
Evaluating the SBR Algorithm using
Automatically Generated Plan Libraries

Giovani Farias, Lucas Hilgert, Felipe Meneguzzi and Rafael H. Bordini
Pontifical Catholic University of Rio Grande do Sul – PUCRS – Porto Alegre, Brazil

Email: giovani.farias@acad.pucrs.br, lucaswhilgert@gmail.com, {felipe.meneguzzi, rafael.bordini}@pucrs.br

Abstract—Most approaches to plan recognition are based
on manually constructed rules, where the knowledge base is
represented as a plan library for recognising plans. For non-
trivial domains, such plan libraries have complex structures
representing possible agent behaviour to achieve a plan. Existing
plan recognition approaches are seldom tested at their limits, and,
though they use conceptually similar plan library representations,
they rarely use the exact same domain in order to directly
compare their performance, leading to the need for a principled
approach to evaluating them. Thus, we develop a mechanism to
automatically generate arbitrarily complex plan libraries which
can be directed through a number of parameters, in order
to create plan libraries representing different domains and so
allowing systematic experimentation and comparison among the
several plan recognition algorithms. We validate our mechanism
by carrying out an experiment to evaluate the performance of a
known plan recognition algorithm.

I. INTRODUCTION

Plan recognition systems generally require a knowledge
base that encodes into recipes the ways in which agent goals
can be achieved. Such knowledge bases are represented as plan
libraries with an often complex structure. The earliest plan
libraries encoded recipes as collections of preconditions, sub-
goals, constraints, and effects [3]. Since then, many different
algorithms have been used to perform plan recognition based,
for example, on Bayesian networks [2], graph covering [6],
and probabilistic state dependent grammars [9]. These methods
typically use an individual plan library to represent the set of
plans that are expected to be recognised, and the sequence of
observations are matched against this library to generate recog-
nition hypotheses ranked according to some rating method.
While an agent performs some task, the observation sequence
acquired is matched against the plan library, and the obtained
sequences are processed as plan recognition hypotheses.

Plan recognition algorithms may be used in real world
applications, which can have complex multi-feature observa-
tions, presenting a high computational cost to matching these
observations against all possible plan steps in the plan li-
brary. However, there is no approach to automatically generate
complex domain structures with a particular parameter set to
simulate real-world complex scenarios, supporting experiments
to evaluate the performance of various plan recognition al-
gorithms. Furthermore, plan libraries often have a complex
structure, due to the large number of possible observation
sequences that need to be encoded, which makes it extremely
laborious to create these libraries with the desired character-
istics by hand. Thus, it is important to have a mechanism for
automatically generating these structures in order to evaluate
the plan recognition algorithms under varying conditions.

We develop an approach for automatic generation of plan
libraries, as well as the observations sequences which serve
as input for the plan recognition algorithms. These generated
plan libraries and observations sequences can be used as test
suites in experiments for practical performance evaluation. The
contributions in this paper are as follows. First, we develop a
plan library generator that allows the construction of such test
suites based on a set of parameters that will determine the plan
library complexity. Second, we create an input set generator to
obtain observations sets from these libraries allowing us to use
the same domain information to directly compare performance
among various plan recognition approaches using different
structures of plan libraries. Third, we validate the approach
by generating and carrying out experiments to evaluate the
performance of the Symbolic Plan Recognition (SBR) method
proposed in [1].

This paper is organised as follows. Section II briefly
surveys the area of plan recognition and the definition of
Symbolic Plan Recognition (SBR) method. We describe the
parameters used by the algorithm to create random plan
libraries in Section III. We describe our algorithm to generate
plan libraries based on given parameters in Section IV, as
well as the algorithm to generate sequences of observations in
Section V. Finally, we describe the experiments that validate
the usability of our approach to in Section VI, and conclude
the paper in Section VII.

