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ABSTRACT
The development of practical agent languages has progressed sig-
nificantly over recent years, but this has largely been independent
of distinct developments in aspects of multiagent cooperation and
planning. For example, while the popular AgentSpeak(L) has had
various extensions and improvements proposed, it still essentially
a single-agent language. In response, in this paper, we describe
a simple, yet effective, technique for multiagent planning that en-
ables an agent to take advantage of cooperating agents in a soci-
ety. In particular, we build on a technique that enables new plans
to be added to a plan library through the invocation of an exter-
nal planning component, and extend it to include the construction
of plans involving the chaining of subplans of others. Our mecha-
nism makes use of plan patterns that insulate the planning process
from the resulting distributed aspects of plan execution through lo-
cal proxy plans that encode information about the preconditions
and effects of the external plans provided by agents willing to co-
operate. In this way, we allow an agent to discover new ways of
achieving its goals through local planning and the delegation of
tasks for execution by others, allowing it to overcome individual
limitations.

Categories and Subject Descriptors
D.2.5 [Artificial Intelligence]: Programming Languages and Soft-
ware; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—multi-agent systems

General Terms
Planning, Interaction

Keywords
Agent Languages, BDI, Cooperation, Planning

1. INTRODUCTION
Agent-based software has been advocated as an ideal technique

for the development of large, distributed applications, viewing them
as a number of independently controlled parts that interact and co-
operate to achieve their design objectives. The agent model per-
haps most commonly used in the development of agent-oriented
programming languages is based on the mental states of beliefs,
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desires and intentions, or BDI. In real-world scenarios, BDI-type
agents often have a large plan-library to cope with a complex world,
and need to include plans to deal with all contingencies foreseen
by the designer. In consequence, much research dealing with agent
languages has focused on the description of plans used by an in-
dividual agent to interact with the world. Although in multiagent
systems, agents are assumed to be able to use interaction to achieve
goals, agent languages seldom provide mechanisms to do so, and
cooperation is generally developed in an ad hoc fashion. Even
when cooperation is involved, it tends to use a highly specialised
version of any of a number of existing cooperation techniques, as-
suming a distributed but ultimately predefined set of abilities in the
society.

Previous work has shown the applicability of planning algorithms
in the generation of new individual plans through composition of
existing plans in a plan library [12]. When a planning-capable
agent needs to achieve a new goal, it searches its plan library for
applicable plans. If no suitable plan is found in the plan library, the
planner is invoked in an attempt to generate a new plan to satisfy
the desired goal. Plans generated by the planner in this way are
added to the plan library and become available to the agent to solve
future instances of the particular goal. However, if the planner fails
to generate a new plan, this (normally) means that the proposed
goal is impossible to achieve, given the world state and capabilities
known to the agent at the time of planning. Such an approach to
planning has been studied for individual agents, planning over their
own capabilities, under the premise that these capabilities are static
throughout its life cycle.

However, in a multi-agent environment the limitations of an in-
dividual agent may be overcome with the help of others, either by
delegating tasks to other agents, or by learning new ways of achiev-
ing goals. This means that the assumption that capabilities are static
no longer holds. In this case, a failure to generate a plan from an
individual’s capabilities does not necessarily mean the goal is im-
possible, since other agents in the society might have complemen-
tary capabilities. If an agent is capable of generating new plans at
runtime by taking into consideration the capabilities of others, new
multiagent plans can be used to overcome individual limitations,
and can also be added to the plan library for future use. In a sim-
plistic approach, a planning capable agent interpreter can be used
to achieve this effect.

