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Abstract Configuring databases for efficient querying is a complex task, often carried out
by a database administrator. Solving the problem of building indexes that truly optimize
database access requires a substantial amount of database and domain knowledge, the lack of
which often results in wasted space and memory for irrelevant indexes, possibly jeopardizing
database performance for querying and certainly degrading performance for updating. In
this paper, we develop the SMARTIX architecture to solve the problem of automatically
indexing a database by using reinforcement learning to optimize queries by indexing data
throughout the lifetime of a database. We train and evaluate SMARTIX performance using
TPC-H, a standard, and scalable database benchmark. Our empirical evaluation shows that
SMARTIX converges to indexing configurations with superior performance compared to
standard baselines we define and other reinforcement learning methods used in related work.

Keywords artificial intelligence · reinforcement learning · database · indexing

1 Introduction

Despite the multitude of tools available to manage and gain insights from very large datasets,
indexing databases that store such data remains a challenge with multiple opportunities for
improvement [31]. Slow information retrieval in databases entails not only wasted time for
a business but also indicates a high computational cost being paid. Unnecessary indexes
or columns that should be indexed but are not, directly impact the query performance of
a database. Nevertheless, achieving the best indexing configuration for a database is not a
trivial task [5, 6]. To do so, we have to learn from queries that are running, take into account
their performance, the system resources, and the storage budget so that we can find the best
index candidates [18].

One of the options to improve database query performance is by creating indexes [21].
Indexes are usually created by Database Administrators (DBAs) either proactively during
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the schema implementation, or reactively according to the response time of the most ex-
ecuted queries. Most recent versions of Database Management Systems (DBMS), such as
Oracle [14] and Azure SQL Database [19], can automatically adjust indexes by itself. How-
ever, the usual scenario is that the DBMS just helps to decide when and where to create
an index by offering recommendations and statistics for optimizing queries, being the final
decision taken by the DBA.

In an ideal scenario, all frequently queried columns should be indexed to optimize
query performance. Since creating and maintaining indexes incur a cost in terms of stor-
age as well as in computation whenever database insertions or updates take place in indexed
columns [21], choosing an optimal set of indexes for querying purposes is not enough to
ensure optimal performance, so we must reach a trade-off between query and insert/update
performance. Thus, this is a fundamental task that needs to be performed continuously, as
the indexing configuration directly impacts on a database’s overall performance.

We developed an architecture for automated and dynamic database indexing that eval-
uates query and insert/update performance to make decisions on whether to create or drop
indexes using Reinforcement Learning (RL). Our architecture allows continuous assess-
ment and automatic modification of the database index configuration, according to the per-
formance tests. We modeled the state of the environment as the set of currently indexed
columns and measure agent performance in this environment through a standardized set of
queries, insertions and deletions, which we refer to as the database workload. The result-
ing agent then explores this environment to find the optimal set of indexes concerning the
current workload.

We performed experiments using a scalable benchmark database, where we empirically
evaluate our architecture results in comparison to standard baseline index configurations,
database advisor tools, genetic algorithms, and other reinforcement learning methods ap-
plied to database indexing. The architecture we implemented to automatically manage in-
dexes through reinforcement learning successfully converged in its training to a configu-
ration that outperforms all baselines and related work, both in performance and in storage
usage by indexes.

2 Background

In this section, we review the reinforcement learning concepts and methods we use to
model our agent for performing indexing in relational databases, followed by an overview
of database indexing and the database benchmark we used to measure agent performance.

2.1 Reinforcement Learning

Reinforcement learning is the closest machine learning paradigm to how humans learn, with
its algorithms strongly inspired by biological aspects [23, Ch. 1, p. 4]. It is characterized by
a trial-and-error learning method, where an agent interacts and transitions through states of
an environment by taking actions and observing rewards [23, Ch. 1, p. 1-2]. The objective
of a reinforcement learning agent is to maximize its accumulated reward in the environment
the agent is acting on, ultimately leading a policy specifying which actions maximize the
utility in each state.

Reinforcement learning is an approach to learn optimal agent policies in stochastic en-
vironments modeled as Markov Decision Processes (MDPs) [3]. It is characterized by a
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trial-and-error learning method, where an agent interacts and transitions through states of
an MDP environment model by taking actions and observing rewards [23, Ch. 1, p. 1-2].
These MDP environment models can be formally defined as a tuple M = 〈S ,A ,P,R,γ〉,
where S is the state space, A is the action space, P is a transition probability function
which defines the dynamics of the MDP, R is a reward function and γ ∈ [0,1] is a discount
factor [23, Chapter 3].

The way agents an agent behaves in an MDP environment is by following a policy, which
is a function that maps states to actions [23, Ch. 1, p. 6]. After taking an action at a given
state, an immediate reward is given to the agent as feedback from the environment [23,
Ch. 1, p. 6]. The solution to an MDP, thus, is a policy π that maximizes the reward an
agent receives over the long run. The expected reward is estimated by a state-action value
function Qπ that, for each state-action pair, returns a value computed based on the amount of
reward an agent might expect in the long run by taking a particular action on that state. The
value function for a state-action pair, following a policy π , is computed using the Bellman
Expectation Equation [23, Ch. 3, p. 62]:

Qπ(s,a) = Eπ [rt+1 + γqπ(st+1,a′) | s,a] , (1)

where expectation operator E determines that the value of a given state-action pair is an
average value of what is expected from its successor states in the long run. Suppose there
are two policies π and π ′, π is better than π ′ if Qπ(s,a) > Qπ ′(s,a), where Qπ(s,a) is the
utility of a state-action pair estimated by the value function under a policy π [23, Ch. 3,
p. 62]. The optimal solution, thus, is a policy π∗ that is better than or equal to all other
policies [23, Ch. 3, p. 62].

