another agent. Following [15], from an evidence
E(r, s) we can derive a belief measurement (b, d, u) as
follows: 1) b = c(r, s) r+1

r+s+2 , 2) d = c(r, s) s+1
r+s+2 ,

and 3) u = 1 − c(r, s). In the computation, c(r, s) =
1
2

∫ 1

0
|fr,s(x) − 1|dx is the certainty level which is

computed from a probability-certainty density function
fr,s(x) = xr(1−x)s∫ 1

0
xr(1−x)sdx

(see [15] for more discussion).
For example, seeing 10 times positive applications and
5 times negative applications of a rule, we can measure
the belief of the rule with (0.35, 0.17, 0.48) using the
above equations.

A belief measurement over a conclusion supported
by a set of facts and rules can be combined to form
the belief measurements over these facts and rules. For
demonstration purposes, in this paper we exemplify one
operator — the discounting operator ⊗ (taken from [15]).

Definition 1. Suppose M1 = (b1, d1, u1) and M2 =
(b2, d2, u2), then M = M1 ⊗M2 = (b, d, u) where 1)
b = b1b2, 2) d = b1d2, and 3) u = 1− b1b2 − b1d2.

Depending on the applications, other operators might be
introduced, such as those in [6], [15] and so on. The
incorporation of other operators into this presentation
framework is our future work.

V. ORGANIZING RELEVANT KNOWLEDGE INTO
ARGUMENTATION

This section introduces a formal model of argumen-
tation to 1) link reasons to their conclusions, 2) link
the reasons and conclusions that are in conflicts, and 3)
apply argumentation semantics [3] to preliminarily ana-
lyzing these conflicts in a manner analogous to human
argumentation.

A. Linking information into coherent arguments

Following the argumentation framework from our
previous work [13], we consider an argument to be
a data structure that records a coherent view of how
the facts and rules can be put together to support a
conclusion. Formally, we capture this as a directed
acyclic hyper-graph linking facts and rules from Σ ∪∆
to conclusions. In the following definitions, we take an
inference rule δ = p1,...,pm

c ∈ ∆ as a directed hyper-
edge 〈{p1, ..., pm}, {c}〉. With respect to graph drawing,
we choose to represent such a hyper-edge as a sub-graph

component G = 〈V,E〉 such that V = {p1, ..., pm, c, δ}
and E = {(p1, δ), ..., (pm, δ), (δ, c)}.

Definition 2. A rule network R is a connected directed
hyper-graph 〈V r, Er〉 where (1) the set of vertices V r

are elements of L; (2) the set of hyper-edges Er are
inference rules from ∆; (3) the initial vertices of an edge
e ∈ Er are the premises of the corresponding rule δ; and
(4) the terminal node of that edge is the corresponding
conclusion c.

Definition 3. An argument from a knowledge base Σ
and a rule base ∆ is a pair 〈h,H〉 where 1) H =
〈V r, Er〉 is a rule network such that every premise of
each δ ∈ Er is either a member of Σ or the conclusion
of some δ′ ∈ Er, and 2) h is the only sink of E.

In accordance with the usual terminology, H = 〈V r, Er〉
is the support of the argument, and h is the conclusion.
C(H) is the set of intermediate conclusions of H , the
set of all the conclusions of the δ ∈ Er other than h.
P (H) is the set of pure premises of H , the premises of
the δ ∈ Hr that are not intermediate conclusions of H .
∆(H) ⊆ ∆ — the generic rules in ∆ that have been
instantiated into Er through substitutions — is the set
of supporting rules of H .

Definition 4. The belief estimation of a conclusion h
given on its supporting argument 〈h,H〉 is defined as

M(h,H) =
⊗

ϕ∈P (H)

M(ϕ)⊗
⊗

δ∈∆(H)

M(δ)

Correspondingly, the belief, disbelief and uncertainty is
denoted by b(h,H), d(h,H) and u(h,H).

With the concept of arguments and the belief estima-
tion, we can now capture our motivated example with
the following 6 arguments1 in English.