II. PLAN RECOGNITION

Plan recognition refers to the problem of inferring one
or more subjects’ goals based on a set of observed activi-
ties by constructing a plan (or multiple plans) that contains
them [6]. Algorithms to recognise the intentions and plans
executed by autonomous agents have been studied for a long
time in Artificial Intelligence under the general term of plan
recognition. Such work has yielded a number of approaches to
plan recognition [10], [8] and models that use them in specific
applications [12], [7]. Kautz and Allen [6] focus on symbolic
methods providing a formal theory of plan recognition, usually
these approaches specify a plan library as an action hierarchy
in which plans are represented as a plan graph with top-level
actions as root nodes, and plan recognition is then reduced
to a graph covering problem, so the plan recognition process
attempts to find a minimal set of top plans that explain
the observations. Symbolic approaches are a plan recognition
mechanism that narrows the set of candidate intentions by
eliminating the plans that are incompatible with current agent
actions. Generally, these approaches assume that the observer
has complete knowledge of the agent’s possible plans and

goals, handling the problem of plan recognition by determining
which set of goals is consistent with the observed actions.
The inputs to a plan recogniser are generally a set of goals
which the recogniser expects the agent to carry out in the
domain, a set of plans describing the way in which the agent
can reach each goal, and a sequence of actions observed by
the recogniser. The plan recognition 1 process itself consists in
inferring the agent’s goal, and determining how the observed
actions contributes to reach it.

A. Symbolic Plan Recognition – SBR

The Symbolic Plan Recognition (SBR) approach [1] is a
method for complete symbolic plan recognition that uses a
plan library, which encodes agent knowledge in the form of
plans. The SBR extracts coherent hypotheses from a multi-
featured observation sequence using a Feature Decision Tree
(FDT) to efficiently match these observations to plan steps in
a plan library. A plan library is a knowledge base that codifies
in some way the agent’s beliefs concerning how the agent can
reach each particular goal in the domain. Typically, a plan
library has a single dummy root node, where its children are
top-level plans and all other nodes are simply plan steps. In the
library, sequential edges specify the expected temporal order
of a plan execution sequence and decomposition edges link
sub-steps which are an elaboration (expansion) of the given
plan step. Each plan step has an associated set of observation
features status of the agent and its actions, when these features
status are met, the observations match a particular plan step.

The first stage of the SBR approach is the matching phase,
in which the observations made by the recogniser are matched
against plans in the plan library. The SBR algorithm considers
complex observations presuming that each plan step has a
set of feature status on observable features associated with
it. When these feature status hold in regards to observed
features of action execution (and in the correct order in case of
sequential edges), the current observation is said to match that
plan. Matching observations to plans can be computationally
expensive if all plans are checked, and for each plan, all
observed features are also checked (e.g., [5]). To speed-up this
process of matching observations to plans, SBR augments the
plan library with a FDT data structure, which efficiently maps
observations to matching nodes in the plan library. An FDT is a
decision tree, where each node represents an observable feature
and each branch represents one possible value of this feature.
Determining all matching plans from a set of observations
features is efficiently achieved by traversing the FDT top-down
until a leaf node is reached, because each leaf node is a pointer
to a plan step in the plan library.

III. PLAN LIBRARY GENERATOR – PARAMETERS

The algorithms were created in order to enable systematic
analysis and performance comparison between several plan
recognition algorithms given the variety of possible plan li-
braries. So, the Plan Library Generator (Section IV) produces
plan libraries based on various given parameters, and the Input
Set Generator (Section V) creates sequences of observations

1For a good overview of plan recognition in general, see Carberry [3], and
for the most recent research in the field of plan, intent, and activity recognition,
see Sukthankar et al. [11].

given a plan library. The parameters used by the Plan Library
Generator to create random plan libraries are as follows:

Number of top-level plans (np): represents the branching
factor of the root node, in other words, the number of
children for root node. This value refers to the number of
different independent top-level plans in a plan library.

Depth (dt): corresponds to the depth of plan trees. This depth
value for the plan library (from the root node) determines
the number of plan steps that a plan instance contains.

Minimum number of branches (mi): defines the minimum
number of branches that all nodes (other than root) must
have. This value must be in the interval [1;ma].

Maximum number of branches (ma): represents the maxi-
mum number of branches that all nodes (other than root)
may have, and this value must be greater than or equal
to the minimum number of branches (mi).

Number of features (fs): defines the number of observable
features available to be associated with a given plan
step. Features are properties associated with the action
represented by a given plan step, that need to be observed
by the plan recognition algorithms for them to be able to
recognise the execution of this particular plan step.

Number of features per node (fn): defines the number
of features associated with each node. As a restriction,
number of features (fs) must be greater than (or equal to)
the depth (dt) multiplied by the number of features per
node (fn). Thus, there are at least fn distinct features
for each plan step belonging to a single plan instance.