In order to solve an MDP, however, an agent needs to know the state-transition and
the reward functions. In most realistic applications, modeling knowledge about the state-
transition or the reward function is either impossible or impractical, so an agent interacts
with the environment taking sequential actions to collect information and explore the search
space by trial and error [24]. The Q-learning algorithm is the natural choice for solving
such MDPs [25]. This method learns the values of state-action pairs, denoted by Q(s,a),
representing the value of taking action a in a state s [26]. The basic idea of the algorithm is
to use the update function of Equation 2 to incrementally estimate values of Q(s,a) based
on reward signals from each action taken.

Q(s,a)← Q(s,a)+α(r+ γmaxa’Q(s′,a′)−Q(s,a)) (2)

The most naïve implementation of Q-learning relies on storing state-action values using
tabular structures. The problem with tabular structures is that, when we have a large state
space and branching factor, it is infeasible to visit all state-action pairs enough times that
the estimates of their values are close enough to the true value to be able to compute an
optimal policy [23, Chapter 9, pp 196-197]. Assuming that states can be described in terms
of features that are well informative, such problem can be handled by using linear function
approximation, which is to use a parameterized representation for the state-action value
function other than a look-up table [29]. The simplest differentiable function approximator
is through a linear combination of features, though there are other ways of approximating
functions such as using neural networks [23, Ch. 9, p. 195].

We approximate state-action values using Equation 3

Q̂(s,a)← θ0 +θ1 f1(s)+θ2 f2(s)+ · · ·+θn fn(s) (3)
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where θ ∈Θ is a parameter associated to a state feature f ∈ F . We adjust its parameters
through agent experience to approximate the true state-action value function by employing
gradient descent in the error with regard to each feature parameter:

θi← θi +α[r(s)+ γmaxa′Q̂θ (s′,a′)− Q̂θ (s,a)]
∂ Q̂θ (s,a)

∂θi
(4)

Using Equation 4, we adjust our Θ parameters in the direction of decreasing the error
after each trial [29]. Function approximation allows us to estimate the value function of
new state-action pairs by generalizing from known state-action pairs. This means that we
can predict state-action values by learning and updating Θ parameters throughout algorithm
iterations.

However, these approximations can produce higher variance updates in the value func-
tion, which can result in steps that greatly vary in size and lead to parts of the space with a
different gradient [23, Ch. 11, p. 283]. In order to avoid oscillations in the parameters, litera-
ture employs a method called experience replay [12]. This method stores agent’s experience
tuples e = 〈s,a,r,s′〉 at each time-step in a replay memory D = {e1, . . . ,en}. At each time
step, multiple updates are performed based on a mini-batch of experiences, e∼ D, sampled
uniformly at random from the replay memory [23, Ch. 16, p. 440]. The aim is to reduce the
variance of updates as successive updates are not correlated with one another as they would
be with standard Q-learning [12].

2.2 Indexing in Relational Databases

A DBMS is a software designed to manage databases and facilitate organizing collections
of data efficiently [21, Ch. 1, p. 4]. In particular, we address relational DBMSs, which are
based on the relational model [21, Ch. 1, p. 10], where data collections can be thought as
tables whose rows represent records and columns represent attributes [21, Ch. 3, p. 60]. The
way a DBMS stores data internally is through files, each of which consists of pages [21,
Ch. 8, p. 273]. However, it is not trivial to maintain these records organized in order to
facilitate data retrieval. For example, maintaining a set of numeric records sorted can be a
good strategy for later retrieval, though it becomes computationally expensive when records
are constantly modified [21, Ch. 8, p. 274].

An important technique to file organization in a DBMS is indexing [21, Ch. 8, p. 274].
Indexes are data structures that optimize retrieval operations with regard to a search key.
Suppose there is a set of records containing attributes age and salary, such that these are
sorted according to the age attribute. This organization facilitates the searching for records
using the key age, but searching for salary can be computationally expensive, even requiring
a complete sweep of the records in the worst case. If an index with the salary key was
available, searches involving salary could be significantly improved [21, Ch. 8, p. 276].

The way indexes are organized depend on the data structure it uses. The two main tech-
niques to maintain data indexed are hash-based and tree-based [21, Ch. 8, p. 278] structures.
The former technique organizes records by hashing records according to a search key, and
these are grouped into buckets according to a hash function [21, Ch. 8, p. 279]. The latter
technique organizes records using a tree-like structure, which arranges records in a sorted or-
der and directs the search trough intermediate tree levels until leaves containing data entries
are reached [21, Ch. 8, p. 280].
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The type of an index depends on the attributes it comprises. Indexes can be created both
on attributes that are primary keys (a record’s unique identifier) or secondary keys (non-
unique attribute values), respectively called primary indexes and secondary indexes [21, Ch.
8, p. 277]. The difference is that a primary index is guaranteed to be unique, while secondary
indexes can contain duplicates, which means that search keys on secondary indexes can lead
to more than one record [21, Ch. 8, p. 278]. Indexes can also be composite when one is
created to comprise more than one attribute. Composite indexes can be beneficial when the
search key includes conditions on more than one attribute, thus supporting a broader range
of queries [21, Ch. 8, p. 296].