Cooperative action involves communication and coordination, as
well as an increased degree of risk for the success of a plan, given
that the agents relied upon may break their commitments to achieve
their own goals. But from the planner’s perspective, the composi-
tion of new plans based on preconditions and effects upon the en-
vironment can be performed independently of these factors. It is
important to point out that, though there are a number of issues that



must be addressed in order to perform planning in distributed sys-
tems [4], communication and coordination can be abstracted away
from the planning process and inserted at a later point in time [9]. In
this paper we develop a new technique for agents with plan genera-
tion capabilities to cooperate in a multiagent society. In particular,
our technique relies on plan patterns (described in Section 3.2) that
encapsulate communication and coordination in such a way that
the planning algorithm can ignore them when chaining operators
in a plan. Though many existing approaches to cooperative action
handle communication and coordination together with plan compo-
sition [11], we choose to separate these two tasks in order to allow
the use of off-the-shelf planning algorithms. The rationale behind
this choice of approach is as follows:

• there is a wide range of local planning algorithms;

• active research on planning algorithms yields new potentially
useful algorithms;

• some planning algorithms are better suited for certain spe-
cific domains;

• integrating communication and cooperation in the planning
algorithm is not always easy; and

• our approach delegates actions to the agent architecture, al-
lowing new planners to be used seamlessly.

Even if the issues arising from interaction can be ignored by the
planner, they must be addressed in order to ensure the long-term
effectiveness of the plan library. In particular, relying on third par-
ties to accomplish one’s goals can be a problem due to unreliability
and broken commitments. Moreover, it is possible that an agent
whose cooperation is necessary for some plan in the plan library
may leave the society. This renders such a plan not only useless,
but also damaging to an agent’s efficiency if the plan is eventually
selected to achieve some goal, since this plan will always require
the agent to drop it after wasting the effort of starting to execute it.
Therefore, we provide a mechanism to clean up cooperative plans
when they become obsolete. By extracting key information from
other agents’ plans, particularly in relation to the declarative con-
sequences of local plans, an agent can be informed of the problem-
solving capabilities of others, allowing it to delegate the achieve-
ment of specific world-states, and using this information in its own
planning process.

Our contribution in this paper is twofold: a generic technique
to reduce multiagent planning into a traditional planning problem,
and the practical integration of such a technique in a BDI-like agent
language. In our approach, external plans are encapsulated into
patterns of local plans in order to abstract the communication and
coordination aspects away from the planner.

The paper is organised as follows: in Section 2 we summarise
the background work upon which our own contribution is based,
reviewing AgentSpeak(L) and AgentSpeak(PL); we then proceed
to explain in detail our multiagent planning technique in Section 3;
followed by a discussion of related work in Section 4; finally, in
Section 5, we summarise and conclude.

2. BACKGROUND

2.1 Cooperation
Cooperation is often cited as one of the main characteristic prop-

erties of multiagent systems [7, 6]. Yet there are several different
modes of cooperation that can be identified: i) multiple agents act-
ing towards a common joint goal; ii) one agent acting to achieve

goals for another agent; and iii) agents synchronising their actions
so as to avoid negative interference.

The first, and most common mode of cooperation in agents con-
sists of a group of agents sharing a possibly implicit joint goal and
acting to achieve this goal in a coordinated way. This goal might be
negotiated at runtime or exist in all agents by design. The second
possible mode of cooperation consists of one or more agents per-
forming actions that are not directly related to their own goals, but
rather support the achievement of the goals of another agent. The
third and final mode of cooperation commonly considered consists
of agents agreeing on some coordination of their individual actions
towards their individual goals in such a way that no agent jeop-
ardises the operation of another. Because our starting point is one
individual agent, seeking to achieve its goals through the assistance
of another, our focus in this paper is on the second mode of coop-
eration.

2.2 AgentSpeak(L)
AgentSpeak(L) [16] is an agent language, as well as an abstract

interpreter for the language, and follows the beliefs, desires and
intentions (BDI) model of practical reasoning. In simple terms, a
BDI agent tries to realise the desires it believes are possible by com-
mitting to carrying out certain courses of action through intentions.
The language of AgentSpeak(L) allows the definition of reactive
procedural plans, so that plans are defined in terms of events to
which an agent should react to by executing a sequence of steps (i.e.
a procedure). Plan execution is further constrained by the context
in which these plans are relevant. Here, a plan is executed under
the assumption that some implicit goal is being accomplished by
the plan at the particular moment.