Feature status (st): represents the number of values that may
be associated with the features. Features with a specific
status allow the identification of determined plan steps
(actions) being executed by the observed agent. This value
must be greater than or equal to zero (st ≥ 0).

Sequential edges (sq): value in the interval [0, 1], which
determines the probability of a branch to be created as
sequential type. Thus, for example, sq = 0 means that all
branches will be of decomposition type, whereas sq = 1
means that all branches will be sequential.

Duplication (pd): percentage of top-level plans that are
duplicated in order to generate ambiguous paths. Each
plan has an unique identification. However, plans with
the same set of associated features and value of these
features are similar because they will match the same set
of observations, at least up to a point hence leading the
recogniser to have multiple unresolved hypotheses.

IV. PLAN LIBRARY GENERATOR – ALGORITHM

The generation of the plan library is conducted as briefly
described in Algorithm 1 (presented in Farias et al. [4]).

Algorithm 1 GenerateTree
Input: np, dt, mi, ma, sq, fs, fn, st, pd
Output: root node . tree with root node
1: create root node
2: create top-level plans
3: for each top level plan do
4: CreateBranches . briefly described in Algorithm 2
5: add children nodes
6: end for
7: duplicate plans . duplicate top-level plans according to pd
8: return root node

Algorithm 2 CreateBranches
Input: id, fs, pf , cd
Output: node . branch starting from node
1: create a node
2: if pf is not empty then
3: node get parent features
4: end if
5: if current depth cd is equal to depth dt then . node is a leaf
6: return node
7: end if
8: add sequential children
9: add decomposition children

10: return node

Algorithm 1 starts by creating the plan library root node
(Line 1), a decomposition node that is responsible for connect-
ing all agent top-level plans and has no features assigned to
it. The next step consists of creating top-level nodes (Line 2),
which correspond to agent plans (e.g., plans “p1” and “p2” in
Figure 1). These nodes are created as simple decomposition
nodes to which no features are assigned. After the creation
of top-level plans, the next step (Lines 3–6) consists in the
creation of their respective branches as described in Algo-
rithm 2 [4]. Finally, after the creation of individual top-level
plans, the algorithm selects (Line 7) the ones that will be
duplicated if a duplication percentage is non-zero.

Algorithm 2 describes the creation of plan-step nodes
and their respective branches, receiving as input: the new
node identification (id), number of features (fs), subset of
features assigned to its parent node (pf), and the current
depth (cd) in which the node is going to be created. Some
parameters, such as: number of features per node (fn), number
minimum of branches (mi), number maximum of branches
(ma), depth (dt), and sequential edges (sq) are assumed as
global. Algorithm 2 starts by creating a new node (Line 1)
and checking whether the set of parent features (Line 2) is not
empty, in which case the new node is a decomposition node
and inherits the parent features (Line 3). In next step, before
creating new node branches, algorithm checks if current level
has reached the expected depth (Line 5). So, if the expected
depth has been reached, new node is returned and plan path
creation is completed, otherwise, if the depth has not been
reached yet, algorithm goes to next step creating the next
level of tree. The next stage in algorithm execution is to create
the sequential branches of node. This step creates recursively
all sequential nodes and each node created is added to the
sequential children set of the new node (Line 8). After creating
sequential branches, this algorithm uses a similar step to create
decomposition branches of the new node (Lines 9).

The main difference between creating sequential and de-
composition branches is the feature distribution among nodes.
While creating sequential nodes the construction of feature
subset is based on the whole feature set (fs), creating decom-
position nodes is based on a subset of the feature set, which
eliminates features already used by parent nodes. In Figure 1,
nodes represent plans (first level) and plan steps (second
level and below) of the plan library, and edges represent
relations between them, where sequential links are represented
by dashed arrows and decomposition links are represented by
solid arrows. The “root” node is not considered a plan, being
used only as a way of connecting various plans.

f1 = 1
f2 = #
f3 = #

f1 = 1
f2 = 1
f3 = #

f1 = 1
f2 = 2
f3 = #

f1 = #
f2 = #
f3 = 1

f1 = 0
f2 = #
f3 = #

f1 = 1
f2 = 2
f3 = 1

f1 = #
f2 = 1
f3 = #

f1 = 1
f2 = 0
f3 = 0

f1 = 1
f2 = 1
f3 = 0

f1 = #
f2 = #
f3 = 0

f1 = 1
f2 = 1
f3 = #

f1 = 1
f2 = #
f3 = 0

f1 = 1
f2 = #
f3 = #

Fig. 1. Ex. plan library tree created by the Plan Library Generator (np = 2,
dt = 3, mi = 1, ma = 3, sq = 0.5, fs = 3, fn = 1, st = 2, and pd = 0).