Indexing is a task usually undertaken by the Database Administrator (DBA), a person
who has considerable domain knowledge in order to make such decisions [21, Ch. 8, p.
291]. Although indexes are helpful in improving query performance, creating too many
indexes will slow down INSERT, UPDATE, and DELETE operations. This is due to the fact
that, whenever one of these operations affects a record, the whole collection of records and
indexes have to be updated in order to match the organization being maintained, which
implies in a computational overhead [21, Ch. 8, p. 290-291]. Consequently, there is a trade-
off in the number of indexes one might want to have and the computational overhead one is
willing to pay [21, Ch. 20, p. 654]. Thus, the DBA has to balance this trade-off to achieve
the best performance.

Techniques for index selection without the need of a domain expert is a long-time re-
search subject and remains a challenge due to the problem complexity [31, 6, 5]. The idea
is that, given the database schema and the workload it receives, we can define the problem
of finding a proper index configuration that optimizes database operations [21, Ch. 20, p.
664]. The complexity of this task comes from the potential number of attributes that can be
indexed and all of its subsets. Suppose we have n attributes that compose our records, let us
calculate the number of different indexes we can create. We have n choices of attributes for
the first index, n−1 for the second, such that for an index with up to c attributes we have

c

∑
i=1

n!
(n− i)!

(5)

possibilities in total. That is, for collections of records with 10 attributes, there are 10 differ-
ent possibilities of 1-attribute indexes, 90 different possibilities of 2-attribute indexes, and
30240 different possibilities of 5-attribute indexes [21, Ch. 20, p. 654].

While DBMSs strive to provide automatic index tuning, the usual scenario is that per-
formance statistics for optimizing queries and index recommendations are offered, but the
DBA makes the decision on whether to apply the changes or not. Most recent versions of
DBMSs such as Oracle [14] and Azure SQL Database [19] can automatically adjust indexes.
However, it is not the case that the underlying system is openly described. The former does
not explain the strategy and techniques used to accomplish it. The latter goes slightly into
more detail by briefly describing the actions it performs: it identifies indexes that could im-
prove the performance of queries that read data from the tables; and identifies the redundant
indexes or indexes that were not used in a longer period of time that could be removed [19].

A general way of evaluating DBMS performance is through benchmarking. Since DBMSs
are complex pieces of software, and each has its own techniques for optimization, external
organizations have defined protocols to evaluate their performance [21, Ch. 20, p. 682].
The goals of benchmarks are to provide measures that are portable to different DBMSs and
evaluate a wider range of aspects of the system, e.g., transactions per second and price-
performance ratio [21, Ch. 20, p. 683].
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2.3 TPC-H Benchmark

TPC1 stands for Transaction Processing Performance Council, a well-known non-profit cor-
poration that produces benchmarks to measure database performance [28]. The identifier
"H" represents one of its decision support benchmark versions. The TPC-H is a good proxy
for querying tasks because it has business-oriented ad-hoc queries that can scale to large
volumes of data. Its relational model is composed of 8 tables, briefly described as follows:

– REGION: contains the continents of the world.
– NATION: contains a list with some countries of the world.
– CUSTOMER: a person who buys parts from suppliers.
– SUPPLIER: an organization that provides parts.
– PART: pieces made available by suppliers.
– PARTSUPP: the relationship between suppliers and parts.
– ORDERS: data related to purchase orders.
– LINEITEM: the biggest table in the dataset. It contains details of all orders of each cus-

tomer, with a list of their parts.
The tools provided by TPC-H include a database generator (DBGen) able to create up

to 100 TB of data to load in a DBMS, and a query generator (QGen) that creates 22 queries
with different levels of complexity. Using the database and workload generated using these
tools, TPC-H specifies a benchmark that consists of inserting records, executing queries,
and deleting records in the database to measure the performance of these operations. Based
on the benchmark, we gather outputs from three metrics, named QphH@Size, Power@Size,
and T hroughput@Size. The resulting values are related to its scale factor (@Size), i.e., the
database size in gigabytes.

The TPC-H Performance metric is expressed in Queries-per-Hour (QphH@Size), which
is achieved by computing the Power@Size and the T hroughput@Size metrics [27]. The
Power@Size evaluates how fast the DBMS computes the answers to single queries. It is
composed of: (1) the first Refresh Function (RF1) that inserts into tables ORDERS and
LINEITEM a set of 0.1% of records based on the initial population of these two tables; (2)
a single query stream composed of 22 queries generated by QGen; (3) the second Refresh
Function (RF2), that drops the same percentage of rows as the RF1. This metric is computed
using the formula in Equation 6:

Power@Size =
3600

24
√

π22
i=1QI(i,0)×π2

j=1RI( j,0)
×SF (6)

where 3600 is the number of seconds per hour and QI(i,s) is the execution time for each
one of the queries i. RI( j,s) is the execution time of the refresh functions j in the query
stream s, and SF is the scale factor or database size, which may range from 1 to 100,000
according to its @Size. As the Power@Size metric is based on the geometric mean, the root
of the product is the overall execution time from one stream (22 queries) and the two RFs.