The control cycle of an AgentSpeak(L) interpreter adopts plans
in reaction to events in the environment and executes their steps.
If the step is an action it is executed, while if the step is a goal, a
new plan for the goal is added into the intention structure. Failures
may take place either in the execution of actions, or during the pro-
cessing of subplans. When such a failure takes place, the plan that
is currently being processed also fails. Thus, if a plan selected for
the achievement of a given goal fails, the default behaviour of an
AgentSpeak(L) agent is to conclude that the goal that caused the
plan to be adopted is not achievable. This control cycle1 strongly
couples plan execution to goal achievement.

In order to better understand the relationship between the control
cycle and the plan library, it is necessary to introduce the notation
of AgentSpeak(L) plans. Events on an agent’s data structures that
can trigger the adoption of plans consist of additions and deletions
of goals and beliefs, and are represented by the plus (+) and minus
(−) sign respectively. Goals are distinguished into test goals and
achievement goals, denoted by a preceding question mark (?), or an
exclamation mark (!), respectively. For example, the addition of a
goal to achieve g is represented by +!g. Belief additions and dele-
tions arise as the agent perceives the environment, and are therefore
outside its control, while goal additions and deletions only arise as
part of the execution of an agent’s plans. Plans in AgentSpeak(L)
are represented by a header comprising a triggering condition and a
context, as well as a body describing the steps the agent takes when
a plan is selected for execution as is illustrated in Figure 1. If e is a
triggering event, b1, . . . , bm are belief literals, and h1, . . . , hn are
goals or actions, then e : b1& . . . &bm ← h1; . . . ; hn. is a plan.
As an example, consider a plan associated with the triggering event
!move(O, A, B) corresponding to the goal of moving an object O
from A to B, where:

1For a full description of AgentSpeak(L), see d’Inverno et al. [5]
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Figure 1: AgentSpeak(L) plan and dynamics.

• e is !move(O,A,B);

• at(O,A) and not at(O,B) are belief literals; and

• -at(O,A) and +at(O,B) are two steps in the plan body,
consisting of information about belief additions and dele-
tions.

The plan is then as follows:

+!move(O,A,B) : at(O,A) & not at(O,B)
<- -at(O,A);

+at(O,B).

When this plan is executed, it should result in the agent believing
that O is no longer in position A, and then believing it is in position
B. For an agent to rationally want to move O from A to B, it must
believe O is at position A and not already at position B.

2.3 Planning in AgentSpeak(PL)
AgentSpeak(PL) [12] is an extended AgentSpeak(L) interpreter

that integrates a planning module capable of generating new high-
level plans by chaining lower-level plans in an agent’s plan library.
Planning in AgentSpeak(PL) relies on a process that extracts in-
formation about the declarative consequences of simple AgentS-
peak(L) plans and uses this information, together with these plans’
context conditions, to generate equivalent STRIPS-like planning
operators. Here, we review the relevant aspects of AgentSpeak(PL),
which we later use in the description of our multiagent technique.

The design of a traditional AgentSpeak(L) plan library follows a
similar approach to programming in procedural languages, where
a designer typically defines fine-grained actions to be the build-
ing blocks of more complex operations. These building blocks
are then assembled into higher-level procedures to accomplish the
main goals of a system. Analogously, an AgentSpeak(L) designer
traditionally creates fine-grained plans to be the building blocks of
more complex operations, typically defining more than one plan
to satisfy the same goal (i.e. sharing the same trigger condition),
while specifying the situations in which it is applicable through the
context of each plan. Here, STRIPS actions are likened to low-level
AgentSpeak(L) plans, since the effects of primitive AgentSpeak(L)
actions are not explicitly defined in an agent description.

Once the building-block procedures are defined, higher-level op-
erations must be defined to fulfil the broader goals of a system by
combining these building blocks. In a traditional AgentSpeak(L)
plan library, higher-level plans to achieve broader goals contain a
series of goals to be achieved by the lower-level operations. This
construction of higher-level plans that make use of lower-level ones
is analogous to the planning performed by a propositional plan-
ning system. By doing the planning themselves, designers must
cope with every foreseeable situation the agent might find itself

in, and generate higher-level plans combining lower-level tasks ac-
cordingly. Moreover, the designer must make sure that the sub-
plans being used do not lead to conflicting situations. In AgentS-
peak(PL), by contract, this responsibility is delegated to a STRIPS
planner.