Argument A1

Trust Unit “M” trusts the UAV (trust experiences: 10
positive and 5 negative)

Prem The UAV does not see any abnormal situation
on the Rainbow bridge (confidence interval:
CF (0.56, 0.94))

Rule If no abnormal situation is seen on a bridge,
then the bridge is clear (rule validity: 30 posi-
tive experiences and 2 negative experiences)

Concl The Rainbow bridge is clear (argument belief:
(0.40, 0.04, 0.56))

Argument A2

1In the arguments, we annotate a premise with “Prem”, annotate a
rule with “Rule”, annotate a conclusion with “Concl”, and annotate a
premise about trust specially with “Trust”.
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Trust Unit “M” trusts the camera installed on the
Rainbow bridge (trust experiences: 12 positive
and 5 negative)

Prem The camera sees an unidentifiable armed
force on the bridge (confidence interval:
CF (0.56, 0.94))

Rule If an unidentifiable armed force is seen on
a bridge, then the bridge is not clear (rule
validity: 9 positive experiences and 1 negative
experiences)

Concl The Rainbow bridge is not clear (argument
belief: (0.42, 0.04, 0.54))

Argument A3

Trust Unit “M” trusts unit “K” (trust experiences: 10
positive and 1 negative)

Prem Unit “K” sees an armed force identified as
“id001” at a location labeled by “l1” (confi-
dence interval: CF (0.48, 0.90))

Prem Unit “K” knows that location “l1” is a critical
point to the Rainbow bridge (confidence inter-
val: CF (0.48, 0.90))

Rule If an armed force is seen at a location LocX
which is a critical point to another location
LocY , then the armed force is likely moving
towards location LocY (rule validity: 20 posi-
tive experiences and 8 negative experiences)

Concl The armed force “id001” is moving to-
wards the Rainbow bridge (argument belief:
(0.27, 0.05, 0.67))

Argument A4

Trust Unit “M” trusts unit “P” (trust experiences: 10
positive and 1 negative)

Trust Unit “M” trusts unit “K” (trust experiences: 10
positive and 1 negative)

Prem Unit “P” strongly holds location labeled by “l2”
(confidence interval: CF (0.72, 0.96))

Prem Unit “P” knows that location “l2” is a critical
point between location “l1” and the Rainbow
bridge (confidence interval: CF (0.48, 0.90))

Prem Unit “K” knows that the armed force “id001”
is an enemy force (confidence interval:
CF (0.48, 0.90))

Prem Unit “K” sees an armed force identified as
“id001” at a location labeled by “l1” (confi-
dence interval: CF (0.48, 0.90))

Rule If an enemy force is moving from a location
LocX to another location LocZ but an inter-
mediate critical point LocY is strongly held,
then the enemy force is not able to move to
LocZ (rule validity: 20 positive experiences
and 5 negative experiences)

Concl The armed force “id001” is not able to
move to the Rainbow bridge (argument belief:
(0.39, 0.02, 0.59))

Argument A5

Trust Unit “M” trusts unit “K” (trust experiences: 10
positive and 1 negative)

Prem Unit “K” sees an armed force identified as
“id001” at a location labeled by “l1” (confi-
dence interval: CF (0.48, 0.90))

Prem Unit “K” knows that the armed force “id001”
is an enemy force (confidence interval:
CF (0.48, 0.90))

Prem Unit “K” knows that location “l1” is a critical
point to the bridge Rainbow (confidence inter-
val: CF (0.48, 0.90))

Rule If an armed force is seen at a location LocX
which is a critical point to another location
LocY , then the armed force is likely moving
towards location LocY (rule validity: 20 posi-
tive experiences and 8 negative experiences)

Rule If an enemy force is moving towards a location,
then such a location is not clear (rule validity:
20 positive experiences and 2 negative experi-
ences)

Concl The Rainbow bridge is not clear (argument
belief: (0.16, 0.03, 0.81))

Argument A6

Trust Unit “M” trusts the water sensor (trust experi-
ences: 6 positive and 4 negative)

Prem The water sensor detect an enemy vessel pass-
ing under the Rainbow bridge (confidence in-
terval: CF (0.48, 0.90))

Rule If an enemy vessel is detected under a bridge,
then the bridge is not clear (rule validity: 10
positive experiences and 5 negative experi-
ences)

Concl The Rainbow bridge is not clear (argument
belief: (0.30, 0.06, 0.64))

Let information coming from the bridge camera, the
UAV, the water-sensor (“W-Sensor”), unit “M” and “K”
be represented in the language L defined in Section III,
arguments A1—A6 can be automatically generated with
the algorithms and implementation described in [13],
[14]. The graphical representation of these arguments
can be found in Figure 1 where each argument is
bounded by a box. Inside each argument, information
sources (e.g. camera, UAV, and etc.) are depicted as
circles, the input facts and conclusions are depicted
by inner boxes, and rules are depicted by ovals. For
simplicity, only belief measurements on conclusions are
displayed.
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Fig. 1: An argumentation graph

B. Linking and filtering conflicting information

A key notion in argumentation is that arguments
defeat one another — that is, one argument casts doubt
on another by, for example, casting doubt on one of
the premises of the second argument — and that it is
possible to take a set of arguments that interact in this
way and analyze their acceptability. This notion of defeat
re-establishes conflicts among the information as defeat
links among the arguments.