The T hroughput@Size measures the ability of the system to process the most queries
in the least amount of time, taking advantage of I/O and CPU parallelism [27]. It computes
the performance of the system against a multi-user workload performed in an elapsed time,
using the formula in Equation 7:

T hroughput@Size =
S×22

TS
×3600×SF (7)

1 TPC: http://www.tpc.org/

http://www.tpc.org/
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where S is the number of query streams executed, and TS is the total time required to
run the throughput test for s streams. Equation 8 shows the Query-per-Hour Performance
(QphH@Size) metric, which is obtained from the geometric mean of the previous two met-
rics and reflects multiple aspects of the capability of a database to process queries.

QphH@Size =
√

Power@Size×T hroughput@Size (8)

Since the QphH@Size metrics summarizes both single-user and overall database per-
formance, we consider this to be an informative reward signal for our agent, as we see in
Section 4.

3 SMARTIX

In this section, we introduce SMARTIX, a reinforcement learning agent to automatically
choose indexes in relational databases. The main motivation of SMARTIX is to abstract
the database administrator’s task that involves a frequent analysis of all candidate columns
and verifying which ones are likely to improve the database index configuration. For this
purpose, we use reinforcement learning to explore the space of possible index configurations
in the database. Reinforcement learning is exactly the technique that solves the problem of
finding an optimal strategy over a long time horizon while improving the performance of an
agent in the environment. To evaluate the SMARTIX agent, we use the database provided by
TCP-H and its benchmarking protocol in order to evaluate the index configurations explored
by the agent.

The agent works based on five components, which are illustrated in Figure 1. The
Database State Representation component converts the information about the existing in-
dexes in the database into an agent state. The Performance Benchmarking component com-
putes the performance metrics (e.g., QphH@Size) from the current database index config-
uration, which we use as a reward signal. The Learning Algorithm predicts the state-action
values using function approximation and updates its parameters based on the algorithms
from Section 2.1. The Exploration Function is responsible for choosing an action to be ex-
ecuted in the database, either to exploit the learned information or to explore by choosing
sub-optimal actions. Finally, the Action Execution component sends to the database an in-
dexing option according to the previously chosen action.

3.1 Problem Formalization

We start analyzing the problem by verifying the number of columns available to index in the
database. For that, we map for each table in the TPC-H database the total number of columns
it contains, separated by the columns that are indexed by default (primary and foreign keys,
which are not modified by the agent), and the remaining columns that are available for
indexing. These numbers are shown in Table 1 and, by summing the number of indexable
columns in each table, we have a total of 45 columns that are available for indexing.

Considering that a column is either indexed or not, there are two possibilities for each
of the 45 columns. This scenario indicates that we have exactly 35,184,372,088,832 (245)
possible index configurations. We can think of it as a matrix of 45 columns by over 35 trillion
lines containing all possible combinations. Thus, this is the number of index configurations
that can be assumed by the database, and therefore, the number of states in which the agent
can explore.
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AGENT
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Fig. 1: Conceptual architecture of SMARTIX

Table 1: Amount of indexes per table in the TPC-H database.

Table Total Columns Indexed Columns Indexable Columns

REGION 3 1 2
NATION 4 2 2
PART 9 1 8
SUPPLIER 7 2 5
PARTSUPP 5 2 3
CUSTOMER 8 2 6
ORDERS 9 2 7
LINEITEM 16 4 12

3.2 States and Actions

The state is the formal representation of the environment information used by the agent in
the learning process. Thus, to decide which information should be used to define a state of
the environment is critical for the task performance. The amount of information encoded in
a state imposes a trade-off for reinforcement learning agents, specifically, that if the state
encodes too little information, then the agent does not learn a useful policy. In contrast, if
the state encodes too much information, there is a risk that the learning algorithm needs so
many samples of the environment that it does not converge to a policy.

We represent our states as a finite set S =C1, · · · ,C45, where Ci is one of the 45 available
indexable columns of the database. We define Ci as a tuple of 〈Coli,Bitt〉, where Coli is the
column identifier and Bitt is the column information at time t, containing 0 or 1 according
to whether each column is indexed or not. Consequently, the state space of our problem is
the power set P(Ci) of the set of columns in a database.

We structure our state information using a binary vector to represent all indexable table
columns in the database. Figure 2 illustrates a snippet of this binary vector, where we used
columns of the LINEITEM table as a sample and an example of the available actions in a
state. There are always two possible actions: “CREATE INDEX” or “DROP INDEX”. Consid-
ering that there are 45 columns in a state that can either be dropped or created an index,
the agent has 45 other different states in which it can transition to, depending on the chosen
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action. The indexes created are B+ tree structures, since the select queries in the workload
are more efficient when we use an ordered structure type.

3.3 Reward Function

Deciding the reward function is critical for the quality of the ensuing learned policy. To have
a feedback on whether a given index configuration has increased or decreased the database
performance, we employed the TPC-H QphH@Size metric in our reward function. Thus,
whenever the agent transitions to a new state, the benchmark is executed to provide a scalar
reward. The highest performance metric rewarded is used to evaluate whether the agent
found an optimizing index configuration among the explored ones.