V. INPUT SET GENERATION

For the experiments in this paper, the set of observations
used as input for the plan recogniser were automatically built
using the generated plan library. In the input set, observations
are organised in subsets known as “queries”, each query
contains the necessary observations (one or various) for the
recognition of a given plan. The number of observations in a
query varies based on the structure of the plan to be recognised,
for example, in Figure 1 the top plan p1 can be recognised
through ps1.1.1 with a single observation, or through ps1.2.2
using at least two observations given the temporal restriction
between ps1.2 and ps1.2.2. The creation of the observation sets
is conducted automatically, as described in Algorithm 3 that
receives as input a plan library and the number of queries to
be generated.

Algorithm 3 QueryGeneration
Input: plan library pl, number of queries nq
Output: list qs of sequences of observations
1: qs← ∅
2: for i = 0 to nq do
3: pn← getRandomPlan(pl)
4: obs← getObservations(pn)
5: qs.add(obs)
6: end for
7: return list qs

The QueryGeneration (Algorithm 3) starts randomly
selecting a plan of plan library to be recognised (Line 3).
The chosen plan structure is then traversed and the necessary
features (and feature values) for generation of observations
are collected from its plan steps (process described in Algo-
rithm 4). The generation process (Lines 2–6) is repeated until
the number of expected queries is reached.

The GetObservations (Algorithm 4) describes how
branches of a given plan are traversed. Initially (Line 2), each
branch of a given node (both sequential and decomposition)
is added to a single list. After that, one of these branches is
randomly selected (as shown in Line 8). If the selected branch
is of decomposition type the method is recursively called using
its corresponding node (Line 11). For paths of plans composed
only of decomposition branches (e.g., “p1” to “ps1.1.1”),
the method keeps being recursively called until a leaf-node
(e.g.,“ps1.1.1”) is found. Then, all features and feature values
contained in the leaf node are used to generate an observation.
This strategy is possible because in a decomposition relation
the child node always inherits the features of its parent node. If

Algorithm 4 GetObservations
Input: node nd
Output: list obs with a sequence of observations
1: obs← ∅
2: br ← getBranches(nd)
3: if br is empty then
4: ob← buildObservation(nd)
5: obs.add(ob)
6: return list obs
7: end if
8: rn← getRandomNode(br)
9: db← getDecBranches(nd)

10: if rn in db then
11: ob← getObservations(rn)
12: obs.add(ob)
13: else
14: po← getPreviousObservations(nd)
15: obs.add(po)
16: ob← getObservations(rn)
17: obs.add(ob)
18: end if
19: return list obs

the selected branch is a sequential branch, before the algorithm
continues to follow the selected path, it has to generate an
observation using the features of the current plan step. This
procedure is necessary because a sequential branch represents
a temporal relation in which for a plan step B to be validated,
a plan step A has to be recognised first. For example, given
the plan library shown in Figure 1 and the assumption that
plan steps “ps2.2” and “ps2.2.1” correspond, respectively, to
the actions “get the ball” and “kick the ball”, for one to be
able to execute the action “kick the ball”, one has to execute
the action “get the ball” first.

The procedure of building the previous observation is
shown in Algorithm 5. In this algorithm, before the execution
continues to follow through a sequential path it tries to build
the observation using the features of the current node. In this
situation, two cases have to be considered. In the first case,
the current node is a leaf node (i.e., has no decomposition
children), thus the observation is built using the features and
values of the current node (Lines 2–6). In the second case,
the current node is a decomposition node, so a strategy is
used in which the algorithm follows through the decomposition
branches of the children nodes until a leaf node is reached
(Lines 7–9). It is worth noting that the next decomposition
node to be consulted is randomly chosen, as shown in (Line 8).
After the previous observation has been created, the execution
of Algorithm 4 is resumed and it continues to follow the
selected path through the chosen sequential node (Line 16).