Plans resulting from propositional planning can then be con-
verted into sequences of AgentSpeak achievement goals to com-
prise the body of new plans available within an agent’s plan library.
Here, an agent can still have high-level plans pre-defined by the de-
signer, so that routine tasks can be handled exactly as intended. At
the same time, if an unforseen situation presents itself to the agent,
it has the flexibility of finding novel ways to solve problems, while
augmenting the agent’s plan library in the process.

3. PLANNING AND COOPERATION
As we have seen, when an agent has exhausted its individual

options to achieve a goal, it may be able to accomplish this goal
through others. In order to generate new plans that rely on coop-
eration with others, we define a practical strategy for multi-agent
planning and cooperation that allows an agent to share the knowl-
edge of the consequences of its plans so that others can delegate
parts of their high-level plans and achieve new goals. We introduce
external plans, which are plans owned by one agent, whose declar-
ative consequences are known by others and can, therefore, be re-
quested by others to help achieve their aims. Newly constructed
external plans can be integrated into multi-agent plans generated
through classical planning problems by considering their precondi-
tions and consequences and equating them to STRIPS/PDDL op-
erators, as described in Section 2.3. These newly created plans are
then integrated into an agent’s plan library for future use and ef-
ficiency gains. Furthermore, our strategy takes into consideration
the unreliability of cooperation in the context of self-interested and
unreliable agents by associating failure handling plans to manage
multi-agent plans, and eventually to remove plans that include such
unreliable partners.

In more detail, given an agent with plans it is willing to execute
on behalf of others (i.e. its shared plans), our technique consists
of automatically generating plans in both the sharer’s plan library
and the requester’s plan library using reusable plan patterns. These
new plans encode all the communication necessary for a requesting
agent to delegate the achievement of the external plan, and encap-
sulate information about the declarative effects of such an external
plan, allowing a planning module on the requester’s side to use
these plans in newly created plans. Moreover, we use plan patterns
to generate failure handling plans to cope with the potential unreli-
ability of the sharer.

In this section we define three plan patterns that generate new
plans based on an existing plan an agent is willing to execute on



Figure 2: Plan patterns involved in the sharing and use of a plan.

behalf of others, generating the necessary framework for a form of
cooperation based on delegation without the need for the designer
to predefine cooperative plans. More specifically, given a shared
plan, we define an external plan (EC) pattern that includes the steps
necessary for another agent to request the execution of the shared
plan. On the requester’s side, we define a proxy plan (PPX) pattern
that encodes the declarative information of the shared plan’s pre-
conditions and consequences, and contains the steps necessary for
the requester to request the remote execution of the shared plan.
Ultimately, proxy plans can be used by the planning process of
AgentSpeak(PL) as if they were local plans, to provide new coop-
erative plans, but given the uncertain nature of agent cooperation,
there is also a need to provide failure handling plans (FHP) to cope
with unreliable partners. These patterns and their resulting plans
(i.e. the plans that are generated from the plan pattern) are sum-
marised in the diagram of Figure 2, where dashed arrows represent
the creation of new plans through a plan pattern.

3.1 Communication for Cooperation in
AgentSpeak

Our technique assumes a BDI-style language [16] with a con-
struct for declarative goals, and speech-act based communication.
We also assume two other language features: the ability to anno-
tate plans with additional information; and the notion of internal
actions. Examples of agent languages suitable for implementing
this strategy are CANPLAN2 [17] and Jason [3]. Descriptions of
agent plans throughout this section use Jason, but these plan defini-
tions can be easily converted to any BDI-like agent language. Jason
is a recently developed AgentSpeak(L) interpreter with a number
of extensions necessary for our technique to function in practice.
Here, we summarise the language features we use in the descrip-
tions throughout this section, giving notation details when relevant.