3.4 Agent Training

We organize the agent training in episodes, each of which is composed of 100 steps in the
environment. Each step consists of the agent choosing an action, executing it in the envi-
ronment, and then letting the DBMS compute the reward using the benchmark we specified
in Section 2.3. Specifically, at any given step, the agent follows its policy and executes an
action of either creating or dropping an index in a given column. This index is created or
dropped, and the benchmark returns the resulting performance metric in order to evaluate
how good that action is in such state.

We employed an ε-greedy policy for agent exploration. It means that, with ε-probability,
the agent chooses whether to take a random actiona or an arg maxa among the available
actions in a given state. At the end of each episode, we decayed our epsilon value by 25%
of its value, so that the agent initially explores different states with high probability and
starts stabilizing later on. Since our environment does not have a terminal state, the agent
explores the state-space until the last step within an episode. To avoid local minima, we drop
all indexes at the end of each episode so that the agent can restart the exploration of indexes
from the default state.

Algorithm 1 depicts the steps performed by the SMARTIX agent. The algorithm con-
sists of a reinforcement learning approach built around the Q-learning method, using linear
function approximation and experience replay. In the following section, we describe the
algorithm’s performance and training statistics with regard to the methods applied.

TABLE LINEITEM

l_shipdate l_orderkey l_discount l_suppkey l_quantity ... l_comment

0 0 1 1 1 ... 0

Not indexed
Available action:

l_orderkey, CREATE

Indexed
Available action:

l_quantity, DROP

Fig. 2: State representation and available actions
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Algorithm 1 Q-learning indexing agent with function approximation and experience replay.
Adapted from [26] and [12].
1: Random initialization of parameters Θ

2: Empty initialization of replay memory D
3: for each episode do
4: s← DB initial index con f iguration mapped as initial state
5: for each step of episode do

6: a←

{
argmaxa∈A Q(s,a) with probability 1− ε

randoma∈A with probability ε

7: s′,r← execute(a)
8: for θi ∈Θ do
9: Update θi according to Equation 4

10: end for
11: Store experience e = 〈s,a,r,s′〉 in D
12: Sample random mini-batch of experiences e∼ D
13: Perform experience replay using sampled data
14: s← s′

15: end for
16: end for

4 Experimental Evaluation

In this section, we report the experiments performed using SMARTIX to optimize the index
configuration of the TPC-H database. We evaluate the index configuration in which our
algorithm converged to in comparison to other baseline and related work methods that use
reinforcement learning and genetic algorithms. We evaluate index configurations using the
query-per-hour performance metric (Equation 8) provided by the TPC-H benchmark and
analyze the disk space occupied by indexes.

We carried out all experiments in a 4-core Intel Core i5-4590 CPU @ 3.30GHz and 8 GB
of RAM running Ubuntu Linux 18.04 and Python version 3.6.6. We implemented the TPC-
H benchmark protocol in a Python script to run the queries in the database and to compute
performance metrics for each configuration. For each execution of the TPC-H benchmark,
we first calculate the Power (Equation 6) and Throughput (Equation 7) metrics in a scale
factor of 1 and using the response time of the 22 benchmark queries in MySQL, according
to the execution rules from the TPC-H benchmark protocol [28]. Then, we calculated the
QphH (Equation 8) for each configuration.

4.1 Using SmartIX for Automated Indexing

We trained the SMARTIX agent throughout 30 episodes, composed of 100 steps each, which
took approximately 4.9 days of training. At each step, the agent executed the TPC-H bench-
mark to retrieve the reward metric, which took approximately 3-4 minutes per execution.
From the 3000 states visited by the agent, only 1116 of them are distinct states, and the re-
maining are states that were visited more than once. As a result of the ε-greedy exploration
function, out of the 3000 actions taken by the agent during training, 2657 of were arg max
actions, and the remaining 343 were random actions. The entire description and source-code
for replicating the experiments here described are available at Zenodo [10].

Statistics from the training episodes are in Figure 3. We show in Sub-Figure 3a the total
reward accumulated by the agent per episode. Note that, the accumulated sum of rewards
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Fig. 3: Agent training statistics

stabilizes after the 16th episode, which indicates that the agent is converging to a stable in-
dex configuration. Sub-Figure 3b shows the corresponding ε-value for each episode during
the learning, decaying the exploration rate. Sub-Figure 3c shows that the time to train each
episode decreases as the agent optimizes the index configuration, as better index configu-
rations require less time to run the queries in the benchmark at each step of an episode.
Sub-Figure 3d illustrates the errors in predictions of state-action values and how it decreases
towards zero as function parameters are adjusted, and the agent approximates the true value
function.

4.2 Baseline Indexing Configurations

This subsection describes the baseline database indexing approaches that we use to com-
pare the performance with our SMARTIX reinforcement learning agent. These baselines
comprise different indexing configurations that we obtained using different indexing ap-
proaches, including commercial and open-source database advisors, genetic algorithms, and
reinforcement learning. Appendix A lists the indexed columns for each configuration of the
following comparable approaches:

1. Initial state: it is the default TPC-H configuration and contains indexes on primary and
foreign keys only.

2. Expert-based: it is based on an analysis of the database workload, contains the indexes
from the initial state in addition to indexes that decrease queries execution cost, the
manner a DBA would do.