Algorithm 5 GetPreviousObservations
Input: plan Node nd
Output: list obs
1: obs← ∅
2: if isLeafNode(nd) then
3: ob← buildObservation(nd)
4: obs.add(ob)
5: return obs
6: end if
7: db← getDecBranches(nd)
8: pn← getRandomBranch(db)
9: ob← getPreviousObservations(pn)

10: obs.add(ob)
11: return obs

VI. EXPERIMENTS

The experiments aim to demonstrate the usability of the
approach presented in this paper to generate parametrised test
structures, which allows principled performance evaluation for
plan recognition approaches. An extensive set of experiments
varying a number of parameters was carried out in order to
evaluate the performance of the Symbolic Plan Recognition
(SBR) algorithm, described in [1]. The Plan Library Gener-
ator (Section IV) builds a plan library based on the given
parameters and the Input Generator (Section V) generates
sequences of observations based on this plan library. The
algorithms were implemented in Java SDK 1.7 (build 1.7.0 65-
b17) and we ran the experiments on a Mac Pro Server (OS
X 10.9.4) with two 6-core Intel Xeon (2.4 GHz) CPU, 32 GB
of RAM (DDR3 1333MHz), and 2 TB of disk storage. In
all experiments we evaluated the performance of SBR varying
some parameters and for each of these values we generated a
set of 200 random observation based on the given plan library.
The average runtime of SBR matching those 200 observations
are shown in Figures 2, 4, 6, and 8. The FDT training times
for each experiment are shown in Figures 3, 5, 7, and 9.

The first experiment (Figures 2 and 3) was performed by
varying the depth (dt) [3; 10] and the sequential edge prob-
ability (sq) [0; 1]. The other values were fixed as: np = 10;
mi = 1; ma = 3; fs = 10; fn = 1; st = 2 and
pd = 0. Figure 2 shows that SBR is more efficient in domains
where plan paths do not have an expected temporal order of
execution, i.e., plan paths with few sequential edges. Another
important aspect is that the longer the sequence of actions
necessary to realise a plan, the greater is the time to recognise
it. This is because depth has a strong influence on the size and
complexity of the plan library. This highlights the possibility of
varying the temporal structure of the plan library by controlling
the number of sequential edges.

 0.5

 1

 1.5

 2

 2.5

 3

 3 4 5 6 7 8 9 10

A
v
e
ra

g
e
 r

u
n
ti
m

e
 i
n
 m

ill
is

e
c
o
n
d
s

Depth

Sequential Edges (sq) = 0.0
Sequential Edges (sq) = 0.2
Sequential Edges (sq) = 0.4
Sequential Edges (sq) = 0.6
Sequential Edges (sq) = 0.8
Sequential Edges (sq) = 1.0

Fig. 2. Average matching runtime of SBR, varying dt and sq.

The time required to train the FDT is represented in
Figure 3, where it is possible to observe that time increases
according to the plan library depth (the deeper the plan
library, the greater the FDT training time), and according to
the number of sequential edges (the greater the number of
sequential edges, the greater the training time).

Figure 4 shows the average runtime of SBR varying the
number of top-level plans (np) [10; 100] and the number

 0

 5

 10

 15

 20

 25

 30

 35

 3 4 5 6 7 8 9 10

F
D

T
 t

ra
in

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

Depth

Sequential edges (sq) = 0.0
Sequential edges (sq) = 0.2
Sequential edges (sq) = 0.4
Sequential edges (sq) = 0.6
Sequential edges (sq) = 0.8
Sequential edges (sq) = 1.0

Fig. 3. FDT training time, varying dt and sq.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 10 20 30 40 50 60 70 80 90 100

A
v
e

ra
g

e
 r

u
n

ti
m

e
 i
n

 m
ill

is
e

c
o

n
d

s

Number of top level plans

Features per node (fn) = 01
Features per node (fn) = 02
Features per node (fn) = 04
Features per node (fn) = 06
Features per node (fn) = 08
Features per node (fn) = 10

Fig. 4. Average matching runtime of SBR, varying np and fn.

of features per node (fn) [1; 10]. The other values were
fixed as: dt = 5; mi = 2; ma = 2; fs = 50; st = 2,
sq = 0.5 and pd = 0. In this figure, we can observe that
SBR recognition time tends to increase as the number of
top-level plans increases in the domain. Figure 5 shows the
influence that the number of top-level plans and the number
of features per node carried on the FDT training time. We can
observe that the increase in number of top-level plans increases
the training time. This is contrary to what occurs with the
number of features per node, where an increase in the number
of features tends to lead to decrease in the time taken for
training. This experiment indicates that it is possible to use
these algorithms to generate increasingly complex plan-library
structures to (stress) test various plan recognition algorithms.