3.1.1 Internal actions
The common understanding of agent actions is that they are en-

vironment transformation operators, so that when an agent invokes
an action, some consequence in the environment is expected. How-
ever, when some custom computation needs to take place within
a single reasoning cycle, Bordini et al. use the concept of an in-
ternal action in AgentSpeak(XL) [2]. This allows an agent to ac-
cess extensible libraries of custom procedures that can be executed
instantaneously by an agent. Unlike traditional actions, internal
actions do not cause changes in the environment, and since they

are executed instantly, they can be included in either the body or
the context of a plan, to refine the process of selecting applicable
plans. Syntactically, internal actions are denoted in the language
by a preceding “.” character, so the invocation of a check internal
action with two parameters is represented as .check(a, b).

3.1.2 Speech-act based communication
Effective cooperation between autonomous agents requires some

form of communication, typically using an agent communication
language, such as FIPA or KQML [19]. From an agent language
perspective, Moreira et al. [13] have introduced an operational se-
mantics of speech-act based communication for AgentSpeak(L),
defining plan rules for handling several of the performatives defined
by Searle [18]. These plan rules are given from both a sender and
a receiver point of view, allowing them to be implemented in prac-
tical AgentSpeak(L) interpreters. In this paper we are concerned
with three performatives:

• ask, used by an agent to request information from others;

• tell, used by an agent to supply information to others; and

• achieve, used by an agent to request another agent to achieve
a procedural goal.

From an operational perspective, we consider an implementation
of agent message passing using the concept of internal actions de-
scribed above, because messages between agents are not expected
otherwise to cause the environment to change. Messages are there-
fore sent using the .send internal action, which takes three param-
eters: the identification of the receiver, the performative, and the
message content 2. In terms of representation of beliefs, annota-
tions [2] have been used to provide additional information regard-
ing the source of events from external communication rather than
the environment. Thus, if the addition of the belief
time(hockey, 1020) by randall is a result of communication from
dante rather than a simple perception, the event posted to randall
is represented as time(hockey, 1020)[source(dante)], denoting
this belief’s origin.
2In this paper we provide a simplified overview of how these
performatives are operationalised in AgentSpeak(L), overlooking
a number of details regarding cooperation policies, and more
complex handling of communication-related event processing by
AgentSpeak(L). For additional information on these details, con-
sult [13].



When an agent sends a message with an ask performative, it
wants to ascertain that some expression unifies with another’s be-
lief base. For example, suppose agent randall wants to know the
time of the hockey game, stored in the belief base of agent dante
as the belief time(hockey, T ). To discover this information, it
executes an internal action .send(dante, ask, time(hockey, T )),
which causes an event +?time(hockey, T ) to be posted to dante.
If dante accepts the message, and has time(hockey, 1020) in its
belief base, the .send action in randall is executed successfully, re-
sulting in T being unified with 1020. Notice that since the effect of
this send is an event in the receiving agent, it might be handled by
a plan with a triggering event matching the query being made to it,
rather than a direct query to its belief base.

Similarly, when an agent sends a message with a tell performa-
tive, it wants to make another agent aware of some belief expres-
sion. Now suppose dante wants to make randall aware that the
hockey game is at 1020 by executing the action
.send(randall, tell, time(hockey, 1020)). If randall accepts this
message, it causes the event +time(hockey, 1020) to be posted to
randall.

Finally, when an agent wants another agent to adopt a particu-
lar achievement goal, it sends a message with an achieve perfor-
mative. So if dante wants randall to come to the hockey game
now, and it knows that randall has a plan to come to the game as-
sociated with the triggering event +!comeToHockey, it executes
.send(randall, achieve, comeToHockey). Again, if randall ac-
cepts this message, +!comeToHockey is posted to randall, and
the plan it executed.

3.2 A multiagent planning mechanism
When an agent has failed to achieve a goal through its individ-

ual capabilities and its previously known cooperative strategies, it
engages in multi-agent planning to try and solve the problem with
a new cooperative plan. Our technique is divided into three main
parts: the discovery of potential cooperation partners, the creation
of cooperative plans while abstracting cooperation, and the execu-
tion of multiagent plans.