3. All indexed: it is the configuration that contains all columns indexed.
4. Random policy: it is the highest performing configuration explored by an agent follow-

ing a policy that selects indexing options randomly over the course of 1000 iterations
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5. EDB [7]: it is the index configuration suggested by EnterpriseDB, a commercial database
advisor tool.

6. POWA [20]: it is the index configuration suggested by the PostgreSQL Workload Anal-
yser, an open-source advisor tool.

7. ITLCS [17]: the Index Tuning with Learning Classifier System (ITLCS), which com-
bines a learning classifier and genetic algorithms to discover rules for efficient indexing.

8. GADIS [13]: the Genetic Algorithm for Database Index Selection (GADIS), which uses
a genetic algorithm to explore index configurations encoded as individuals.

9. NoDBA [22]: a system based on a cross-entropy deep reinforcement learning method
applied to recommend indexes for given workloads.

10. rCOREIL [2]: a system based on a policy iteration reinforcement learning method,
which estimates a database cost model and suggests indexes that decrease such cost.

The expert-based index configuration is a result of a traditional DBA-style analysis,
where we examined the database schema and the queries performed in the workload. We
analyzed the columns contained in each “WHERE” clause of each of the 22 queries. Then,
we employed the query EXPLAIN command to visualize the cost of each query step, which
allows us to identify indexing opportunities for columns that impact on higher costs. We cre-
ated candidate indexes and ran the EXPLAIN plan again to evaluate whether the queries cost
actually decreased. The expert-based index configuration is constituted of all the candidate
indexes that resulted in a reduction in the queries execution cost.

The EDB [7], POWA [20] and ITLCS [17] index configurations are a result of a study
conducted by Pedrozo, Nievola and Ribeiro [17]. The authors [17] employ these methods to
verify which indexes are suggested by each method to each of the 22 queries in the TPC-H
workload, whose indexes constitute the respective configurations we use in this analysis.
The index configurations of GADIS [13], NoDBA [22] and rCOREIL [2] are a result of
experiments we ran using source-code provided by the authors. We execute the author’s
algorithms without modifying any hyper-parameter except configuring the database con-
nection. The index configuration we use in this analysis is the one in which each algorithm
converged to, when the algorithm stops modifying the index configuration or reaches the
end of training.

Table 2: TPC-H metrics for each index configuration. The highest performance for each
metric is highlight in bold.

Index config. Power@1GB Throughput@1GB QphH@1GB Index size (MB)

Initial state 3250.24 1781.91 2406.33 385.92
Expert-based 3581.70 1920.37 2622.46 927.42
All indexed 4016.19 2494.37 3165.08 3779.63
Random policy 3793.92 1948.09 2718.62 1708.18
EDB [7] 3767.30 2438.52 3030.92 1074.53
POWA [20] 3558.02 2251.09 2830.08 1074.15
ITLCS [17] 3701.13 2307.86 2922.37 898.31
GADIS [13] 3936.64 2486.06 3128.35 922.35
NoDBA [22] 3333.66 1854.29 2485.74 918.41
rCOREIL [2] 3799.52 2290.75 2949.56 3873.33
SmartIX 4081.65 2526.84 3211.47 1833.09
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Fig. 4: Query-per-hour metric and index size of each configuration (ascending order)

4.3 Results and Discussion

We compute the TPC-H performance metrics for each baseline configuration and compare
them to the one in which the SMARTIX agent converged to in the last episode of training.
Table 2 shows the performance metrics for each configuration, where higher values denote
better performance for each metric. These performance metrics are a result of a trimmed
mean, where we run the TPC-H benchmark 12 times for each index configuration, removing
the highest and the lowest result and averaging the 10 remaining results. The last column in
Table 2 shows the storage space required for the indexes in each configuration, which allows
us to analyze the trade-off in the number of indexes and the resources needed to maintain it.
To better visualize such information, we plot the query-per-hour metric and the index size
for each configuration in ascending order in Figure 4. We achieve the highest query-per-hour
metric in comparison to the baseline configurations and related work.

Indexing all columns yields the second highest QphH@1GB and can seem to be a nat-
ural alternative to solve the indexing problem. However, all columns indexed results in the
second highest amount of disk used to maintain indexes stored. Such alternative is less
efficient in a query-per-hour metric as the benchmark not only takes into account the perfor-
mance of SELECT queries, but also INSERT and DELETE operations, whose performance
is affected by the presence of indexes due to the overhead of updating and maintaining the
structure when records change [21, Ch. 8, p. 290-291].

While rCOREIL [2] is the most competitive reinforcement learning method in compari-
son to SMARTIX, the amount of storage used to maintain its indexes is the highest. rCOREIL
does not handle whether primary and foreign key indexes are already created, causing it to
create duplicate indexes. It is the only algorithm among the baselines to work with compos-
ite indexes. Composite indexes can benefit a broader range of queries [21, Ch. 8, p. 296],
but are structures that occupy a higher amount of disk space, and incur a higher overhead
to maintain. The algorithm converges after 169 iterations, after which it makes no changes
to the index configuration. The policy iteration algorithm used in rCOREIL is a dynamic
programming method used in reinforcement learning, which is characterized by complete
sweeps in the state space at each iteration in order to update the value function. Since dy-
namic programming methods are not suitable to large state spaces [23, Ch. 4, p. 87], this can
become a problem in databases that contain a larger number of columns to index.

