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Introduction



Introduction

• Reinforcement learning focuses on maximizing the total reward of an

agent through repeated interactions with an environment.

• In traditional approaches an agent must explore a substantial sample

of the state-space before convergence

• Thus, traditional approaches struggle to converge when faced with

large state-spaces (≥ 10k states).

• Most “real world” problems have much larger state-spaces. E.g.

chess.

• Alternatively, we can generate hypotheses of state features and try

to generalize the reward function

• However, this depends on good features and a good function

hypothesis
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Introduction

• Intuition of behind our work:

• Compress traditional state representations domain-independently

• Use traditional reinforcement learning on the compressed state-space

• Aggregate experience from multiple, similar agents

• Main challenges:

• How do we create a faithful representation of the states?

• How do we address combinatorial explosion of multiple, parallel

agent actions?

• Technical approach:

• Learn a compressed state representation using deep auto-encoders

• Reduce combinatorial explosion of RTS games by learning for

individual unit types (in lieu of solving a Dec-MDP)
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Background



MicroRTS

• Real Time Strategy (RTS) games are a very challenging gaming

environment for AI control (branching factor on the order of 1050)

• MicroRTS is an abstract simulation environment with similar rules to

fully fledged RTS games (e.g. StarCraft, Command and Conquer).

• Much simpler to modify and test

• Only 4 types of units and 2 structures

• Open AI integration API

• Used as testbed for AI planning and MCTS approaches for RTS

control
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MicroRTS

Figure 1: MicroRTS game state.
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Approach

We use two key techniques to converge to a policy in RTS games:

• Train a deep auto-encoder to mitigate the state-space size

• Unit Q-Learning to mitigate the branching factor
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Deep auto-encoders

Figure 2: Deep auto-encoder.
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Deep auto-encoder for state-space compression

Our approach to compressing the state-space consists of 3 steps:

1. design a binary representation for the state space, the raw encoding ;

2. design an auto-encoder that takes as input the raw encoding and

narrows it into 15 neurons (bits), creating a canonical encoding ; and

3. train the network using state-action pairs from the MicroRTS game.
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Deep auto-encoder

Assuming a trained encoder E (s, a), we modify the Q-learning update so

that the tables are mapped through E (s, a):

Q(E (s, a))← Q(E (s, a)) + α(R(s) + γmax
a

Q(E (s ′, a′))− Q(E (s, a)))

• We train the auto-encoder offline with a fixed dataset of AI

MicroRTS matches;

• Since we encode all updates through E (s, a), the Q-table consists

exclusively of encoded pairs.
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Training the auto-encoder

• To train the auto-encoder, we first model all binary features of the

MicroRTS game state, e.g.:

• the position of all units from the player and the enemy;

• health of the player and enemy bases; etc

• We use two Random strategies available from MicroRTS to generate

a training dataset for the auto-encoder

• These strategies execute random actions, generating multiple

state-action pairs with each player’s units scattered around the map

• Finally, we train the auto-encoder using this dataset
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Unit Q-Learning

• Each player action in a MicroRTS game state is the combination of

actions for all units on the map

• Resulting in more than 35 actions turn

• To avoid dealing with this very large branching factor, we use

independent learning, which analyzes the best action for each unit

locally.

• each unit generates an independent Q-Learning update.

• the overall player action then becomes the group of the best action

of each unit.

• At the end of each learning episode:

• units of the same role share their experience, building a unified table

for the role using the algorithm below

Q(s, a) =

∑agents
i=0 Qi (s, a) ∗ frequency(Qi (s, a))

frequency(Q(s, a))

• this table is used as the base for new episodes.
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Unit Q-Learning

Figure 3: Unit Q-Learning process life cycle.
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Experiments and Results



Experiment Setup

• All tests were made in the 8x8 grid scenario of MicroRTS.

• The computer used for the experiments has the following

specifications:

• Intel CPU I5 2.7ghz.

• 8GB RAM.

• Java VM 1024 GB.

• 6M Cache.

• When matching against other strategies to evaluate our win rate, we

trained using 200 games, and then played 20 games with learning

disabled.

12



Separate Roles for Workers

• Workers in MicroRTS can be used for both harvesting resources and

attacking other units.

• To avoid this problem when merging the tables, we separate workers

in two types, the harvesters and the attackers.

• The difference is that the harvester workers are rewarded for

gathering resources.

• Both are rewarded for attacking enemy units.

• Other units (heavy, light, ranged) are considered attackers.
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Convergence Results
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Figure 4: Convergence of Attacker and Harvester.

14



Q-table size Results
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Figure 5: Q-Table size of Attacker and Harvester.
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Comparison against other Strategies/Algorithms

Strategies Wins Draws Losses Win rate Score

Passive 20 0 0 100% + 20

Random 20 0 0 100% + 20

Random Biased 20 0 0 100% + 20

Heavy Rush 20 0 0 100% + 20

Light Rush 20 0 0 100% + 20

Ranged Rush 20 0 0 100% + 20

Worker Rush 9 4 7 45% + 2

Monte Carlo 17 3 0 85% + 17

NaiveMCTS 6 6 8 40% - 2
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Experiments

Finally, we analyzed the time for each approach to execute 10 cycles,

which is the shortest period for any action in MicroRTS.

Strategies Average time (s) Maximum time (s)

Passive 0s 0s

Random ∼0s ∼0s

Random Biased ∼0s ∼0s

Heavy Rush 0.001s 0.05s

Light Rush 0.001s 0.01s

Ranged Rush 0.001s 0.03s

Worker Rush 0.05s 0.1s

Monte Carlo 2.0s 2.303s

NaveMCTS 2.0s 2.545s

Our approach 0.3s 0.511s
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Conclusion

• We developed an approach to play RTS games using traditional

Q-learning distributed over multiple units with compressed Q-tables:

• The combination of approaches obtained promising results in the

MicroRTS;

• Converged to a policy analogous to the best fixed strategy

• As future work:

• Evaluate the performance using other auto-encoders, such as the

denoising stacked auto-encoder.

• Learn the reward function using inverse reinforcement learning on the

already implemented strategies.
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Thank You
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Related Work



Distributed Reinforcement Learning

• Nair, A. et al. Massively parallel methods for deep
reinforcement learning. 2015.

• Nair presents a distributed RL architecture to play Atari games.

• The state is the game image encoded by a deep neural network.

• Multiple instances of the environment are used to accelerate the

training.
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Multi-agent Reinforcement Learning

• Zhang, C.; Lesser, V. Coordinating multi-agent reinforcement
learning with limited communication. 2013.

• Multiple agents acting in the same environment.

• They learn independently.

• Independent learning can not ensure convergence to an optimal

policy.

• Policy coordination is required to build a global policy.
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