3.2.1 Plan patterns
While many researchers have chosen to create new languages to

add notions such as declarative goals [21, 3] and failure handling
mechanisms [20, 17], it is possible to represent these, and many
other notions using simpler, existing agent languages. For exam-
ple, in AgentSpeak(L), all of these notions can be represented by
multiple related plans, as shown by Hübner et al. [10], who intro-
duce the notion of plan patterns to facilitate the designer’s task of
creating multiple, related, plans that serve a particular purpose.

Here, we consider a plan pattern to be an agent program rewrit-
ing rule with a numerator describing the original plan (or plans)
description, and a denominator describing the resulting agent pro-
gram. So, for example, if we wish to define a plan pattern that adds
a printed message before and after a certain plan body b is executed,
called PDB (Plan Debug), the rule is defined as:

+e : c ← b.

+e : c ← .print(“Start”); b ; .print(“End”).
PDB

3.2.2 Primitives
In order for an agent to find external plans in a society, it must

seek partners willing to carry out plans on behalf of the request-
ing agent. These willing partners then send declarative information
about their plans, that is their preconditions and effects. Here, we
are not concerned with the actual mechanism used in the discovery

of partners, and plan patterns are meant to be an abstraction of any
of a number of existing partner selection mechanisms, such as that
described in [14]. In this description of our method, we assume
that cooperation partners have already been selected somehow, and
our capability discovery method consists of broadcasting a request
for external plans, which is answered by all available agents in the
society. However, if a partner selection mechanism is in place, the
requests for external plans will only be sent by selected cooperation
partners.

Partners wishing to inform others of their external plans need to
gather the plan invocation parameters, preconditions and declara-
tive effects and send this information to their peers. This informa-
tion can be retrieved using the same process as in AgentSpeak(PL),
but instead of using this information to generate a STRIPS-like op-
erator description, an agent sends this as a reply to another agent
requesting external plans, along with the identification of the agent
supplying the external plan. This is represented in the tuple
〈g, a, P, E〉, where:

• g is the achievement goal (including parameters) in the shar-
ing agent’s plan library that will be adopted on behalf of the
requesting agent;

• a is the identifier of the sharing agent that owns the external
plan;

• P is a set {p0, . . . , pn} of preconditions of g; and

• E is a set {r0, . . . , rm} of declarative effects expected to
hold after the external plan is executed.

This information is used in the creation of plan patterns that serve as
local placeholders for the invocation of externally executed plans,
which we call proxy plans. The creation of proxy plans is detailed
next.

3.2.3 Creating proxy plans
Once an agent is aware of the external plans of others in the same

environment, it can try to use these capabilities in its own problem-
solving. In this approach, we make the external aspect of shared
plans transparent to an agent’s local planner through proxy plans.
These proxy plans describe the expected outcome of a successful
invocation of a third party capability and encapsulate the commu-
nication and coordination necessary for effective cooperation. A
proxy plan pattern PPX for an external plan 〈g, a, P, E〉, where
P = {p0, . . . , pn}, and E = {b0, . . . , bm} (and bi are belief addi-
tions or deletions) is:

+!g : p0& . . . &pn ← b0; . . . ; bm

+!remoteG : p0& . . . &pn&ready(a, g)
← .send(a, achieve, requestG);

.wait(done(g));
b0; . . . ; bm.

+!check(a, g) : true
← +ready(a, g).

PPXg,a,P,E

This plan pattern creates two plans, one of which replicates all
the logical constraints required for a to be successful in executing
this plan locally. The plan body includes a communication action
(.send) that uses the achieve performative to request the sharing
agent to carry out the specified plan, followed by an action to wait
for confirmation that the plan was executed. Finally, the plan pat-
tern replicates the belief additions expressed in the sharing agent’s
external plan, so that the planning process of AgentSpeak(PL) [12]



can process this plan in the same way as it would process local
plans.