The most competitive related work using genetic algorithms is GADIS [13]. The algo-
rithm uses a similar state-space model to SMARTIX, with individuals being represented as
binary vectors of the indexable columns, and the fitness function being the query-per-hour
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metric just as the reward function used by SMARTIX. At each individual evaluation, one
benchmark execution is needed to compute the performance metric to the configuration, as
in SMARTIX when a new state is reached. The genetic algorithm, however, took 50 genera-
tions of 100 individuals to converge to the index configuration. The configuration occupies
approximately 50.32% less disk space than SMARTIX, but has a lower performance metric.

Among the database advisors, the commercial tool EDB [7] achieves the highest query-
per-hour metric in comparison to the open-source tool POWA [20], while its indexes occupy
virtually the same disk space. Other baselines and related work are able to optimize the
index configuration and have lightweight index sizes, but are not competitive in comparison
to the previously discussed methods in terms of the query-per-hour performance metric.
Finally, the SMARTIX agent converges to an index configuration that has the highest query-
per-hour metric while trading-off storage space for indexes (approximately 51.5% less space
than simply indexing all columns). Our agent learns the value of each indexing option and
stabilizes in configurations with a performance metric that is on average higher than 3100
QphH@1GB after the 4th episode, which already surpasses most of the index configurations
we evaluate in this analysis.

5 Related Work

Machine learning techniques are used in a variety of tasks related to database management
systems and automated database administration [30]. One example is the work from Kraska
et al. [9], which outperforms traditional index structures used in current DBMS by replac-
ing them with learned index models, having significant advantages under particular assump-
tions. Pavlo et. al [16] research culminated on developing the first self-driving DBMS, called
Peloton, which has autonomic capabilities of optimizing the system to incoming workload
and also uses predictions to prepare the system to future workloads using predictions. In
this chapter, though, we further discuss related work that focused on developing methods
for optimizing queries through automatic index tuning. Specifically, we focus our analysis
on work that based their approach on reinforcement learning techniques.

Basu et al. [2] developed a technique for index tuning based on a cost model that is
learned with reinforcement learning. It is stated that current DBMS’s cost estimates can be
highly erroneous; thus, the authors propose a tuning strategy without a predefined model.
They learn a cost model through linear regression and approximate the cost of executing
queries at the current configuration, and instantiate their approach to the case of index tun-
ing, to find a indexing configuration that minimizes the cost function. However, once the cost
model is known, it becomes trivial to find the configuration that minimizes the cost through
dynamic programming, such as the policy iteration method used by the authors. They use
DBTune [4] to reduce the state space by considering only indexes that are recommended by
the DBMS. Our approach, on the other hand, is focused on finding the optimal index con-
figuration without having complete knowledge of the environment and without heuristics of
the DBMS to reduce the state space.

Sharma et al. [22] explore the use of a cross-entropy deep reinforcement learning method
to administer databases automatically. Their motivation is that DBMSs currently have a
large number of configuration settings that can be set, and it is typically up to a human
administrator to tweak it based on its own experience [22]. They instantiate their approach
to index tuning by evaluating how well their system selects indexes to a given workload.
Their set of actions, however, only include the creation of indexes, and a budget of 3 in-
dexes is set to deal with space constraints and index maintenance costs. Indexes are only
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dropped once an episode is finished. Their evaluation relies on the TPC-H relational model
as the database [28], just as our approach. However, they do not strictly follow the TPC-
H protocol, as they do not use the query workload provided by TPC-H, but use synthetic
queries consisting of select counts on the LINEITEM table, which does not consider INSERT

or DELETE operations (highly affected by the presence of indexes). A strong limitation in
their evaluation process is to only use the LINEITEM table to query, which does not exploit
how indexes on other tables can optimize the database performance, and consequently re-
duces the state space of the problem. Furthermore, they do not use the TPC-H benchmark
performance measure to evaluate performance but use query execution time in milliseconds.

Unlike previous papers, Pavlo et al. [16] present an entire self-driving in-memory DBMS,
called Peloton, that predicts the expected arrival rate of queries and deploys physical, data
and runtime actions. Their approach uses clustering algorithms to classify queries and re-
current neural networks to generate models that predict the arrival rate of queries from an
expected workload in order to plan and execute actions. They specify actions regarding cre-
ating and dropping indexes, though there are no detailed results on the system’s approach
to indexing, making it difficult to make an actual comparison to what we propose here. Pre-
liminary results of the proposed architecture, however, rely on analyzing the accuracy of
the workload predicted by their models in comparison to the actual workload sent to the in-
memory DBMS. Nevertheless, it is a strongly related work in terms of what we are working.

Other papers show that reinforcement learning can also be explored in the context
of query optimization by predicting query plans: Marcus et al. [11] proposed a proof-of-
concept to determine the join ordering for a fixed database; Ortiz et al. [15] developed a
learning state representation to predict the cardinality of a query. These approaches could
possibly be used alongside ours, generating better plans to query execution while we focus
on maintaining indexes that these queries can benefit from.

6 Conclusion

In this paper, we developed the SMARTIX agent architecture for automated database in-
dexing using reinforcement learning. We implemented the TPC-H protocol to benchmark
and give feedback on the agent actions, aiming to optimize the index configuration of a
relational database. The experimental results show that our agent consistently outperforms
the baseline index configurations and related work on genetic algorithms and reinforcement
learning. Our agent also proved itself to find a trade-off concerning the disk space its index
configuration uses and the performance metric it achieves.