The third experiment (Figures 6 and 7) was performed
by varying the number of branches (mi = ma) [1; 9] and
the number of features per node (fn) [1; 10]. It is worth
noting that for this experiment, in particular, the number of
branches represents the exact number of children of each
node (i.e., parameters minimum and maximum number of
branches assume the same value). The number of top-level
plans (np) remains fixed at 10 and the duplication factor (pd)
was fixed at 0.2, which presents the possibility of increasing
the ambiguity in the plan library provided by the plan library
generator algorithm. The other parameters assume the same
values presented in the second experiment. Figure 6 shows that
the time for SBR to recognise a plan increases as the number of

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

F
D

T
 t

ra
in

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

Number of top level plans

Features per node (fn) = 01
Features per node (fn) = 02
Features per node (fn) = 04
Features per node (fn) = 06
Features per node (fn) = 08
Features per node (fn) = 10

Fig. 5. FDT training time, varying np and fn.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8 9

A
v
e

ra
g

e
 r

u
n

ti
m

e
 i
n

 m
ill

is
e

c
o

n
d

s

Number of branches

Features per node (fn) = 01
Features per node (fn) = 02
Features per node (fn) = 04
Features per node (fn) = 06
Features per node (fn) = 08
Features per node (fn) = 10

Fig. 6. Average matching runtime of SBR, varying ma and fn.

branches and the number of features per node assumes higher
values. This figure show a behaviour that is more regular than
that seen in Figure 4, which may be due to the increased size
and complexity of the plan library; such increase in size and
complexity happens more quickly when we change the number
of branches than when we change the number of top-level
plans. The FDT training time presented in Figure 7 shows
the major influence that branching factor (branches per node)
has on SBR performance, especially for the highest values,
although the time to recognise a plan remains at the scale of
milliseconds (see Figure 6), the FDT training takes longer.

Finally, the fourth experiment (Figures 8 and 9) was
performed with the aim of assessing the influence that the
number of features per node (fn) and the feature status (st),
i.e., the number of values that can be associated to the features,
have on FDT training time. Figure 8 shows average runtime
of SBR varying number of features per node (fn) [1; 10] and
feature status (st) [1; 10]. The other values were fixed as:
np = 10; dt = 7; mi = 3; ma = 3; fs = 10; sq = 1 and
pd = 0. This experiment shows that the expected effect of
using the FDT is diminished when the number of features per
node (plan step) is set at 1, which essentially treats features
as atomic. In Figure 9, we observe that the fewer features per
node, the slower the FDT training time (the worst case is when
there is only one feature per node). The range of feature status
also influences the training time, where the greater the relative
value of feature status, the smaller the training time.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 1 2 3 4 5 6 7 8 9

F
D

T
 t

ra
in

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

Number of branches

Features per node (fn) = 01
Features per node (fn) = 02
Features per node (fn) = 04
Features per node (fn) = 06
Features per node (fn) = 08
Features per node (fn) = 10

Fig. 7. FDT training time, varying ma and fn.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6 7 8 9 10

A
v
e

ra
g

e
 r

u
n

ti
m

e
 i
n

 m
ill

is
e

c
o

n
d

s

Features per Node

Feature Status (st) = 02
Feature Status (st) = 04
Feature Status (st) = 06
Feature Status (st) = 08
Feature Status (st) = 10

Fig. 8. Average matching runtime of SBR, varying fn and st.