In addition to the action-related part of the proxy plan to invoke
the external plan, one may also want to check that the owner of
the external plan is ready and willing to adopt the external plan.
This is represented in the PPX plan pattern by the precondition
ready(a, g), which is added to those preconditions already present
in the original external plan, and is the result of an extra plan to en-
sure that the sharing agent will actually carry out that action when
the requesting agent needs it to do so. In the PPX plan pattern, this
plan is simply a placeholder for any mechanism used to ascertain
the reliability of a cooperation partner, which can be replaced by
any mechanism preferred by the designer. Such a mechanism can
be introduced using a new CA (check agent) plan pattern, which
rewrites the check plan so that it calls a plan in the plan library
associated with this mechanism. For example, if there is a trust
verification mechanism associated with a verifyTrust achievement
goal (which we will not specify, but assume to be specified by the
designer), a plan pattern CA for the readiness of an agent to execute
external plan 〈g, a, P, E〉 through an achievement goal verifyTrust
is:

+!check(a, g) : true ← +ready(a, g).

+!check(a, g) : true
← !verifyTrust(a, g);

+ready(a, g).

CAg,a

3.2.4 Creating external plans
An important property of our proxy plans is that they succeed

when the sharer agent succeeds, and fail if either the sharer agent
fails in its execution or it refuses to carry out its commitment.
Hence, from the requester agent’s point of view, the execution of
a local plan and an external plan is the same.

Naturally, an agent sharing an external plan needs to have in its
plan library the achievement goal that corresponds to the achieve
performative sent by the requesting agent. We refer to this achieve-
ment goal as a plan endpoint to the PPX plan pattern, which is
associated with an actual plan in the sharing agent’s plan library.
The external plan, therefore, is generated from a local plan in the
sharer’s plan library using the EP (external plan) pattern, which is
as follows:

+!g : e ← b.

+!g : e ← b.
+!requestG[source(S)] : true

← !g;
.send(S, tell, done(g)).

EPg

3.2.5 Creating cooperative plans
Given the properties of the proxy plans described above, it is

easy to use the planning approach of AgentSpeak(PL) to generate
new multi-agent plans, since the AgentSpeak(PL) planning mod-
ule is insulated from the communication and cooperation aspects
of planning. However, although the generation of a sequence of ac-
tions (from a cause and effect perspective) does not depend directly
on whether it includes external and internal capabilities, high-level
plans that depend on the compliance of third parties must contain
guards to prevent initiating the plan when it has become infeasible.
These guards are derived by propagating the preconditions of exter-
nal proxy plans to the precondition of the high-level plan generated
by the planning module. Propagating these preconditions ensures
that a plan will not be initiated until all parties are ready to comply

+!goal_conj([closed(store)]) : at(randall, store)
& ready(randall)

<- !remoteClose(store).

Listing 1: A cooperative plan.

with requests for cooperation, while making sure that the cooper-
ating agent is queried for availability just before its cooperation is
needed.

As an example, suppose that dante is aware that randall can
achieve a goal to close the store on its behalf. If dante needs
randall to close the store on its behalf, it requires randall to be at
the store, and results in the store being closed; a cooperative plan
to achieve these goals generated in our system is shown in Table 1.

When a cooperative plan is adopted by an agent, it eventually
reaches the step corresponding to the adoption of the proxy plan
(remoteG). The proxy plan causes this agent to send a message
to the sharer requesting it to execute its external plan (requestG),
which corresponds to delegating the adoption of a plan to achieve
goal g in the sharer’s plan library. If the plan to achieve g is exe-
cuted successfully, the sharer sends confirmation of having achieved
g. This sequence of events is illustrated in Figure 3.

3.2.6 Failure handling for new plans
Although the ability to create new plans taking advantage of

the external plans of other agents allows the creation of plans that
achieve goals otherwise impossible to an agent, the dependence on
other self-interested agents poses another challenge, coping with
possibly unreliable partners. Plans created at design time tend to be
very efficient by making assumptions about aspects of the environ-
ment that do not change at runtime, whereas the generation of plans
at runtime involves a great deal of computational effort. However,
plans created in a dynamic society in which autonomous agents
may join and leave at any point in time cannot make many assump-
tions regarding the availability of capabilities shared by third par-
ties. The likelihood of failure for plans that depend on others can,
therefore, be considered greater than for plans that rely on an in-
dividual’s own capabilities. Thus, it is necessary for dynamically
generated plans, especially those that depend on unreliable capabil-
ities, to have associated failure handling plans. Here, handling plan
failures is important to ensure that an agent can cope with faults
due to failed cooperation. It also allows an agent to manage its plan
library in the long term, removing plans that are no longer relevant
due to the absence of, or consistent lack of reliability of, necessary
parties. For example, if an agent creates a plan that involves coop-
eration with an agent a, we introduce a failure handling plan FHP
pattern that removes the failed plan when a fails to cooperate for
some reason, as follows:

+!goal_conj([g1, . . . , gn]) : e ← b.

+!goal_conj([g1, . . . , gn]) : e ← b.
−!goal_conj([g1, . . . , gn]) : notready(a)

← .remove_plan(goal_conj([g1, . . . , gn])).

FHPa

4. RELATED WORK
Previous work by Ancona et al. [1] provides a cooperation tech-

nique that allows agents to expand their problem solving capabili-
ties by exchanging plans at runtime. Although this technique relies
on a very similar basic agent framework (aside from the planning
component), it has a distinct approach to addressing the shortcom-
ings of an agent, as it relies on an agent receiving entire plans from



Figure 3: Proxy plan communication.

others. In particular, it assumes that all agents in an environment
are able to execute the same set of basic actions, which may not be
the case in many real world scenarios. For example, agents might
require different levels of authorisation to perform specific actions
in the environment: an agent running in a user-level account, doing
maintenance in a Unix filesystem may need to change a file that
is owned by the root user, and clearly the plans that the root can
execute cannot simply be sent to this agent. Ancona’s approach is
complementary to ours in the sense that it can, for example, replace
the planning module we use to generate new plans from scratch and
allow an agent to get new plans from others.

It may be argued that creating cooperative plans using precondi-
tions and effects information in AgentSpeak(L) is akin to Service
Oriented Architectures (SOA), through web services being shared
by a directory service accessed through some protocol like the Uni-
versal Description, Discovery and Integration (UDDI) protocol
[15]. Indeed, web services are a possible technology for the instan-
tiation of an agent system using an SOA to provide web-protocols
for the communication layer of such a system. Unlike web services
on their own, however, agents have intentionality, and do not nec-
essarily carry out the requests of a client. Directory services could
also be used in a web service-based implementation, but they add
a centralising characteristic that is not entirely necessary for our
technique, since the directory service does not take into account
the dynamic nature of an agent’s willingness to cooperate; that is,
an agent A may agree to execute an action on behalf of agent B at
one point in time, but not at another, whereas a service is expected
always to respond in the same way.

5. CONCLUSIONS
By taking advantage of recent developments in practical agent

languages, we have described a practical, yet flexible, technique
for multiagent planning. This technique extends previous work on
agent planning [12] to take advantage of the availability of coop-
erating agents in a society, allowing agents to overcome individual
limitations by delegating parts of locally generated plans for execu-
tion by others. In this paper we have shown how this technique can
be implemented using recent extensions to the AgentSpeak(L) lan-
guage, without affecting the generality of our approach, since any
other BDI-like language with declarative goals and communication
capabilities can be extended with the planning we propose.

The focus of the paper is on the structural and functional aspects
of the plan library, and as a consequence we have sidestepped any

detailed account of how to address two major issues with coopera-
tion in agents: the distribution of the planning effort, and the evalu-
ation of reliability of cooperation partners. However, by modularis-
ing our technique, a designer can choose from the existing body of
work in both these areas. Moreover, we acknowledge that issues of
trust and reliability of cooperation partners are of paramount impor-
tance in any deployment of a system composed of agents that use
our technique, but this is a separate issue, and is isolated from the
rest of our planning process. Regarding the issue of distribution,
although the classical planning module leveraged from AgentS-
peak(PL) [12] is simple and centralised, we see no hurdles in using
our technique with distributed plan formation algorithms, such as
that proposed by Zhang et al. [22]. In this respect, our method is
flexible in that it allows any planning algorithm with a PDDL [8]
compatible planner to be used in the planning module.
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