Our architecture can also be adapted to be used in other systems. We can develop the
agent to listen to queries that are being received in the database and measure their response
time, modeling a reward function similarly to TPC-H’s benchmark. In a real application,
the agent is expected to manipulate these indexes automatically, without any direct human
supervision. Therefore, for future work, we plan to:

1. evaluate all possible combinations among tables working with composite indexes;
2. analyze queries to predict candidate columns to be indexed for a dynamic workload;
3. expand the experimental setting for different reinforcement learning strategies, such as

auto-encoded state compression [1]; and
4. evaluate SMARTIX on big data ecosystems (e.g., Hadoop).

In closing, we envision this kind of architecture being deployed in cloud platforms
such as Heroku and similar platforms that often provide database infrastructure for vari-
ous clients’ applications. The reality is that these clients do not prioritize, or it is not in their



16 Licks et al.

scope of interest to focus on database management. Especially in the case of early-stage
start-ups, the aim to shorten time-to-market and quickly ship code motivates externalizing
complexity on third party solutions [8]. From an overall platform performance point of view,
having efficient database management results in an optimized use of hardware and software
resources. Thus, in the lack of a database administrator, the SMARTIX architecture is a po-
tential stand-in solution, as experiments show that it provides at least equivalent and often
superior indexing choices compared to expert indexing recommendations.
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A Index configurations

The corresponding indexed columns in each of the configurations we use in our experiments are shown in
Table 3.

Table 3: Indexing configuration for all the baselines and SmartIX

Index config. Indexed columns

Initial state Only primary and foreign keys are indexed.

Expert-based LINEITEM: l_shipdate; ORDERS: o_orderdate; PART: p_brand, p_container, p_name, p_size, p_type.

All indexed All columns are indexed.

Random policy LINEITEM: l_shipdate, l_extendedprice, l_returnflag, l_commitdate, l_shipmode; ORDERS: o_orderdate,
o_orderstatus, o_clerk, o_comment; PARTSUPP: ps_supplycost, ps_comment; CUSTOMER: c_mktsegment,
c_phone; SUPPLIER: s_address, s_comment, s_phone; PART: p_mfgr, p_comment, p_retailprice, p_brand, p_size;
NATION: n_comment.

EDB [7] CUSTOMER: c_mktsegment; ORDERS: o_orderdate; PART: p_type, p_name; LINEITEM: l_returnflag,
l_shipdate; SUPPLIER: s_name.

POWA [20] CUSTOMER: c_mktsegment; LINEITEM: l_shipdate, l_returnflag; ORDERS: o_orderdate; PART: p_type,
p_name.

ITLCS [17] LINEITEM: l_shipdate; PART: p_type; ORDERS: o_orderdate.

GADIS [13] CUSTOMER: c_phone; LINEITEM: l_shipdate; ORDERS: o_orderdate; PART: p_container; PARTSUPP:
ps_availqty.

NoDBA [22] LINEITEM: l_discount, l_quantity, l_orderkey.

rCOREIL [2] NATION: n_nationkey, [n_nationkey, n_name], [n_name, n_nationkey], [n_regionkey, n_nationkey], [n_regionkey,
n_name] REGION: [r_name, r_regionkey]; ORDERS: o_custkey, [o_orderkey, o_custkey], [o_orderkey,
o_totalprice], [o_orderstatus, o_orderkey], [o_orderdate, o_orderkey], [o_orderdate, o_custkey], [o_orderdate,
o_orderpriority], [o_orderdate, o_shippriority]; CUSTOMER: [c_acctbal, c_custkey], [c_mktsegment, c_custkey],
[c_custkey, c_name], [c_custkey, c_nationkey] PART: [p_name, p_partkey], [p_brand, p_size], [p_type,
p_partkey], [p_size, p_partkey], [p_size, p_brand], [p_size, p_type], [p_container, p_brand] PARTSUPP:
[ps_partkey, ps_suppkey], [ps_suppkey, ps_partkey]; SUPPLIER: [s_suppkey, s_name], [s_nationkey, s_suppkey],
[s_nationkey, s_name]; LINEITEM: [l_orderkey, l_suppkey], [l_orderkey, l_linenumber], [l_partkey, l_suppkey],
[l_partkey, l_extendedprice], [l_partkey, l_discount], [l_suppkey, l_linenumber], [l_suppkey, l_discount],
[l_suppkey, l_shipdate], [l_shipdate, l_discount], [l_shipdate, l_tax], [l_discount, l_shipdate], [l_returnflag,
l_orderkey], [l_shipmode, l_receiptdate], [l_shipmode, l_shipinstruct].

SMARTIX CUSTOMER: c_name, c_address, c_phone, c_mktsegment; LINEITEM: l_discount, l_tax, l_shipdate,
l_commitdate; NATION: n_comment; ORDERS: o_orderstatus, o_totalprice, o_orderdate, o_clerk, o_shippriority;
PART: p_brand, p_type, p_size, p_container, p_comment; PARTSUPP: ps_availqty, ps_supplycost, ps_comment;
REGION: r_comment; SUPPLIER: s_name, s_acctbal.
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