Definition 5. An argument 〈h1, H1〉 defeats an ar-
gument 〈h2, H2〉 if it rebuts, premise-undercuts, or
intermediate-undercuts, where: (1) 〈h1, H1〉 rebuts ar-
gument 〈h2, H2〉 iff h1 ≡ ¬h2; (2) 〈h1, H1〉 premise-
undercuts 〈h2, H2〉 iff there is a premise p ∈ P (H2)
such that h1 ≡ ¬p; and (3) 〈h1, H1〉 intermediate-
undercuts 〈h2, H2〉 iff there is an intermediate conclu-
sion c ∈ C(H2) such that c 6= h2 and h1 ≡ ¬c.

In any case in which 〈h1, H1〉 defeats 〈h2, H2〉, 〈h1, H1〉
is said to be a defeater of 〈h2, H2〉, and 〈h2, H2〉 is
said to be the defeatee. The relation DFT collects all
pairs (〈h1, H1〉, 〈h2, H2〉) such that 〈h1, H1〉 defeats
〈h2, H2〉.

To arbitrate two arguments that defeat each other, a
preference relation PREF over arguments can be de-
rived from their belief measurements to capture relative

strength of the arguments.

Definition 6. Given two arguments A1 = 〈h1, H1〉 and
A2 = 〈h2, H2〉 with belief measurements computed, we
can define a preference PREF: (A1, A2) ∈ PREF iff (1)
b(h1, H1) > b(h2, H2), or (2) b(h1, H1) = b(h2, H2)
and u(h1, H1) > u(h2, H2).

This is essentially comparing the two probability confi-
dence intervals of the two arguments.

Definition 7. Let PREF be a preference relation and
DFT be a defeat relation on a set of arguments ARG.
A preference-refined defeat relation PDFT can be de-
fined for any two arguments A1 and A2 in ARG as:
(A1, A2) ∈ PDFT iff (A1, A2) ∈ DFT but (A2, A1) 6∈
PREF.

With a preference-refined defeat relation PDFT, we ob-
tain an abstract preference-based argumentation frame-
work

AFD = 〈ARG,PDFT〉

which is in essence by discarding defeat relations where
the defeatee is preferred to the defeater. Now with
preference derived from belief measurement, our running
scenario becomes Figure 2.
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Fig. 2: Abstract argumentation modified by belief measurements

C. Analyzing acceptability

With a preference-based argumentation framework
AFD = 〈ARG,PDFT〉, the acceptability of an argument
A can be characterized by the following intuitive prin-
ciples modeling human argumentation:

1) A is accepted (labeled as “IN”) if it has no de-
featers, or all its defeaters are rejected.

2) A is rejected (labeled as “OUT”) if it has at least
one accepted defeater.

3) Otherwise, the acceptability of A is undecided
(labeled as “UNDEC”).

Formally, we define a legal labeling function Lacc for
argumentation

Lacc : ARG 7→ {IN, OUT, UNDEC}

if it satisfies the above three principles. Note that it is im-
possible to have two or more arguments with conflicting
conclusions to be accepted at the same time (by the 2nd
principle). This guarantees that the set of conclusions
of the accepted arguments is consistent. However, it is
possible to have two or more arguments with conflicting
conclusions to be rejected at the same time. Discussions
on on argumentation semantics and labeling are out of
the scope of this paper. References can be found in [1]–
[3], [9].

With the implementation in our previous work [13],
[14], an argumentation semantic labeling can be com-
puted for our running scenario. The result is shown in
Figure 2 where accepted (“IN”) arguments are in blue
color, and rejected (“OUT”) arguments are in gray color.
In Figure 2, we have 3 accepted arguments —A2, A4
and A6 — of which two support that the Rainbow
bridge is not clear, and one supports that “id001” is
not moving to the bridge. We have another 3 rejected
arguments — A1, A3 and A5 — of which one supports
that the Rainbow bridge is clear, one supports that the
Rainbow bridge is not clear, and another one supports
that “id001” is moving to the bridge. Looking at the
details, A4 concludes that the enemy is not moving to

Rainbow because the enemy will be held back by unit
P . A4 has no defeaters, so A4 is “IN”. As a result, A5
which is effectively undercut by A4 is “OUT”. Zooming
into the details, A4 defeats A5 by defeating a sub-
argument A3 of A5 — A3 is “OUT”. Both A2 and A6
have no defeaters, therefore they are both “IN”. Now the
preliminary analysis of the argumentation acceptability is
completed. At this point, the decision-maker might want
to manually modify the status of some arguments (e.g.
from “IN” to “OUT”, “UNDEC” to “IN”, and etc.) if
he/she has external reasons (e.g based on the information
which is not captured in the automatic system) to do so.
After the decision-maker manually modified the argu-
ment status, the automatic system applies the 3 principles
iteratively to update the other arguments accordingly
enabling the decision-maker to see how his/her external
reasoning can be propagated to other arguments. We will
evaluate the utility of this approach with a user study in
our future research.