VII. CONCLUSION

In this paper, we developed a framework that allows prin-
cipled performance evaluation for plan recognition algorithms.
A plan library generator was created to generate complex
structures based on a number of parameters that will determine
the complexity of the plan library. Thus, a unique represen-
tation of an information domain can be used to compare
the performance of several plan recognition algorithms. This
performance is directly related to the structure and size of
the plan library, as well as the set of observations given
to the plan recognition system. The size of a plan library
is mainly determined by the number of top-level plans, the
interval composed by the number minimum and maximum of
branches, and by its depth. On the other hand, the ambiguity
of plan library influences the amount of distinct plans that fit
a given sequence of observations. In our approach, the amount
of ambiguity is determined by: (i) the duplication parameter,
which taking larger values implies more duplicated plans,
thereby increasing the ambiguity; (ii) the number of features,
as less features tend to decrease the possibility of a distinction
between plans; (iii) the feature status, which assuming higher
values enables greater distinction among plans that use the
same set of features; and (iv) by the number of features per
node where greater values cause more variety in plans.

Experiments were carried out to assess the effectiveness of
this approach by generating several plan libraries with different
structures to test the performance of the SBR algorithm. We
observed that SBR has a better recognition time performance in

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6 7 8 9 10

F
D

T
 t

ra
in

in
g

 t
im

e
 i
n

 s
e

c
o

n
d

s

Features per Node

Feature Status (st) = 02
Feature Status (st) = 04
Feature Status (st) = 06
Feature Status (st) = 08
Feature Status (st) = 10

Fig. 9. FDT training time, varying fn and st.

domains presenting plan paths with fewer sequential edges and
short sequences of actions and it presents worse performance
when the number of branches and number of features per
node assume higher values. Besides, SBR recognition time
and FDT training time tend to increase according with the
number of top-level plans in the domain. The FDT training
time increases according to plan library depth and number of
sequential edges, and decreases when the number of features
per node grows. Finally, experiments show the capacity of our
approach to create complex and varied structures, as well as
the possibility to change the temporal structure and ambiguity
of the plan library to evaluate plan recognition algorithms.

Acknowledgement: This paper was part of the research project entitled
“Semantic and Multi-Agent Technologies for Group Interaction”, sponsored
by Samsung Eletrônica da Amazônia Ltda. under the terms of Brazilian
federal law No. 8.248/91. This research was also supported by CAPES
and CNPq. Felipe Meneguzzi thanks CNPq for the support within process
numbers 306864/2013-4 under the PQ fellowship and 482156/2013-9 under
the Universal project programs.

REFERENCES

[1] D. Avrahami-Zilberbrand and G. A. Kaminka, “Fast and complete
symbolic plan recognition,” in Proc. IJCAI, 2005, pp. 653–658.

[2] H. Bui, “A general model for online probabilistic plan recognition,” in
Proc. IJCAI, 2003, pp. 1309–1315.

[3] S. Carberry, “Techniques for plan recognition,” User Modeling and User-
Adapted Interaction, vol. 11, no. 1-2, pp. 31–48, Mar. 2001.

[4] G. P. Farias, L. W. Hilgert, F. R. Meneguzzi, R. Vieira, and R. H. Bordini,
“Automatic generation of plan libraries for plan recognition performance
evaluation,” in WI-IAT 2015, Singapore, 2015 - Volume II, pp. 129–132.

[5] G. A. Kaminka and M. Tambe, “Robust agent teams via socially-attentive
monitoring,” JAIR, vol. 12, no. 1, pp. 105–147, mar 2000.

[6] H. A. Kautz and J. F. Allen, “Generalized plan recognition,” in AAAI,
1986, pp. 32–37.

[7] J. Oh, F. Meneguzzi, K. P. Sycara, and T. J. Norman, “Prognostic
normative reasoning,” EAAI, vol. 26, no. 2, pp. 863–872, 2013.

[8] R.F. Pereira, and F. Meneguzzi, “Landmark-based Plan Recognition,”
Procs. ECAI, (to appear), 2016.

[9] D. V. Pynadath and M. P. Wellman, “Probabilistic state-dependent
grammars for plan recognition,” in Proc. AUAI, 2000, pp. 507–514.

[10] M. Ramı́rez and H. Geffner, “Plan recognition as planning,” in Proc.
IJCAI, 2009, pp. 1778–1783.

[11] G. Sukthankar, R. P. Goldman, C. Geib, D. V. Pynadath, and H. H.
Bui, Eds., Plan, Activity, and Intent Recognition: Theory and Practice.
Elsevier, 2014.

[12] G. Sukthankar and K. Sycara, “Activity recognition for dynamic multi-
agent teams,” ACM TIST, vol. 3, no. 1, p. 18, 2011.