VI. PRESENTING ARGUMENTATION

The argumentation, belief measurement and the ac-
ceptability analysis established in the previous sections
capture a logical structure over the facts, the answers
and their conflicts. The logical structure is readily un-
derstood by a decision-maker. However, in bigger net-
worked information systems and real word scenarios,
the argumentation graph easily become formidable large.
Algorithm 1 provides a basic presentation framework to
take into account the end user’s need to display only
a subgraph of the argumentation that the end user is
concerned about. Algorithm 1 takes as parameters an
ontology O composed of the predicates which the end
users would be interested in, an argumentation graph G
which is established during the reasoning stage, and a
node X in G which corresponds to a conclusion with
respect to a query. Overall, Algorithm 1 enables us to
achieve the follows:
Interactive exploration: Starting with the conclusion
of an argument which is “IN” and has the highest
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belief measurement, then the user clicks on a conclusion
node to expand the argument of the conclusion. From
this expanded argument, the user can continue clicking
on the premises, the intermediate conclusions and the
rules which have defeaters to expand into a deeper
investigation related to the answers. This can be achieved
by incrementally enlarge the set of predicates in O.
Presenting alternative answers: We first retrieve the
relevant concepts on trust and the query from the
meta-information ontology knowledge base: OQT ≡
{clear} t {trust}. Then we invoke Algorithm 1 with
OQT . For example, applying these two steps on the argu-
mentation graph of Figure 1, we can obtain Figure 3. The
decision-maker now can focus on alternative answers
along with their acceptability, their belief measurements
and the information sources.
Exploring defeat links: We first retrieve the relevant
concepts on trusts, the query, and the defeating points
from the meta-information ontology knowledge base:
OQTD ≡ OQT t O+1(DFT) where O+1(DFT) is the
concepts which is with distance 1 to the defeating points
in the argumentation graph. It can be obtained by investi-
gating the argumentation graph near the defeating points:
O+1(DFT) = {movingTo, seeArmedForce, enemy}.
The result is in Figure 4 where the defeating reasoning
from unit “P” is highlighted.
Proactive presentation for the underlying tasks:
Through modeling the underlying tasks along with their
information plans [7], we can learn what are the concepts
related to the next steps in the underlying tasks and then
carry out the argumentation-based reasoning and bring
up the most relevant subgraph of the argumentation to
the users. This is one of our future direction.

VII. CONCLUSIONS

In this paper, we propose a presentation framework
that applies argumentation-based reasoning to present
relevant facts and answers linked by reasons. An
argumentation-based reasoning engine re-organizes the
knowledge into coherent arguments, estimates the beliefs
of the arguments, and analyzes the pattern of conflicts
among the arguments to preliminarily determine the
acceptability of these arguments for a decision-maker to
review. The resulting argumentation is pruned to present
only the arguments and the conflicts that most likely
concern the decision-maker. This presentation is based
on a formal model of human argumentation making
the presentation approximate a human decision-maker’s
mental model of the information.

Future work concerns the integration of inconsistency
and uncertainty handling with the distributed reasoner
from our previous work [4] for scalability and efficiency.

Algorithm 1: Prune reasoning using ontology:
PruneReasoning(O, G,X):
Input: (1) O: A set of relevant concepts; (2)

G = 〈V,E〉: An argumentation graph; (3)
X: A node in the argumentation graph

if X has be investigated before then
return {Node(X)} ;

if X ∈ O then
Create a node u = Node(X) for X;
for each (u, v) ∈ E do

S ← PruneReasoning(O, G, v);
for each w ∈ S do

Add (u,w) to E ;

return {u};
else

D ← ∅;
for each v such that (X, v) ∈ E do

S ← PruneReasoning(O, G, v);
D ← D ∪ S;

if X is a conclusion and D contains no
elements of the argument concluded on X then

return ∅;
return D;

Another direction is to adapt the presentation to the hu-
man user’s mental model. This can be achieved through
accommodating human user’s mental ontology profile in
the ontological knowledge bases and reason about the
concepts to be used in the presentation. To link facts to
conclusions, a large collection of rules are needed. This
requires efforts. One possible remedy is to automatically
learn inference rules (possibly in a restricted form to
limit the computational complexity) from free text re-
ports or knowledge bases of the human user’s using the
approaches such as [10]. As we enable inconsistency and
uncertainty handling, the requirement for correctness and
accuracy of the rule learning can be relaxed to some
extent. Finally, we need to develop evaluation model to
study the effectiveness of the presentation.
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